标签 github 下的文章

小厂内部私有Go module拉取方案

本文永久链接 – https://tonybai.com/2021/09/03/the-approach-to-go-get-private-go-module-in-house

1. 问题来由

Go 1.11版本引入Go module后,Go命令拉取依赖的公共go module不再是“痛点”。如下图所示:


图:从公司内部经由公共GOPROXY服务拉取公共go module

我们在公司/组织内部仅需要为环境变量GOPROXY配置一个公共GOPROXY服务即可轻松拉取所有公共go module(公共module即开源module)。

但随着公司内Go使用者增多以及Go项目的增多,“代码重复”问题就出现了。抽取公共代码放入一个独立的、可被复用的内部私有仓库成为必然。这样我们便有了拉取私有go module的需求!

一些公司或组织的所有代码都放在公共vcs托管服务商那里(比如github.com),私有go module则直接放在对应的公共vcs服务的private repository(私有仓库)中。如果你的公司也是如此,那么拉取托管在公共vcs私有仓库中的私有go module也很容易,见下图:


图:从公司内部直接拉取托管在公共vcs服务上的私有go module

当然这个方案的一个前提是:每个开发人员都需要具有访问公共vcs服务上的私有go module仓库的权限,凭证的形式不限,可以是basic auth的user和password,也可以是personal access token(类似github那种),只要按照公共vcs的身份认证要求提供即可。

但是如果私有go module放在公司内部的vcs服务器上,就像下面图中所示:


图:私有go module放在组织/公司内部的vcs服务器上

那么我们该如何让Go命令自动拉取内部服务器上的私有go module呢?

一些gopher会说:“这很简单啊! 这和拉取托管在公共vcs服务上的私有go module没有什么分别啊”。持这种观点的gopher多半来自大厂。大厂内部有完备的IT基础设施供开发使用,大厂内部的vcs服务器都可以通过域名访问(比如git.bat.com/user/repo),因此大厂内部员工可以像访问公共vcs服务那样访问内部vcs服务器上的私有go module,就像下面图中所示:


图:大厂方案:直接拉取内部vcs仓库上的私有go module

我们看到:在上面这个方案中,公司搭建了一个内部goproxy服务(即上图中的in-house goproxy),这样的目的一来是为那些无法直接访问外网的开发机器以及ci机器提供拉取外部go module的途径,二来由于in-house goproxy的cache的存在,还可以加速公共go module的拉取效率。对于私有go module,开发机将其配置到GOPRIVATE环境变量中,这样Go命令在拉取私有go module时不会再走GOPROXY,而会采用直接访问vcs(如上图中的git.bat.com)的方式拉取私有go module。

当然大厂还可能采用下图所示方案将外部go module与私有go module都交给内部统一的Goproxy服务去处理:


图:大厂方案: 统一代理方案

在这种方案中,开发者仅需要将GOPROXY配置为in-house goproxy便可以统一拉取外部go module与私有go module。但由于go命令默认会对所有通过goproxy拉取的go module进行sum校验(到sum.golang.org),而我们的私有go module在公共sum验证server中没有数据记录,因此,开发者需要将私有go module填到GONOSUMDB环境变量中,这样go命令就不会对其进行sum校验了。不过这种方案有一处要注意:那就是in-house goproxy需要拥有对所有private module所在repo的访问权限,这样才能保证每个私有go module的拉取成功!

好了,问题来了!对于那些没有完备内部IT基础设施,还想将私有go module放在公司内部的vcs服务器上的小厂应该如何实现私有go module的拉取方案呢?

2. 可供小厂参考的一个解决方案

小厂虽小,但目标不能低。小厂虽然IT基础设施薄弱或不够灵活,但也不能因此给开发人员带去太多额外的“负担”。因此,对比了上面的两个大厂可能采用的方案,我们更倾向于后者。这样,我们就可以将所有复杂性都交给in-house goproxy这个节点,开发人员就可以做的足够简单。但小厂没有DNS,无法用域名…,我们该怎么实现这个方案呢?在这一节中,我们就实现这个方案。

0. 方案示例环境拓扑

我们先为后续的方案实现准备一个示例环境,其拓扑如下图:

1. 选择一个goproxy实现

Go module proxy协议规范发布后,Go社区出现了很多成熟的Goproxy开源实现。从最初的athens,再到国内的两个优秀的开源实现:goproxy.cngoproxy.io。其中,goproxy.io在官方站点给出了企业内部部署的方法,基于这一点,我们就基于goproxy.io来实现我们的方案(其余的goproxy实现应该也都可以实现)。

我们在上图中的in-house goproxy节点上执行下面步骤安装goproxy:

$mkdir ~/.bin/goproxy
$cd ~/.bin/goproxy
$git clone https://github.com/goproxyio/goproxy.git
$cd goproxy
$make

编译后,会在当前的bin目录(~/.bin/goproxy/goproxy/bin)下看到名为goproxy的可执行文件。

建立goproxy cache目录:

$mkdir /root/.bin/goproxy/goproxy/bin/cache

启动goproxy:

$./goproxy -listen=0.0.0.0:8081 -cacheDir=/root/.bin/goproxy/goproxy/bin/cache -proxy https://goproxy.io
goproxy.io: ProxyHost https://goproxy.io

启动后goproxy在8081端口监听(即便不指定,goproxy的默认端口也是8081),指定的上游goproxy服务为goproxy.io。

注意:goproxy的这个启动参数并不是最终版本的,这里仅仅想验证一下goproxy是否能按预期工作。

接下来,我们来验证一下goproxy的工作是否如我们预期。

我们在开发机上配置GOPROXY环境变量指向10.10.20.20:8081:

// .bashrc
export GOPROXY=http://10.10.20.20:8081

生效环境变量后,执行下面命令:

$go get github.com/pkg/errors

结果如预期,开发机顺利下载了github.com/pkg/errors包。

在goproxy侧,我们看到了下面日志:

goproxy.io: ------ --- /github.com/pkg/@v/list [proxy]
goproxy.io: ------ --- /github.com/pkg/errors/@v/list [proxy]
goproxy.io: ------ --- /github.com/@v/list [proxy]
goproxy.io: 0.146s 404 /github.com/@v/list
goproxy.io: 0.156s 404 /github.com/pkg/@v/list
goproxy.io: 0.157s 200 /github.com/pkg/errors/@v/list

并且在goproxy的cache目录下,我们也看到了下载并缓存的github.com/pkg/errors包:

$cd /root/.bin/goproxy/goproxy/bin/cache
$tree
.
└── pkg
    └── mod
        └── cache
            └── download
                └── github.com
                    └── pkg
                        └── errors
                            └── @v
                                └── list

8 directories, 1 file

2. 自定义包导入路径并将其映射到内部的vcs仓库

小厂可能没有为vcs服务器分配域名,我们也不能在Go私有包的导入路径中放入ip地址,因此我们需要给我们的私有go module自定义一个路径,比如:mycompany.com/go/module1。我们统一将私有go module放在mycompany.com/go下面的代码仓库中。

接下来的问题是,当goproxy去拉取mycompany.com/go/module1时,应该得到mycompany.com/go/module1对应的内部vcs上module1 仓库的地址,这样goproxy才能从内部vcs代码服务器上下载到module1对应的代码。


图:goproxy如何得到mycompany.com/go/module1所对应的vcs仓库地址呢?

其实方案不止一种。这里我们使用一个名为govanityurls的工具,这个工具在我以前的文章中曾提到过。

结合govanityurls和nginx,我们就可以将私有go module的导入路径映射为其在vcs上的代码仓库的真实地址。下面的图解释了具体原理:

首先,goproxy要想将收到的拉取私有go module(mycompany.com/go/module1)的请求不转发给公共代理,需要在其启动参数上做一些手脚,如下面修改后的goproxy启动命令:

$./goproxy -listen=0.0.0.0:8081 -cacheDir=/root/.bin/goproxy/goproxy/bin/cache -proxy https://goproxy.io -exclude "mycompany.com/go"

这样凡是与-exclude后面的值匹配的go module拉取请求,goproxy都不会转给goproxy.io,而是直接请求go module的“源站”。而上面图中要做的就是将这个“源站”的地址转换为企业内部vcs服务中的一个仓库地址。由于mycompany.com这个域名并不存在,从图中我们看到:我们在goproxy所在节点的/etc/hosts中加了这样一条记录:

127.0.0.1 mycompany.com

这样goproxy发出的到mycompany.com的请求实则是发向了本机。而上图中所示,监听本机80端口的正是nginx,nginx关于mycompany.com这一主机的配置如下:

// /etc/nginx/conf.d/gomodule.conf

server {
        listen 80;
        server_name mycompany.com;

        location /go {
                proxy_pass http://127.0.0.1:8080;
                proxy_redirect off;
                proxy_set_header Host $host;
                proxy_set_header X-Real-IP $remote_addr;
                proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

                proxy_http_version 1.1;
                proxy_set_header Upgrade $http_upgrade;
                proxy_set_header Connection "upgrade";
        }
}

我们看到对于路径为mycompany.com/go/xxx的请求,nginx将请求转发给了127.0.0.1:8080,而这个服务地址恰是govanityurls工具监听的地址。

govanityurls这个工具是前Go核心开发团队成员Jaana B.Dogan开源的一个工具,这个工具可以帮助gopher快速实现自定义Go包的go get导入路径

govanityurls本身就好比一个“导航”服务器。当go命令向自定义包地址发起请求时,实则是将请求发送给了govanityurls服务,之后govanityurls将请求中的包所在仓库的真实地址(从vanity.yaml配置文件中读取)返回给go命令,后续go命令再从真实的仓库地址获取包数据。

注:govanityurls的安装方法很简单,直接go install/go get github.com/GoogleCloudPlatform/govanityurls即可。

在我们的示例中,vanity.yaml的配置如下:

host: mycompany.com

paths:
  /go/module1:
      repo: ssh://admin@10.10.30.30/module1
      vcs: git

也就是说当govanityurls收到nginx转发的请求后,会将请求与vanity.yaml中配置的module路径相匹配,如果匹配ok,则会将该module的真实repo地址通过go命令期望的应答格式予以返回。在这里我们看到,module1对应的真实vcs上的仓库地址为:ssh://admin@10.10.30.30/module1。

于是goproxy会收到这个地址,并再次向这个真实地址发起请求,并最终将module1缓存到本地cache并返回给客户端。

注意:由于这个方案与大厂的第二个方案是一样的,因此goproxy需要有访问mycompany.com/go下面所有go module对应的真实vcs仓库的权限。

3. 开发机(客户端)的设置

前面示例中,我们已经将开发机的GOPROXY环境变量设置为goproxy的服务地址。但我们说过凡是通过GOPROXY拉取的go module,go命令默认都会将其sum值到公共GOSUM服务器上去校验。但我们实质上拉取的是私有go module,GOSUM服务器上并没有我们的go module的sum数据。这样会导致go build命令报错,无法继续构建过程。

因此,开发机客户端还需将mycompany.com/go作为一个值设置到GONOSUMDB环境变量中,这就告诉go命令,凡是与mycompany.com/go匹配的go module,都无需做sum校验了。

4. 方案的“不足”

当然上述方案也不是完美的,它也有自己的不足的地方:

  • 开发者还是需要额外配置GONOSUMDB变量

由于Go命令默认会对从GOPROXY拉取的go module进行sum校验,因此我们需要将私有go module配置到GONOSUMDB环境变量中,这给开发者带来了一个小小的“负担”。

缓解措施:小厂可以将私有go项目都放在一个特定域名下,这样就无需为每个go私有项目单独增加GONOSUMDB配置了,只需要配置一次即可。

  • 新增私有go module,vanity.yaml需要手工同步更新

这个是这个方案最不灵活的地方了,由于目前govanityurls功能有限,我们针对每个私有go module可能都需要单独配置其对应的vcs仓库地址以及获取方式(git, svn or hg)。

缓解方案:在一个vcs仓库中管理多个私有go module,就像etcd那样。相比于最初go官方建议的一个repo只管理一个module,新版本的go在一个repo管理多个go module方面已经有了长足的进步。

不过对于小厂来说,这点额外工作与得到的收益相比,应该也不算什么!^_^

  • 无法划分权限

在上面的方案说明时也提到过,goproxy所在节点需要具备访问所有私有go module所在vcs repo的权限,但又无法对go开发者端做出有差别授权,这样只要是goproxy能拉取到的私有go module,go开发者都能拉取到。

不过对于多数小厂而言,内部所有源码原则上都是企业内部公开的,这个问题似乎也不大。如果觉得这是个问题,那么只能使用上面的大厂的第一个方案了。

3. 小结

无论大厂小厂,当对Go的使用逐渐深入后,接纳的人增多,开发的项目增多且越来越复杂后,拉取私有go module这样的问题肯定会摆到桌面上来。

对于大厂的gopher来说,这可能不是问题,甚至对他们都是透明的。但对于小厂等内部IT基础设施不完备的组织而言,的确需要自己动手解决。

这篇文章为小厂搭建Go私有库以及从私有库拉取私有go module提供了一个思路以及一个参考实现。

如果觉得上面的安装配置步骤有些繁琐,有兴趣深入的朋友可以将上述几个程序(goproxy, nginx, govanityurls)打到一个容器镜像中,实现一键安装设置。


“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://51smspush.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

一文告诉你如何用好uber开源的zap日志库

本文永久链接 – https://tonybai.com/2021/07/14/uber-zap-advanced-usage

1. 引子

日志在后端系统中有着重要的地位,通过日志不仅可以直观看到程序的当前运行状态,更重要的是日志可以在程序发生问题时为开发人员提供线索。

在Go生态中,logrus可能是使用最多的Go日志库,它不仅提供结构化的日志,更重要的是与标准库log包在api层面兼容。在性能不敏感的领域,logrus确实是不二之选。

但在性能敏感的领域和场景下,logrus便不那么香了,出镜更多的是大厂uber开源的名为zap的日志库。之所以在这些场景下zap更香,虽与其以高性能著称不无关系,但其背后的大厂uber背书也是极其重要的。uber大厂有着太多性能和延迟敏感的场景,其生产环境现存数千个Go语言开发的微服务,这些微服务估计大多使用的都是zap,经历过大厂性能敏感场景考验的log库信誉有保障,后续有人持续维护,自然被大家青睐。

关于zap高性能的原理,在网络上已经有不少高质量的资料(参见本文末的参考资料)做过详尽的分析了。zap的主要优化点包括:

  • 避免使用interface{}带来的开销(拆装箱、对象逃逸到堆上
  • 坚决不用反射,每个要输出的字段(field)在传入时都携带类型信息(这虽然降低了开发者使用zap的体验,但相对于其获得的性能提升,这点体验下降似乎也算不得什么):
logger.Info("failed to fetch URL",
    // Structured context as strongly typed Field values.
    zap.String("url", `http://foo.com`),
    zap.Int("attempt", 3),
    zap.Duration("backoff", time.Second),
)
  • 使用sync.Pool减少堆内存分配(针对代表一条完整日志消息的zapcore.Entry),降低对GC压力。

下面是一个简单zap与logrus的性能基准benchmark对比:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/benchmark/log_lib_test.go
package main

import (
    "io"
    "testing"
    "time"

    "github.com/sirupsen/logrus"
    "go.uber.org/zap"
    "go.uber.org/zap/zapcore"
)

func BenchmarkLogrus(b *testing.B) {
    b.ReportAllocs()
    b.StopTimer()
    logger := logrus.New()
    logger.SetOutput(io.Discard)
    b.StartTimer()
    for i := 0; i < b.N; i++ {
        logger.WithFields(logrus.Fields{
            "url":     "http://foo.com",
            "attempt": 3,
            "backoff": time.Second,
        }).Info("failed to fetch URL")
    }
}

func BenchmarkZap(b *testing.B) {
    b.ReportAllocs()
    b.StopTimer()
    cfg := zap.NewProductionConfig()
    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(io.Discard),
        zapcore.InfoLevel,
    )
    logger := zap.New(core)
    b.StartTimer()
    for i := 0; i < b.N; i++ {
        logger.Info("failed to fetch URL",
            zap.String("url", `http://foo.com`),
            zap.Int("attempt", 3),
            zap.Duration("backoff", time.Second),
        )
    }
}

在上面的基准测试中,我们使用logrus和zap分别向io.Discard写入相同内容的日志,基准测试的运行结果如下:

$go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/zap-usage
cpu: Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz
BenchmarkLogrus-8         281667          4001 ns/op        1365 B/op         25 allocs/op
BenchmarkZap-8           1319922           901.1 ns/op       192 B/op          1 allocs/op
PASS
ok      github.com/bigwhite/zap-usage   3.296s

我们看到zap的写日志性能是logrus的4倍,且每op仅一次内存分配,相比之下,logrus在性能和内存分配方面的确逊色不少。

有优点,就有不足。前面也说过,虽然zap在性能方面一骑绝尘,但是在使用体验方面却给开发者留下“阴影”。就比如在上面的性能基准测试中,考虑测试过程中的日志输出,我们没有采用默认的向stdout或stderr写入,而是将output设置为io.Discard。这样的改变在logrus中仅需一行:

logger.SetOutput(io.Discard)

而在zap项目的官方首页中,我居然没有找到进行这一变更的操作方法,在一阵查询和阅读后,才找到正确的方法(注:方法不唯一):

cfg := zap.NewProductionConfig()
core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(io.Discard),
        zapcore.InfoLevel,
)
logger := zap.New(core)

上面的logrus和zap在创建写向io.Discard的logger时的方法对比很直观地反映出两者在使用体验上的差异。

那么选择了zap后,我们如何能更好地使用zap以尽量弥合与logrus等log库在体验方面的差距呢?这就是本文想要和大家分享的内容。

2. 对zap进行封装,让其更好用

进入Go世界后,大家使用的第一个log库想必是Go标准库自带的log包,log包可谓是“开箱即用”:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/stdlog/demo1.go 

import "log"

func main() {
    log.Println("this is go standard log package")
}

上面的示例代码直接向标准错误(stderr)输出一行日志内容,而我们居然连一个logger变量都没有创建。即便是将日志写入文件,在log包看来也是十分easy的事情,看下面代码段:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/stdlog/demo2.go 

package main

import (
    "log"
    "os"
)

func main() {
    file, err := os.OpenFile("./demo2.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    log.SetOutput(file)
    log.Println("this is go standard log package")
}

我们仅需要将实现了io.Writer的os.File传给log包的SetOutput函数即可。这种无需创建logger变量而是直接使用包名+函数的方式写日志的方式减少了传递和管理logger变量的复杂性,这种使用者体验是我们对zap进行封装的目标。不过,我们也要做到心里有数:zap是一个通用的log库,我们封装后,只需提供我们所需的特性即可,没有必要再封装成一个像zap一样通用的库。另外用户只需依赖我们封装后的log包,而无需显式依赖zap/zapcore。

下面我们就来建立demo1:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1
$tree demo1
demo1
├── go.mod
├── go.sum
├── main.go
└── pkg
    ├── log
    │   └── log.go
    └── pkg1
        └── pkg1.go

我们对zap的封装在pkg/log/log.go中:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/pkg/log/log.go
package log

import (
    "io"
    "os"

    "go.uber.org/zap"
    "go.uber.org/zap/zapcore"
)

type Level = zapcore.Level

const (
    InfoLevel   Level = zap.InfoLevel   // 0, default level
    WarnLevel   Level = zap.WarnLevel   // 1
    ErrorLevel  Level = zap.ErrorLevel  // 2
    DPanicLevel Level = zap.DPanicLevel // 3, used in development log
    // PanicLevel logs a message, then panics
    PanicLevel Level = zap.PanicLevel // 4
    // FatalLevel logs a message, then calls os.Exit(1).
    FatalLevel Level = zap.FatalLevel // 5
    DebugLevel Level = zap.DebugLevel // -1
)

type Field = zap.Field

func (l *Logger) Debug(msg string, fields ...Field) {
    l.l.Debug(msg, fields...)
}

func (l *Logger) Info(msg string, fields ...Field) {
    l.l.Info(msg, fields...)
}

func (l *Logger) Warn(msg string, fields ...Field) {
    l.l.Warn(msg, fields...)
}

func (l *Logger) Error(msg string, fields ...Field) {
    l.l.Error(msg, fields...)
}
func (l *Logger) DPanic(msg string, fields ...Field) {
    l.l.DPanic(msg, fields...)
}
func (l *Logger) Panic(msg string, fields ...Field) {
    l.l.Panic(msg, fields...)
}
func (l *Logger) Fatal(msg string, fields ...Field) {
    l.l.Fatal(msg, fields...)
}

// function variables for all field types
// in github.com/uber-go/zap/field.go

var (
    Skip        = zap.Skip
    Binary      = zap.Binary
    Bool        = zap.Bool
    Boolp       = zap.Boolp
    ByteString  = zap.ByteString
    ... ...
    Float64     = zap.Float64
    Float64p    = zap.Float64p
    Float32     = zap.Float32
    Float32p    = zap.Float32p
    Durationp   = zap.Durationp
    ... ...
    Any         = zap.Any

    Info   = std.Info
    Warn   = std.Warn
    Error  = std.Error
    DPanic = std.DPanic
    Panic  = std.Panic
    Fatal  = std.Fatal
    Debug  = std.Debug
)

// not safe for concurrent use
func ResetDefault(l *Logger) {
    std = l
    Info = std.Info
    Warn = std.Warn
    Error = std.Error
    DPanic = std.DPanic
    Panic = std.Panic
    Fatal = std.Fatal
    Debug = std.Debug
}

type Logger struct {
    l     *zap.Logger // zap ensure that zap.Logger is safe for concurrent use
    level Level
}

var std = New(os.Stderr, int8(InfoLevel))

func Default() *Logger {
    return std
}

// New create a new logger (not support log rotating).
func New(writer io.Writer, level Level) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    cfg := zap.NewProductionConfig()
    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )
    logger := &Logger{
        l:     zap.New(core),
        level: level,
    }
    return logger
}

func (l *Logger) Sync() error {
    return l.l.Sync()
}

func Sync() error {
    if std != nil {
        return std.Sync()
    }
    return nil
}

在这个封装中,我们有如下几点说明:

  • 参考标准库log包,我们提供包级函数接口,底层是创建的默认Logger: std;
  • 你可以使用New函数创建了自己的Logger变量,但此时只能使用该实例的方法实现log输出,如果期望使用包级函数接口输出log,需要调用ResetDefault替换更新std实例的值,这样后续调用包级函数(Info、Debug)等就会输出到新实例的目标io.Writer中了。不过最好在输出任何日志前调用ResetDefault换掉std;
  • 由于zap在输出log时要告知具体类型,zap封装出了Field以及一些sugar函数(Int、String等),这里为了不暴露zap给用户,我们使用type alias语法定义了我们自己的等价于zap.Field的类型log.Field:
type Field = zap.Field

var (
    Skip        = zap.Skip
    Binary      = zap.Binary
    Bool        = zap.Bool
    Boolp       = zap.Boolp
    ByteString  = zap.ByteString
    ... ...
)
  • 我们使用method value语法将std实例的各个方法以包级函数的形式暴露给用户,简化用户对logger实例的获取:
var (
    Info   = std.Info
    Warn   = std.Warn
    Error  = std.Error
    DPanic = std.DPanic
    Panic  = std.Panic
    Fatal  = std.Fatal
    Debug  = std.Debug
)

下面是我们利用默认std使用包级函数直接输出日志到stderr的示例:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/main.go
package main

import (
    "github.com/bigwhite/zap-usage/pkg/log"
    "github.com/bigwhite/zap-usage/pkg/pkg1"
)

func main() {
    defer log.Sync()
    log.Info("demo1:", log.String("app", "start ok"),
        log.Int("major version", 2))
    pkg1.Foo()
}

在这个main.go中,我们像标准库log包那样直接使用包级函数实现日志输出,同时我们无需创建logger实例,也无需管理和传递logger实例,在log包的另外一个用户pkg1包中,我们同样可以直接使用包级函数输出log:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/pkg/pkg1/pkg1.go

package pkg1

import "github.com/bigwhite/zap-usage/pkg/log"

func Foo() {
    log.Info("call foo", log.String("url", "https://tonybai.com"),
        log.Int("attempt", 3))
}

如果你不想使用默认的std,而是要创建一个写入文件系统文件的logger,我们可以这样处理:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/main_new_logger.go
package main

import (
    "os"

    "github.com/bigwhite/zap-usage/pkg/log"
    "github.com/bigwhite/zap-usage/pkg/pkg1"
)

func main() {
    file, err := os.OpenFile("./demo1.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    logger := log.New(file, log.InfoLevel)
    log.ResetDefault(logger)
    defer log.Sync()
    log.Info("demo1:", log.String("app", "start ok"),
        log.Int("major version", 2))
    pkg1.Foo()
}

我们使用log.New创建一个新的Logger实例,然后通过log.ResetDefault用其替换掉std,这样后续的包级函数调用(log.Info)就会使用新创建的Logger实例了。

3. 自定义encoder

运行上面的demo1,我们会得到类似于下面格式的日志内容:

{"level":"info","ts":1625954037.630399,"msg":"demo1:","app":"start ok","major version":2}
{"level":"info","ts":1625954037.630462,"msg":"call foo","url":"https://tonybai.com","attempt":3}

我们可以定制zap的输出内容格式。

在定制之前,我们先来看看zap的内部结构:


图来自Go: How Zap Package is Optimized(见参考资料)

和其他log库相似,zap也是由创建logger与写log两个关键过程组成。其中zap的核心是名为zapcore.Core抽象,Core是zap定义的一个log接口,正如其名,围绕着这个Core,zap提供上层log对象以及相应的方法(zap.Logger就组合了zapcore.Core),开发者同样可以基于该接口定制自己的log包(比如:前面我们在New函数的实现)。

我们一般通过zapcore.NewCore函数创建一个实现了zapcore.Core的实例,NewCore接收三个参数,也是Core的主要组成部分,它们如下图:

                                 ┌───────────────┐
                                 │               │
                                 │               │
                      ┌─────────►│     Encoder   │
                      │          │               │
                      │          │               │
                      │          └───────────────┘
┌────────────────┐    │
│                ├────┘
│                │               ┌───────────────┐
│                │               │               │
│      Core      ├──────────────►│  WriteSyncer  │
│                │               │               │
│                ├─────┐         │               │
└────────────────┘     │         └───────────────┘
                       │
                       │
                       │         ┌───────────────┐
                       │         │               │
                       └────────►│  LevelEnabler │
                                 │               │
                                 │               │
                                 └───────────────┘
  • Encoder是日志消息的编码器;
  • WriteSyncer是支持Sync方法的io.Writer,含义是日志输出的地方,我们可以很方便的通过zap.AddSync将一个io.Writer转换为支持Sync方法的WriteSyncer;
  • LevelEnabler则是日志级别相关的参数。

由此我们看到要定制日志的输出格式,我们的重点是Encoder。

从大类别上分,zap内置了两类编码器,一个是ConsoleEncoder,另一个是JSONEncoder。ConsoleEncoder更适合人类阅读,而JSONEncoder更适合机器处理。zap提供的两个最常用创建Logger的函数:NewProduction和NewDevelopment则分别使用了JSONEncoder和ConsoleEncoder。两个编码器默认输出的内容对比如下:

// ConsoleEncoder(NewDevelopment创建)
2021-07-11T09:39:04.418+0800    INFO    zap/testzap2.go:12  failed to fetch URL {"url": "localhost:8080", "attempt": 3, "backoff": "1s"}

// JSONEncoder (NewProduction创建)
{"level":"info","ts":1625968332.269727,"caller":"zap/testzap1.go:12","msg":"failed to fetch URL","url":"localhost:8080","attempt":3,"backoff":1}

我们可以看到两者差异巨大!ConsoleEncoder输出的内容跟适合我们阅读,而JSONEncoder输出的结构化日志更适合机器/程序处理。前面我们说了,我们封装的log包不是要做通用log包,我们无需同时支持这两大类Encoder,于是我们在上面的示例选择采用的JSONEncoder:

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )

基于Encoder,我们可以定制的内容有很多,多数开发人员可能都会对日期格式、是否显示此条日志的caller信息等定制感兴趣。

zap库自身也提供了基于功能选项模式的Option接口:

// zap options.go
type Option interface {
    apply(*Logger)
}

func WithCaller(enabled bool) Option {
    return optionFunc(func(log *Logger) {
        log.addCaller = enabled
    })
}

我们的log库如果要提供一定的Encoder定制能力,我们也需要像Field那样通过type alias语法将zap.Option暴露给用户,同时以函数类型变量的形式将zap的部分option导出给用户。至于时间戳,我们选择一种适合我们的格式后可固定下来。下面是demo1的log的基础上增加了一些对encoder的定制功能而形成的demo2 log包:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo2/pkg/log/log.go

var std = New(os.Stderr, InfoLevel, WithCaller(true))

type Option = zap.Option

var (
    WithCaller    = zap.WithCaller
    AddStacktrace = zap.AddStacktrace
)

// New create a new logger (not support log rotating).
func New(writer io.Writer, level Level, opts ...Option) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )
    logger := &Logger{
        l:     zap.New(core, opts...),
        level: level,
    }
    return logger
}

定制后,我们的log包输出的内容就变成了如下这样了:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo2/
$go run main.go
{"level":"info","ts":"2021-07-11T10:45:38.858+0800","caller":"log/log.go:33","msg":"demo1:","app":"start ok"}

4. 写入多log文件

定制完encoder,我们再来看看writeSyncer。nginx想必没人没用过,nginx有两个重要的日志文件:access.log和error.log,前者是正常的访问日志,后者则是报错日志。如果我们也要学习nginx,为业务系统建立两类日志文件,一类类似于access.log,记录正常业务吹的日志,另外一类则类似error.log,记录系统的出错日志,我们该如何设计和实现?有人可能会说,那就建立两个logger呗。没错,这的确是一个方案。但如果我就想使用包级函数来写多个log文件,并且无需传递logger实例呢?zap提供了NewTee这个导出函数就是用来写多个日志文件的。

下面我们就来用demo3来实现这个功能,我们也对外提供一个NewTee的函数,用于创建写多个log文件的logger:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo3/pkg/log/log.go
type LevelEnablerFunc func(lvl Level) bool

type TeeOption struct {
    W   io.Writer
    Lef LevelEnablerFunc
}

func NewTee(tops []TeeOption, opts ...Option) *Logger {
    var cores []zapcore.Core
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }
    for _, top := range tops {
        top := top
        if top.W == nil {
            panic("the writer is nil")
        }         

        lv := zap.LevelEnablerFunc(func(lvl zapcore.Level) bool {
            return top.Lef(Level(lvl))
        })        

        core := zapcore.NewCore(
            zapcore.NewJSONEncoder(cfg.EncoderConfig),
            zapcore.AddSync(top.W),
            lv,
        )
        cores = append(cores, core)
    }

    logger := &Logger{
        l: zap.New(zapcore.NewTee(cores...), opts...),
    }
    return logger
}

我们看到由于多个日志文件可能会根据写入的日志级别选择是否落入文件,于是我们提供了一个TeeOption类型,类型定义中包含一个io.Writer以及一个level enabler func,我们来看一下如何使用这个NewTee函数:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo3/main.go
package main

import (
    "os"

    "github.com/bigwhite/zap-usage/pkg/log"
)

func main() {
    file1, err := os.OpenFile("./access.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    file2, err := os.OpenFile("./error.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }

    var tops = []log.TeeOption{
        {
            W: file1,
            Lef: func(lvl log.Level) bool {
                return lvl <= log.InfoLevel
            },
        },
        {
            W: file2,
            Lef: func(lvl log.Level) bool {
                return lvl > log.InfoLevel
            },
        },
    }

    logger := log.NewTee(tops)
    log.ResetDefault(logger)

    log.Info("demo3:", log.String("app", "start ok"),
        log.Int("major version", 3))
    log.Error("demo3:", log.String("app", "crash"),
        log.Int("reason", -1))

}

我们建立两个TeeOption,分别对应access.log和error.log,前者接受level<=info级别的日志,后者接受level>error级别的日志。我们运行一下该程序:

$go run main.go
$cat access.log
{"level":"info","ts":"2021-07-11T12:09:47.736+0800","msg":"demo3:","app":"start ok","major version":3}
$cat error.log
{"level":"error","ts":"2021-07-11T12:09:47.737+0800","msg":"demo3:","app":"crash","reason":-1}

如我们预期,不同level的日志写入到不同文件中了,而我们只需调用包级函数即可,无需管理和传递不同logger。

5. 让日志文件支持自动rotate(轮转)

如果log写入文件,那么文件迟早会被写满!我们不能坐视不管!业内通用的方案是log rotate(轮转),即当log文件size到达一定大小时,会归档该文件,并重新创建一个新文件继续写入,这个过程对应用是透明无感知的。

而log rotate方案通常有两种,一种是基于logrotate工具的外部方案,一种是log库自身支持轮转。zap库与logrotate工具的兼容性似乎有些问题,zap官方FAQ也推荐第二种方案

不过zap并不是原生支持rotate,而是通过外部包来支持,zap提供了WriteSyncer接口可以方便我们为zap加入rotate功能。目前在支持logrotate方面,natefinch的lumberjack是应用最为官方的包,下面我们来看看如何为demo3的多日志文件增加logrotate:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo4/pkg/log/log.go

type RotateOptions struct {
    MaxSize    int
    MaxAge     int
    MaxBackups int
    Compress   bool
}

type TeeOption struct {
    Filename string
    Ropt     RotateOptions
    Lef      LevelEnablerFunc
}

func NewTeeWithRotate(tops []TeeOption, opts ...Option) *Logger {
    var cores []zapcore.Core
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }

    for _, top := range tops {
        top := top

        lv := zap.LevelEnablerFunc(func(lvl zapcore.Level) bool {
            return top.Lef(Level(lvl))
        })

        w := zapcore.AddSync(&lumberjack.Logger{
            Filename:   top.Filename,
            MaxSize:    top.Ropt.MaxSize,
            MaxBackups: top.Ropt.MaxBackups,
            MaxAge:     top.Ropt.MaxAge,
            Compress:   top.Ropt.Compress,
        })

        core := zapcore.NewCore(
            zapcore.NewJSONEncoder(cfg.EncoderConfig),
            zapcore.AddSync(w),
            lv,
        )
        cores = append(cores, core)
    }

    logger := &Logger{
        l: zap.New(zapcore.NewTee(cores...), opts...),
    }
    return logger
}

我们在TeeOption中加入了RotateOptions(当然这种绑定并非必须),并使用lumberjack.Logger作为io.Writer传给zapcore.AddSync,这样创建出来的logger既有写多日志文件的能力,又让每种日志文件具备了自动rotate的功能。

我们在main中使用该log:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/main.go
package main

import (
    "github.com/bigwhite/zap-usage/pkg/log"
)

func main() {
    var tops = []log.TeeOption{
        {
            Filename: "access.log",
            Ropt: log.RotateOptions{
                MaxSize:    1,
                MaxAge:     1,
                MaxBackups: 3,
                Compress:   true,
            },
            Lef: func(lvl log.Level) bool {
                return lvl <= log.InfoLevel
            },
        },
        {
            Filename: "error.log",
            Ropt: log.RotateOptions{
                MaxSize:    1,
                MaxAge:     1,
                MaxBackups: 3,
                Compress:   true,
            },
            Lef: func(lvl log.Level) bool {
                return lvl > log.InfoLevel
            },
        },
    }

    logger := log.NewTeeWithRotate(tops)
    log.ResetDefault(logger)

    // 为了演示自动rotate效果,这里多次调用log输出
    for i := 0; i < 20000; i++ {
        log.Info("demo3:", log.String("app", "start ok"),
            log.Int("major version", 3))
        log.Error("demo3:", log.String("app", "crash"),
            log.Int("reason", -1))
    }
}

运行上述main包,我们将看到如下输出:

// demo4

$go run main.go
$ls -l
total 3680
drwxr-xr-x  10 tonybai  staff      320  7 11 12:54 ./
drwxr-xr-x   8 tonybai  staff      256  7 11 12:23 ../
-rw-r--r--   1 tonybai  staff     3938  7 11 12:54 access-2021-07-11T04-54-04.697.log.gz
-rw-r--r--   1 tonybai  staff  1011563  7 11 12:54 access.log
-rw-r--r--   1 tonybai  staff     3963  7 11 12:54 error-2021-07-11T04-54-04.708.log.gz
-rw-r--r--   1 tonybai  staff   851580  7 11 12:54 error.log

我们看到access.log和error.log都在size超过1M后完成了一次自动轮转,归档的日志也按照之前的配置(compress)进行了压缩。

6. 小结

本文对zap日志库的使用方法做了深度说明,包括对zap进行封装的一种方法,使得我们可以像标准库log包那样通过包级函数直接输出log而无需管理和传递logger变量;我们可以自定义zap encoder(时间、是否输出caller等);通过NewTee可以创建一次性写入多个日志文件的logger,并且可以通过log level判断是否接受写入;最后,我们让zap日志支持了自动轮转。

如果说有不足,那就是zap不支持动态设置全局logger的日志级别,不过似乎有第三方方案,这里就不深入了,作为遗留问题留给大家了。

本文涉及到的代码可以在这里下载: https://github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage

7. 参考资料

  • Go: How Zap Package is Optimized – https://medium.com/@blanchon.vincent/go-how-zap-package-is-optimized-dbf72ef48f2d
  • 深度 | 从Go高性能日志库zap看如何实现高性能Go组件 – https://mp.weixin.qq.com/s/i0bMh_gLLrdnhAEWlF-xDw

“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://51smspush.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats