标签 GC 下的文章

2024年Go语言盘点:排名历史新高,团队新老传承

本文永久链接 – https://tonybai.com/2024/01/06/the-2024-review-of-go-programming-language

2024年底,由于感染了甲流,我在家卧床休息了两天,原定于2024年进行的Go语言盘点写作因此被迫推迟。不过,我始终相信:迟到但不会缺席。在2025年元旦的第一天,我终于开始了这篇博客的撰写。

时间过得真快,《2023年Go语言盘点:稳中求新,稳中求变》依然历历在目。转眼之间,一年365天过去了,发生了许多事情,甚至有些记忆已在脑海中模糊或消逝。在这里,我将带你盘点那些关于Go的重要时刻,唤起你对Go的美好回忆。

回顾整个2024年,如果非要用一句话来形容Go语言的状态,我会选择:Go完成了技术成熟度曲线中的“稳步爬升复苏期”,开始进入“生产成熟期”。这一点在Go的排名中得到了直接体现,并在Go社区的活跃度方面得到了间接的印证。而Go的年中换帅似乎也预示着这是一个新的起点!在过去一年中,得益于Go团队和社区的共同努力,Go发布了许多值得关注的新特性。

接下来,我将为大家逐一详细介绍!

1. Go排名创历史新高

说到编程语言排名,程序员们首先想到的就是TIOBE!在2024年的TIOBE排行榜上,尽管Go语言没有像AI时代的霸主语言Python那样耀眼,但跻身前十并站稳第七名这一成绩也足以让其他语言羡慕不已!


图:2024年12月TIOBE排名TOP 10

而从2009年开源至今,Go在TIOBE排名走势如下:


图:2010年-2024年TIOBE排行榜Go语言走势

了解Go历史的朋友都知道,Go语言真正具备生产级成熟度是从2015年的Go 1.5版本开始的。按照技术成熟度曲线的划分,2015年之前及其后的一段时间可以视为技术萌芽期。从曲线中可以看出,2017年时达到了期望膨胀期的峰值。此后,Go经历了一段“漫长”的泡沫破裂低谷期以及稳步爬升的复苏期。从2023年开始,到2024年末,Go语言复苏的速度日益加快!目前来看,如无意外,Go将进入技术成熟度曲线的下一阶段:生产成熟期!我曾提到过:绝大多数主流编程语言将在其诞生后的第15至第20年间大步前进。按照这个编程语言的一般规律,刚刚迈过开源第15个年头的Go刚刚迈进自己的黄金5-10年。

当然,单看TIOBE单一榜单似乎说服力不足,我们再来看看今年的Github octoverse报告。在这份报告中,Go依旧稳居github热门编程语言前10(如下图),这一位置已经保持了三年多了!


图:2024年Github最热门编程语言排行榜

此外,在2024年年中发布的“IEEE Spectrum 2024编程语言排行榜”中,Go在Spectrum排名和Trending排名中分列第8位和第7位。

除了排行榜之外,通过Reddit中编程语言论坛的活跃度也可以看出Go语言在全球的受欢迎程度和用户广度。以下是2025年1月1日Reddit上最活跃的9门编程语言子论坛的实时状态截图:


图:2025.1.1 Reddit编程语言子论坛状态对比

我们看到Go子论坛在成员数量和某一时刻的在线人数上都表现良好。此外,如果你是长期关注Reddit Go论坛的Gopher,一定注意到自2024年初以来,Go论坛的人气迅速增长,日均帖子数相比前两年显著增加,其中很多都是新加入Go阵营的初学者!

注:Rust的人气是真高啊,online人数断崖领先!

编程语言技术大会是衡量语言流行度和受欢迎程度的另一重要风向标。自从全球从新冠疫情中恢复后,GopherCon逐渐在各地线下恢复,到了2024年基本回到了疫情前的状态,甚至在一些地方的GopherCon还超越了以往的受欢迎程度。例如,2024年GopherCon欧洲大会破例举办了两次。此外,首届在非洲举行的GopherCon Africa也于2024年10月份在肯尼亚首都内罗毕成功举行!唯一的遗憾是GopherChina在2024年缺席,这或许与国内的经济形势有关。

Go的增长趋势来的有些快,不知道是否是得益于AI应用的快速发展!但就像Go团队前成员Jaana Dogan(Rakyll)所说的那样:

Go将成为AI时代重要的AI应用开发语言!AI大模型三强:OpenAI、Claude和Google都提供了对Go SDK的官方支持:

  • OpenAI Go SDK – https://github.com/openai/openai-go
  • Claude GO SDK – https://github.com/anthropics/anthropic-sdk-go
  • Google AI Go SDK – https://github.com/google/generative-ai-go

此外,提到Go和AI大模型,我们不得不提及一个重量级的开源项目——Ollama,它可以说是当前私有部署和使用开源大模型的事实标准!在2024年的用户调查报告中,Go团队还特别关注了用户对使用Go开发AI应用的需求,并将AI应用开发视为Go应用的下一个重要赛道。此外,Russ Cox也积极参与这一领域,开源了专用于开源项目运营维护的AI机器人:Oscar,同时探索Go在AI领域的应用。

如果说Go的排名再创新高让Gopher和Go社区对Go充满了更多自信,那么Go团队的换帅则向整个编程语言界展示了团队的传承与发展!

2. Go团队换帅展示团队传承

对于Go团队来说,2024年的最大的事件不是Go 1.22Go 1.23的发布,而是团队换帅

2024年中旬,Go团队的技术负责人Russ Cox宣布,他将于2024年9月1日起卸任Go项目的技术领导职务。自2008年参与Go项目以来,Russ于2012年成为其技术负责人。在过去的12年里,他引领Go语言从一个实验性项目成长为当今最受欢迎的编程语言之一。在他的带领下,Go凭借简洁的语法、高效的并发模型和强大的标准库赢得了众多开发者的青睐,并在云计算、微服务和DevOps等领域得到了广泛应用。

Russ分享了他卸任的想法,表示这一决定是经过深思熟虑的,是自然发展的结果。他认为,尽管长期稳定的领导对大型项目至关重要,但领导层的变动也能为项目注入新的活力和视角。他强调,定期更换领导者是非常重要的,这有助于引入新思想并防止项目陷入停滞。

接替Russ Cox的是Austin Clements,他将成为新的Go技术负责人,同时领导Google的Go团队和整个Go项目。Austin自2014年起就在Google从事与Go相关的工作,拥有丰富的经验和深厚的技术背景。同时,Cherry Mui将接手负责编译器和运行时等“Go核心”领域的工作。Cherry自2016年加入Google,在Go的核心开发领域表现出色。Russ Cox对这两位新领导给予了高度评价,称赞他们具备卓越的判断力以及对Go语言和其运行系统的广泛而深入的理解。

通过9月份到12月份的角色过期期的观察来看,两位“新负责人”的表现是中规中矩,沿袭了Russ Cox之前确定的Go项目管理框架,Cherry Mui在Go core领域表现的十分积极,这从”Go compiler and runtime meeting notes“的记录中可见一斑!

第333期GoTime播客中,两位新leader也初步分享了他们对后续Go演进的一些想法。

Austin强调,虽然Go保持着稳定和简洁,但它必须继续演进。他的首要目标之一是改善Go的可扩展性,无论是在开发过程中还是在背后的工程流程中。他希望通过提高透明度和扩大社区参与度,赋能社区,创建一个能够更好整合用户反馈的平台(可能是一个论坛),使贡献者能够开发与核心团队目标一致的工具和解决方案。在性能改进方面,Austin长期致力于优化Go的垃圾回收系统,目前正在试验一种新算法,幽默地称其为“绿茶”,旨在优化资源使用,进一步提升Go在越来越大系统上的扩展能力。

Cherry则指出,Go的用户基础正在快速增长,而核心团队的资源却有限。她的任务是确保Go平台能够支持这一日益增长的社区,无论是通过构建更好的API还是平台,帮助用户在Go的基础上开发更强大的工具和解决方案。在技术扩展性方面,Cherry也表达了自己的关注。随着计算能力的提升,核心数量和内存容量不断增加,Go需要适应,以高效处理更大的工作负载。Cherry表示,她非常期待与社区中的工程师合作,解决这些挑战,保持Go简单且可扩展的声誉。

从两位领导的想法与目标中,我们可以看到Go团队传承的文化。对于这样的“换帅”,Go社区应充满信心。

注:GoTime博客在完成其第340期内容后,因平台方Changelog的变动宣布停播了!

3. Go Release新特性一览

对于已经过了15个生日的Go来说,其演进的节奏已经非常稳定和成熟了。2024年,Go平稳地发布了两个重要版本:Go 1.22和Go 1.23。下面我们就来简单浏览一下这两个版本的主要新特性。

3.1 Go 1.22主要新特性

语言特性

  • loopvar语义修正:for循环中通过短声明定义的循环变量,由整个循环共享一个实例变为每次迭代定义一个实例。这是 Go 语言发展历史上第一次真正的填语义层面的“坑”。
  • for range支持整型表达式:for range循环可以遍历整型范围,如for i := range 10。

编译器和运行时

  • PGO优化增强:基于PGO的构建可以实现更高比例的调用去虚拟化(devirtualize),带来性能提升。
  • 编译器优化:编译器可以更多地运用devirtualize和inline技术进行优化。
  • 运行时优化:运行时可以使基于类型的垃圾收集的元数据更接近每个堆对象,从而降低CPU和内存开销。

工具链

  • go work支持vendor:go work命令可以管理vendor目录,并且支持使用go build -mod=vendor构建。
  • go mod init改进:不再尝试导入其他vendor工具(比如Gopkg)的配置文件。
  • go test -cover改进: 对于没有测试文件的包,会报告覆盖率为0.0%。

标准库

  • math/rand/v2: 标准库第一个V2版本包。
  • 增强http.ServeMux的表达能力: 新版ServeMux支持静态路由、通配符、主机匹配和变量捕获。

3.2 Go 1.23 主要新特性

语言特性

  • 自定义函数迭代器:for range语句支持遍历用户自定义的集合类型,需要定义满足特定签名的迭代器函数。
  • 别名中增加泛型参数:支持在类型别名定义中使用类型参数,如:
type MySlice[T any] = []T

编译器与运行时

  • PGO构建速度提升: 该版本优化后,PGO带来的编译开销显著降低。
  • 限制对linkname的使用: Go 1.23禁止使用linkname指令引用标准库中未标记的内部符号。

工具链

  • Telemetry (遥测): go工具链程序收集性能和使用数据的系统,且支持go telemetry on|off|local命令。
  • go env -changed: go env子命令增加-changed选项,可以查看当前Go环境中设置的Go环境变量值与默认值有差异的项的值。
  • go mod tidy -diff: go mod tidy增加-diff选项,只打印更新信息但不做实际更新。
  • go.mod中增加godebug指示符: 可以通过该指示符设置特定的GODEBUG选项。

标准库

  • Timer/Ticker变化: Timer和Ticker的GC不再需要Stop方法,Stop/Reset后不再接收旧值。
  • structs包: 添加一个零size的类型HostLayout,用于控制编译器对结构体类型的布局方式。
  • unique包: 新增了unique包,用于处理唯一值的集合。
  • iter包: 新增了iter包,并增加了函数迭代器相关的实用函数到maps、slices等包中。

更多更详细关于Go新特性的内容,请阅读《Go 1.22中值得关注的几个变化》和《Go 1.23中值得关注的几个变化》。

4. 2025展望

按照Go演进的一贯风格,我本不该对Go抱有过多期待^_^,但还是忍不住想说几句。

Go已经稳稳地占据了云计算领域的头部后端编程语言地位,在多个编程语言排行榜上名列前茅,Go社区也在健康快速地发展。然而,机遇与风险总是并存。

虽然Go在云原生、Web服务、微服务、API和CLI开发方面拥有明显优势,但也面临着来自Rust等语言的挑战。Go需要进一步巩固其在这些优势领域的地位,同时探索一些能够发挥自身优势的新方向,例如AI应用开发等。

同时,我们期待新一代Go团队领导者,尤其是来自Go编译器和运行时组的领导者们,能够深入打磨和优化Go语言的编译器、运行时性能以及语言互操作性。毕竟,谁不喜欢那种因性能自然增长而带来的愉悦感,以及借助其他语言优势生态快速完成功能的灵活性呢!

最后,感谢Go团队和Go社区在Go语言演进发展上做出的贡献,希望Go越走越好!


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

惊!Go在十亿次循环和百万任务中表现不如Java,究竟为何?

本文永久链接 – https://tonybai.com/2024/12/02/why-go-sucks

编程语言比较的话题总是能吸引程序员的眼球!

近期外网的两篇编程语言对比的文章在国内程序员圈里引起热议。一篇是由Ben Dicken (@BenjDicken) 做的语言性能测试,对比了十多种主流语言在执行10亿次循环(一个双层循环:1万 * 10 万)的速度;另一篇则是一个名为hez2010的开发者做的内存开销测试,对比了多种语言在处理百万任务时的内存开销。

下面是这两项测试的结果示意图:


10亿循环测试结果


百万任务内存开销测试结果

我们看到:在这两项测试中,Go的表现不仅远不及NonGC的C/Rust,甚至还落后于Java,尤其是在内存开销测试中,Go的内存使用显著高于以“吃内存”著称的Java。这一结果让许多开发者感到意外,因为Go通常被认为是轻量级的语言,然而实际的测试结果却揭示了其在高并发场景下的“内存效率不足”。

那么究竟为何在这两项测试中,Go的表现都不及预期呢?在这篇文章中,我将探讨可能的原因,以供大家参考。

我们先从十亿次循环测试开始。

1. 循环测试跑的慢,都因编译器优化还不够

下面是作者给出的Go测试程序

// why-go-sucks/billion-loops/go/code.go 

package main

import (
    "fmt"
    "math/rand"
    "os"
    "strconv"
)

func main() {
    input, e := strconv.Atoi(os.Args[1]) // Get an input number from the command line
    if e != nil {
        panic(e)
    }
    u := int32(input)
    r := int32(rand.Intn(10000))        // Get a random number 0 <= r < 10k
    var a [10000]int32                  // Array of 10k elements initialized to 0
    for i := int32(0); i < 10000; i++ { // 10k outer loop iterations
        for j := int32(0); j < 100000; j++ { // 100k inner loop iterations, per outer loop iteration
            a[i] = a[i] + j%u // Simple sum
        }
        a[i] += r // Add a random value to each element in array
    }
    fmt.Println(a[r]) // Print out a single element from the array
}

这段代码通过命令行参数获取一个整数,然后生成一个随机数,接着通过两层循环对一个数组的每个元素进行累加,最终输出该数组中以随机数为下标对应的数组元素的值。

我们再来看一下”竞争对手”的测试代码。C测试代码如下:

// why-go-sucks/billion-loops/c/code.c

#include "stdio.h"
#include "stdlib.h"
#include "stdint.h"

int main (int argc, char** argv) {
  int u = atoi(argv[1]);               // Get an input number from the command line
  int r = rand() % 10000;              // Get a random integer 0 <= r < 10k
  int32_t a[10000] = {0};              // Array of 10k elements initialized to 0
  for (int i = 0; i < 10000; i++) {    // 10k outer loop iterations
    for (int j = 0; j < 100000; j++) { // 100k inner loop iterations, per outer loop iteration
      a[i] = a[i] + j%u;               // Simple sum
    }
    a[i] += r;                         // Add a random value to each element in array
  }
  printf("%d\n", a[r]);                // Print out a single element from the array
}

下面是Java的测试代码:

// why-go-sucks/billion-loops/java/code.java

package jvm;

import java.util.Random;

public class code {

    public static void main(String[] args) {
        var u = Integer.parseInt(args[0]); // Get an input number from the command line
        var r = new Random().nextInt(10000); // Get a random number 0 <= r < 10k
        var a = new int[10000]; // Array of 10k elements initialized to 0
        for (var i = 0; i < 10000; i++) { // 10k outer loop iterations
            for (var j = 0; j < 100000; j++) { // 100k inner loop iterations, per outer loop iteration
                a[i] = a[i] + j % u; // Simple sum
            }
            a[i] += r; // Add a random value to each element in array
        }
        System.out.println(a[r]); // Print out a single element from the array
    }
}

你可能不熟悉C或Java,但从代码的形式上来看,C、Java与Go的代码确实处于“同等条件”。这不仅意味着它们在相同的硬件和软件环境中运行,更包括它们采用了相同的计算逻辑和算法,以及一致的输入参数处理等方面的相似性。

为了确认一下原作者的测试结果,我在一台阿里云ECS上(amd64,8c32g,CentOS 7.9)对上面三个程序进行了测试(使用time命令测量计算耗时),得到一个基线结果。我的环境下,C、Java和Go的编译器版本如下:

$go version
go version go1.23.0 linux/amd64

$java -version
openjdk version "17.0.9" 2023-10-17 LTS
OpenJDK Runtime Environment Zulu17.46+19-CA (build 17.0.9+8-LTS)
OpenJDK 64-Bit Server VM Zulu17.46+19-CA (build 17.0.9+8-LTS, mixed mode, sharing)

$gcc -v
使用内建 specs。
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/libexec/gcc/x86_64-redhat-linux/4.8.5/lto-wrapper
目标:x86_64-redhat-linux
配置为:../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-bootstrap --enable-shared --enable-threads=posix --enable-checking=release --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-object --enable-linker-build-id --with-linker-hash-style=gnu --enable-languages=c,c++,objc,obj-c++,java,fortran,ada,go,lto --enable-plugin --enable-initfini-array --disable-libgcj --with-isl=/builddir/build/BUILD/gcc-4.8.5-20150702/obj-x86_64-redhat-linux/isl-install --with-cloog=/builddir/build/BUILD/gcc-4.8.5-20150702/obj-x86_64-redhat-linux/cloog-install --enable-gnu-indirect-function --with-tune=generic --with-arch_32=x86-64 --build=x86_64-redhat-linux
线程模型:posix
gcc 版本 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC)

测试步骤与结果如下:

Go代码测试:

$cd why-go-sucks/billion-loops/go
$go build -o code code.go
$time ./code 10
456953

real    0m3.766s
user    0m3.767s
sys 0m0.007s

C代码测试:

$cd why-go-sucks/billion-loops/c
$gcc -O3 -std=c99 -o code code.c
$time ./code 10
459383

real    0m3.005s
user    0m3.005s
sys 0m0.000s

Java代码测试:

$javac -d . code.java
$time java -cp . jvm.code 10
456181

real    0m3.105s
user    0m3.092s
sys 0m0.027s

从测试结果看到(基于real时间):采用-O3优化的C代码最快,Java落后一个身位,而Go则比C慢了25%,比Java慢了21%

注:time命令的输出结果通常包含三个主要部分:real、user和sys。real是从命令开始执行到结束所经过的实际时间(墙钟时间),我们依次指标为准。user是程序在用户模式下执行所消耗的CPU时间。sys则是程序在内核模式下执行所消耗的CPU时间(系统调用)。如果总时间(real)略低于用户时间(user),这表明程序可能在某些时刻被调度或等待,而不是持续占用CPU。这种情况可能是由于输入输出操作、等待资源等原因。如果real时间显著小于user时间,这种情况通常发生在并发程序中,其中多个线程或进程在不同的时间段执行,导致总的用户CPU时间远大于实际的墙钟时间。sys时间保持较低,说明系统调用的频率较低,程序主要是执行计算而非进行大量的系统交互。

这时作为Gopher的你可能会说:原作者编写的Go测试代码不够优化,我们能优化到比C还快

大家都知道原代码是不够优化的,随意改改计算逻辑就能带来大幅提升。但我们不能忘了“同等条件”这个前提。你采用的优化方法,其他语言(C、Java)也可以采用。

那么,在不改变“同等条件”的前提下,我们还能优化点啥呢?本着能提升一点是一点的思路,我们尝试从下面几个点优化一下,看看效果:

  • 去除不必要的if判断
  • 使用更快的rand实现
  • 关闭边界检查
  • 避免逃逸

下面是修改之后的代码:

// why-go-sucks/billion-loops/go/code_optimize.go 

package main

import (
    "fmt"
    "math/rand"
    "os"
    "strconv"
)

func main() {
    input, _ := strconv.Atoi(os.Args[1]) // Get an input number from the command line
    u := int32(input)
    r := int32(rand.Uint32() % 10000)   // Use Uint32 for faster random number generation
    var a [10000]int32                  // Array of 10k elements initialized to 0
    for i := int32(0); i < 10000; i++ { // 10k outer loop iterations
        for j := int32(0); j < 100000; j++ { // 100k inner loop iterations, per outer loop iteration
            a[i] = a[i] + j%u // Simple sum
        }
        a[i] += r // Add a random value to each element in array
    }
    z := a[r]
    fmt.Println(z) // Print out a single element from the array
}

我们编译并运行一下测试:

$cd why-go-sucks/billion-loops/go
$go build -o code_optimize -gcflags '-B' code_optimize.go
$time ./code_optimize 10
459443

real    0m3.761s
user    0m3.759s
sys 0m0.011s

对比一下最初的测试结果,这些“所谓的优化”没有什么卵用,优化前你估计也能猜测到这个结果,因为除了关闭边界检查,其他优化都没有处于循环执行的热路径之上

注:rand.Uint32() % 10000的确要比rand.Intn(10000)快,我自己的benchmark结果是快约1倍。

那Go程序究竟慢在哪里呢?在“同等条件”下,我能想到的只能是Go编译器后端在代码优化方面优化做的还不够,相较于GCC、Java等老牌编译器还有明显差距。

比如说,原先的代码中在内层循环中频繁访问a[i],导致数组访问的读写操作较多(从内存加载a[i],更新值后写回)。GCC和Java编译器在后端很可能做了这样的优化:将数组元素累积到一个临时变量中,并在外层循环结束后写回数组,这样做可以减少内层循环中的内存读写操作,充分利用CPU缓存和寄存器,加速数据处理

注:数组从内存或缓存读,而一个临时变量很大可能是从寄存器读,那读取速度相差还是很大的。

如果我们手工在Go中实施这一优化,看看能达到什么效果呢?我们改一下最初版本的Go代码(code.go),新代码如下:

// why-go-sucks/billion-loops/go/code_local_var.go 

package main

import (
    "fmt"
    "math/rand"
    "os"
    "strconv"
)

func main() {
    input, e := strconv.Atoi(os.Args[1]) // Get an input number from the command line
    if e != nil {
        panic(e)
    }
    u := int32(input)
    r := int32(rand.Intn(10000))        // Get a random number 0 <= r < 10k
    var a [10000]int32                  // Array of 10k elements initialized to 0
    for i := int32(0); i < 10000; i++ { // 10k outer loop iterations
        temp := a[i]
        for j := int32(0); j < 100000; j++ { // 100k inner loop iterations, per outer loop iteration
            temp += j % u // Simple sum
        }
        temp += r // Add a random value to each element in array
        a[i] = temp
    }
    fmt.Println(a[r]) // Print out a single element from the array
}

编译并运行测试:

$go build -o code_local_var code_local_var.go
$time ./code_local_var 10
459169

real    0m3.017s
user    0m3.017s
sys 0m0.007s

我们看到,测试结果直接就比Java略好一些了。显然Go编译器没有做这种优化,从code.go的汇编也大致可以看出来:


使用lensm生成的汇编与go源码对应关系

而Java显然做了这类优化,我们在原Java代码版本上按上述优化逻辑修改了一下:

// why-go-sucks/billion-loops/java/code_local_var.java

package jvm;

import java.util.Random;

public class code {

    public static void main(String[] args) {
        var u = Integer.parseInt(args[0]); // 获取命令行输入的整数
        var r = new Random().nextInt(10000); // 生成随机数 0 <= r < 10000
        var a = new int[10000]; // 定义长度为10000的数组a

        for (var i = 0; i < 10000; i++) { // 10k外层循环迭代
            var temp = a[i]; // 使用临时变量存储 a[i] 的值
            for (var j = 0; j < 100000; j++) { // 100k内层循环迭代,每次外层循环迭代
                temp += j % u; // 更新临时变量的值
            }
            a[i] = temp + r; // 将临时变量的值加上 r 并写回数组
        }
        System.out.println(a[r]); // 输出 a[r] 的值
    }
}

但从运行这个“优化”后的程序的结果来看,其对java代码的提升幅度几乎可以忽略不计:

$time java -cp . jvm.code 10
450375

real    0m3.043s
user    0m3.028s
sys 0m0.027s

这也直接证明了即便采用的是原版java代码,java编译器也会生成带有抽取局部变量这种优化的可执行代码,java程序员无需手工进行此类优化。

像这种编译器优化,还有不少,比如大家比较熟悉的循环展开(Loop Unrolling)也可以提升Go程序的性能:

// why-go-sucks/billion-loops/go/code_loop_unrolling.go

package main

import (
    "fmt"
    "math/rand"
    "os"
    "strconv"
)

func main() {
    input, e := strconv.Atoi(os.Args[1]) // Get an input number from the command line
    if e != nil {
        panic(e)
    }
    u := int32(input)
    r := int32(rand.Intn(10000))        // Get a random number 0 <= r < 10k
    var a [10000]int32                  // Array of 10k elements initialized to 0
    for i := int32(0); i < 10000; i++ { // 10k outer loop iterations
        var sum int32
        // Unroll inner loop in chunks of 4 for optimization
        for j := int32(0); j < 100000; j += 4 {
            sum += j % u
            sum += (j + 1) % u
            sum += (j + 2) % u
            sum += (j + 3) % u
        }
        a[i] = sum + r // Add the accumulated sum and random value
    }

    fmt.Println(a[r]) // Print out a single element from the array
}

运行这个Go测试程序,性能如下:

$go build -o code_loop_unrolling code_loop_unrolling.go
$time ./code_loop_unrolling 10
458908

real    0m2.937s
user    0m2.940s
sys 0m0.002s

循环展开可以增加指令级并行性,因为展开后的代码块中可以有更多的独立指令,比如示例中的计算j % u、(j+1) % u、(j+2) % u和(j+3) % u,这些计算操作是独立的,可以并行执行,打破了依赖链,从而更好地利用处理器的并行流水线。而原版Go代码中,每次迭代都会根据前一次迭代的结果更新a[i],形成一个依赖链,这种顺序依赖性迫使处理器只能按顺序执行这些指令,导致流水线停顿。

不过其他语言也可以做同样的手工优化,比如我们对C代码做同样的优化(why-go-sucks/billion-loops/c/code_loop_unrolling.c),c测试程序的性能可以提升至2.7s水平,这也证明了初版C程序即便在-O3的情况下编译器也没有自动为其做这个优化:

$time ./code_loop_unrolling 10
459383

real    0m2.723s
user    0m2.722s
sys 0m0.001s

到这里我们就不再针对这个10亿次循环的性能问题做进一步展开了,从上面的探索得到的初步结论就是Go编译器优化做的还不到位所致,期待后续Go团队能在编译器优化方面投入更多精力,争取早日追上GCC/Clang、Java这些成熟的编译器优化水平。

下面我们再来看Go在百万任务场景下内存开销大的“问题”。

2. 内存占用高,问题出在Goroutine实现原理

我们先来看第二个问题的测试代码:

package main

import (
    "fmt"
    "os"
    "strconv"
    "sync"
    "time"
)

func main() {
    numRoutines := 100000
    if len(os.Args) > 1 {
        n, err := strconv.Atoi(os.Args[1])
        if err == nil {
            numRoutines = n
        }
    }

    var wg sync.WaitGroup
    for i := 0; i < numRoutines; i++ {
        wg.Add(1)
        go func() {
            time.Sleep(10 * time.Second)
            wg.Done()
        }()
    }
    wg.Wait()
}

这个代码其实就是根据传入的task数量启动等同数量的goroutine,然后每个goroutine模拟工作负载sleep 10s,这等效于百万长连接的场景,只有连接,但没有收发消息。

相对于上一个问题,这个问题更好解释一些。

Go使用的groutine是一种有栈协程,文章中使用的是每个task一个goroutine的模型,且维护百万任务一段时间,这会真实创建百万个goroutine(G数据结构),并为其分配栈空间(2k起步),这样你可以算一算,不考虑其他结构的占用,仅每个goroutine的栈空间所需的内存都是极其可观的:

mem = 1000000 * 2000 Bytes = 2000000000 Bytes = 2G Bytes

所以启动100w goroutine,保底就2GB内存出去了,这与原作者测试的结果十分契合(原文是2.5GB多)。并且,内存还会随着goroutine数量增长而线性增加。

那么如何能减少内存使用呢?如果采用每个task一个goroutine的模型,这个内存占用很难省去,除非将来Go团队对goroutine实现做大修。

如果task是网络通信相关的,可以使用类似gnet这样的直接基于epoll建构的框架,其主要的节省在于不会启动那么多goroutine,而是通过一个goroutine池来处理数据,每个池中的goroutine负责一批网络连接或网络请求。

在一些Gopher的印象中,Goroutine一旦分配就不回收,这会使他们会误认为一旦分配了100w goroutine,这2.5G内存空间将始终被占用,真实情况是这样么?我们用一个示例程序验证一下就好了:

// why-go-sucks/million-tasks/million-tasks.go

package main

import (
    "fmt"
    "log"
    "os"
    "os/signal"
    "runtime"
    "sync"
    "syscall"
    "time"
)

// 打印当前内存使用情况和相关信息
func printMemoryUsage() {
    var m runtime.MemStats
    runtime.ReadMemStats(&m)

    // 获取当前 goroutine 数量
    numGoroutines := runtime.NumGoroutine()

    // 获取当前线程数量
    numThreads := runtime.NumCPU() // Go runtime 不直接提供线程数量,但可以通过 NumCPU 获取逻辑处理器数量

    fmt.Printf("======>\n")
    fmt.Printf("Alloc = %v MiB", bToMb(m.Alloc))
    fmt.Printf("\tTotalAlloc = %v MiB", bToMb(m.TotalAlloc))
    fmt.Printf("\tSys = %v MiB", bToMb(m.Sys))
    fmt.Printf("\tNumGC = %v", m.NumGC)
    fmt.Printf("\tNumGoroutines = %v", numGoroutines)
    fmt.Printf("\tNumThreads = %v\n", numThreads)
    fmt.Printf("<======\n\n")
}

// 将字节转换为 MB
func bToMb(b uint64) uint64 {
    return b / 1024 / 1024
}

func main() {
    const signal1Goroutines = 900000
    const signal2Goroutines = 90000
    const signal3Goroutines = 10000

    // 用于接收退出信号
    sigChan := make(chan os.Signal, 1)
    signal.Notify(sigChan, syscall.SIGINT, syscall.SIGTERM)

    // 控制 goroutine 的退出
    signal1Chan := make(chan struct{})
    signal2Chan := make(chan struct{})
    signal3Chan := make(chan struct{})

    var wg sync.WaitGroup
    ticker := time.NewTicker(5 * time.Second)
    go func() {
        for range ticker.C {
            printMemoryUsage()
        }
    }()

    // 等待退出信号
    go func() {
        count := 0
        for {
            <-sigChan
            count++
            if count == 1 {
                log.Println("收到第一类goroutine退出信号")
                close(signal1Chan) // 关闭 signal1Chan,通知第一类 goroutine 退出
                continue
            }
            if count == 2 {
                log.Println("收到第二类goroutine退出信号")
                close(signal2Chan) // 关闭 signal2Chan,通知第二类 goroutine 退出
                continue
            }
            log.Println("收到第三类goroutine退出信号")
            close(signal3Chan) // 关闭 signal3Chan,通知第三类 goroutine 退出
            return
        }
    }()

    // 启动第一类 goroutine(在收到 signal1 时退出)
    log.Println("开始启动第一类goroutine...")
    for i := 0; i < signal1Goroutines; i++ {
        wg.Add(1)
        go func(id int) {
            defer wg.Done()
            // 模拟工作
            for {
                select {
                case <-signal1Chan:
                    return
                default:
                    time.Sleep(10 * time.Second) // 模拟一些工作
                }
            }
        }(i)
    }
    log.Println("启动第一类goroutine(900000) ok")

    time.Sleep(time.Second * 5)

    // 启动第二类 goroutine(在收到 signal2 时退出)
    log.Println("开始启动第二类goroutine...")
    for i := 0; i < signal2Goroutines; i++ {
        wg.Add(1)
        go func(id int) {
            defer wg.Done()
            // 模拟工作
            for {
                select {
                case <-signal2Chan:
                    return
                default:
                    time.Sleep(10 * time.Second) // 模拟一些工作
                }
            }
        }(i)
    }
    log.Println("启动第二类goroutine(90000) ok")

    time.Sleep(time.Second * 5)

    // 启动第三类goroutine(随程序退出而退出)
    log.Println("开始启动第三类goroutine...")
    for i := 0; i < signal3Goroutines; i++ {
        wg.Add(1)
        go func(id int) {
            defer wg.Done()
            // 模拟工作
            for {
                select {
                case <-signal3Chan:
                    return
                default:
                    time.Sleep(10 * time.Second) // 模拟一些工作
                }
            }
        }(i)
    }
    log.Println("启动第三类goroutine(90000) ok")

    // 等待所有 goroutine 完成
    wg.Wait()
    fmt.Println("所有 goroutine 已退出,程序结束")
}

这个程序我就不详细解释了。大致分三类goroutine,第一类90w个,在我发送第一个ctrl+c信号后退出,第二类9w个,在我发送第二个ctrl+c信号后退出,最后一类1w个,随着程序退出而退出。

在我的执行环境下编译和执行一下这个程序,并结合runtime输出以及使用top -p pid的方式查看其内存占用:

$go build million-tasks.go
$./million-tasks 

2024/12/01 22:07:03 开始启动第一类goroutine...
2024/12/01 22:07:05 启动第一类goroutine(900000) ok
======>
Alloc = 511 MiB TotalAlloc = 602 MiB    Sys = 2311 MiB  NumGC = 9   NumGoroutines = 900004  NumThreads = 8
<======

2024/12/01 22:07:10 开始启动第二类goroutine...
2024/12/01 22:07:11 启动第二类goroutine(90000) ok
======>
Alloc = 577 MiB TotalAlloc = 668 MiB    Sys = 2553 MiB  NumGC = 9   NumGoroutines = 990004  NumThreads = 8
<======

2024/12/01 22:07:16 开始启动第三类goroutine...
2024/12/01 22:07:16 启动第三类goroutine(90000) ok
======>
Alloc = 597 MiB TotalAlloc = 688 MiB    Sys = 2593 MiB  NumGC = 9   NumGoroutines = 1000004 NumThreads = 8
<======

======>
Alloc = 600 MiB TotalAlloc = 690 MiB    Sys = 2597 MiB  NumGC = 9   NumGoroutines = 1000004 NumThreads = 8
<======
... ...

======>
Alloc = 536 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 10  NumGoroutines = 1000004 NumThreads = 8
<======

100w goroutine全部创建ok后,我们查看一下top输出:

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 5800 root      20   0 3875556   2.5g    988 S  54.0  8.2   0:30.92 million-tasks

我们看到RES为2.5g,和我们预期的一致!

接下来,我们停掉第一批90w个goroutine,看RES是否会下降,何时会下降!

输入ctrl+c,停掉第一批90w goroutine:

^C2024/12/01 22:10:15 收到第一类goroutine退出信号
======>
Alloc = 536 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 10  NumGoroutines = 723198  NumThreads = 8
<======

======>
Alloc = 536 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 10  NumGoroutines = 723198  NumThreads = 8
<======

======>
Alloc = 536 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 10  NumGoroutines = 100004  NumThreads = 8
<======

======>
Alloc = 536 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 10  NumGoroutines = 100004  NumThreads = 8
<======
... ...

但同时刻的top显示RES并没有变化:

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 5800 root      20   0 3875812   2.5g    988 S   0.0  8.2   0:56.38 million-tasks

等待两个GC间隔的时间后(大约4分),Goroutine的栈空间被释放:

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 12  NumGoroutines = 100004  NumThreads = 8
<======

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 12  NumGoroutines = 100004  NumThreads = 8
<======

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 12  NumGoroutines = 100004  NumThreads = 8
<======

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 12  NumGoroutines = 100004  NumThreads = 8
<======

top显示RES从2.5g下降为大概700多MB(RES的单位是KB):

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 5800 root      20   0 3875812 764136    992 S   0.0  2.4   1:01.87 million-tasks

接下来,我们再停掉第二批9w goroutine:

^C2024/12/01 22:16:21 收到第二类goroutine退出信号
======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 13  NumGoroutines = 100004  NumThreads = 8
<======

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 13  NumGoroutines = 100004  NumThreads = 8
<======

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 13  NumGoroutines = 10004   NumThreads = 8
<======

======>
Alloc = 465 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 13  NumGoroutines = 10004   NumThreads = 8
<======

此时,top值也没立即改变:

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 5800 root      20   0 3875812 764136    992 S   0.0  2.4   1:05.99 million-tasks

大约等待一个GC间隔(2分钟)后,top中RES下降:

======>
Alloc = 458 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 14  NumGoroutines = 10004   NumThreads = 8
<======

======>
Alloc = 458 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 14  NumGoroutines = 10004   NumThreads = 8
<======

======>
Alloc = 458 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 14  NumGoroutines = 10004   NumThreads = 8
<======

RES变为不到700M:

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 5800 root      20   0 3875812 699156    992 S   0.0  2.2   1:06.75 million-tasks

第三次按下ctrl+c,程序退出:

^C2024/12/01 22:18:46 收到第三类goroutine退出信号
======>
Alloc = 458 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 14  NumGoroutines = 10003   NumThreads = 8
<======

======>
Alloc = 458 MiB TotalAlloc = 695 MiB    Sys = 2606 MiB  NumGC = 14  NumGoroutines = 10003   NumThreads = 8
<======

所有 goroutine 已退出,程序结束

我们看到Go是会回收goroutine占用的内存空间的,并且归还给OS,只是这种归还比较lazy。尤其是,第二次停止goroutine前,go程序剩下10w goroutine,按理论来讲需占用大约200MB的空间,实际上却是700多MB;第二次停止goroutine后,goroutine数量降为1w,理论占用应该在20MB,但实际却是600多MB,我们看到go运行时这种lazy归还OS内存的行为可能也是“故意为之”,是为了避免反复从OS申请和归还内存。

3. 小结

本文主要探讨了Go语言在十亿次循环和百万任务的测试中的表现令人意外地逊色于Java和C语言的原因。我认为Go在循环执行中的慢速表现,主要是其编译器优化不足,影响了执行效率。 而在内存开销方面,Go的Goroutine实现是使得内存使用量大幅增加的“罪魁祸首”,这是由于每个Goroutine初始都会分配固定大小的栈空间。

通过本文的探讨,我的主要目的是希望大家不要以讹传讹,而是要搞清楚背后的真正原因,并正视Go在某些方面的不足,以及其当前在某些应用上下文中的局限性。 同时,也希望Go开发团队在编译器优化方面进行更多投入,以提升Go在高性能计算领域的竞争力。

本文涉及的源码可以在这里下载。

4. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats