深入GOCACHEPROG:Go构建缓存的自定义扩展

本文永久链接 – https://tonybai.com/2025/03/04/deep-dive-into-gocacheprog-custom-extensions-for-go-build-cache

1. 背景

众所周知,Go build cache是在Go 1.10版本加入到Go工具链中的,缓存的主要目标是避免重复编译相同的代码,从而加快构建速度。

默认情况下,Go构建缓存位于用户主目录下的一个特定目录中,例如,Linux上通常是\$HOME/.cache/go-build,Windows上是%LocalAppData%\go-build)。Mac上则是\$HOME/Library/Caches/go-build。当然,Go开发者也可以通过GOCACHE环境变量自定义缓存位置。构建缓存的目录布局结构如下:

除了Go build/install命令外,go test命令也会利用构建缓存(包括fuzzing test)。除了编译测试代码本身,go test还会缓存测试结果:如果测试代码和依赖项没有变化,并且之前的测试通过,go test会报告(cached),表示测试结果来自缓存,而无需重新运行测试。如果测试代码或依赖项发生变化,或者之前的测试失败,go test会重新编译和运行测试。

我们看到在GOCACHE目录下还有两个文件,一个是trim.txt,另外一个是testexpire.txt。trim.txt用于对Go构建缓存进行修剪(trim)(\$GOROOT/src/cmd/go/internal/cache/cache.go),删除不太可能被重复使用的旧缓存条目,避免因过时的缓存占用过多资源,以保持缓存的高效性和有效性,trim.txt中保存了上次进行修剪的时间。testexpire.txt则是用于go clean清理测试缓存(\$GOROOT/src/cmd/go/internal/clean/clean.go)。

默认的Go构建缓存机制取得了不错的构建和测试加速效果,可以满足了大多数需求。不过,也有一些接纳Go的开发者以及公司希望Go构建缓存支持自定义扩展。前Go核心成员、tailscale联创之一的Brad Fitzpatrick在2023年就提出了Go构建缓存自定义扩展的提案

在提案中,Bradfitz认为Go内置的构建缓存机制仅支持基于本地文件系统的缓存。在一些持续集成 (CI) 环境中,通常的做法是在每次运行时解和压缩\$GOCACHE目录,这种方法效率低下,甚至可能比CI操作本身还要慢(例如,GitHub Actions 中的缓存)。提案希望Go能够支持更灵活地自定义构建缓存机制,例如:

  • 直接利用GitHub的原生缓存系统(而不是低效的 tar/untar)。
  • 在公司内部的可信同事之间实现P2P缓存共享协议。

这些扩展的高级功能不太可能直接添加到Go工具本身中,因此Bradfitz希望Go命令可以支持指定一个特定的程序来扩展和管理缓存,这个特定的程序将作为Go命令启动的一个子进程的形式运行,go命令将内部的缓存接口转换为与子进程的通信协议,通过stdin/stdout与其通信。这样该特定的子程序就可以实现任意的缓存机制和策略了。Go与特定程序(比如my-cache-prog)的关系见下面示意图:

Bradfitz也对比了使用FUSE(用户空间文件系统)的方案(比如使用juicefs将基于S3的共享文件系统挂载到每个开发人员以及ci节点上,但Bradfitz认为FUSE文件系统在linux之外的平台上不稳定,在很多CI环境下无法工作。因此,一个Go原生支持的用户自定义构建缓存机制是非常有必要的,可以解决Go内置缓存的局限性,特别是在CI环境和团队协作场景中。它通过提供一个外部程序接口来实现灵活性,避免了直接修改Go命令本身。

在《Go 1.24中值得关注的几个变化》以及《Go 1.24新特性前瞻:工具链和标准库》我们也提及了Go 1.24新增的实验特性:通过GOCACHEPROG实现Go构建缓存(go build cache)的自定义扩展。并提到了Bradfitz给出的GOCACHEPROG的参考实现go-tool-cache。不过Go 1.24正式版发布后,我使用Go 1.24.0验证了一下go-tool-cache,发现go-tool-cache似乎已经无法与Go 1.24.0正常协作了

$go version
go version go1.24.0 linux/amd64
$GOCACHEPROG="./go-cacher --verbose --cache-dir /tmp/go-cache" go install fmt
2025/03/03 17:00:30 put(action b8310cbc256f74a5f615df68a3a97753d42e1665adc309e78f20fc13259dec98, obj , 902 bytes): failed to write file to disk with right size: disk=1275; wanted=902
2025/03/03 17:00:30 put(action bc54b2b00ab97b34ef769b66fbe4afd5998f46f843cf2beddcd41974a2564bb1, obj , 1650 bytes): failed to write file to disk with right size: disk=116838; wanted=1650
2025/03/03 17:00:30 put(action 9c4f13b659995a6010f99d4427a18cf2e77919d251ef15e0f751bfdc2dff1806, obj , 1473 bytes): failed to write file to disk with right size: disk=273; wanted=1473
2025/03/03 17:00:30 put(action 6600d21f6b5d283315d789f13e681eed1c51d3ddde835b0f14817ecd144a667e, obj , 566 bytes): failed to write file to disk with right size: disk=565; wanted=566
/root/.bin/go1.24.0/src/internal/runtime/maps/runtime_swiss.go:11:2: package internal/asan is not in std (/root/.bin/go1.24.0/src/internal/asan)
/root/.bin/go1.24.0/src/internal/runtime/maps/group.go:10:2: package internal/runtime/sys is not in std (/root/.bin/go1.24.0/src/internal/runtime/sys)
/root/.bin/go1.24.0/src/fmt/print.go:8:2: package internal/fmtsort is not in std (/root/.bin/go1.24.0/src/internal/fmtsort)
/root/.bin/go1.24.0/src/sync/hashtriemap.go:10:2: package internal/sync is not in std (/root/.bin/go1.24.0/src/internal/sync)

修正这个问题还是新实现一个GOCACHEPROG的扩展程序呢?我们选择后者,这样可以让我们更好地从头理解GOCACHEPROG。在这篇文章中,我们会从理解GOCACHEPROG protocol开始,逐步深入到实现自定义缓存管理的具体步骤,包括代码示例。后续基于这个基础,大家可以自己动手,实现满足你的个人/组织需求的Go构建缓存的管理程序。

我们首先来看看Go命令与GOCACHEPROG扩展程序间的协议,这是实现自定义缓存扩展程序的核心。

2. 协议

cmd/go/internal/cacheprog包的文档中,有关于Go命令与GOCACHEPROG扩展程序间的协议的详细说明。下面基于该文档,我们对这个协议做一些说明,并作为后续实现的参考。

前面说过,GOCACHEPROG是Go 1.24引入的新实验特性(很大可能在Go 1.25版本转正),允许使用外部程序实现Go构建缓存。其间的通信协议基于JSON消息通过stdin/stdout进行交换。Go命令将GOCACHEPROG指定的程序(以下称为my-cache-prog)以child process的形式启动,之后my-cache-prog与go命令之间的通信过程大致如下:

  • 初始化: my-cache-prog启动后立即发送一个包含自身支持命令的Response消息(也称为init response,对应的ID=0)给Go命令。
  • 请求-响应模型: Go命令收到init response后,根据其支持的命令,发送Request,缓存程序my-cache-prog收到请求后进行处理,并回复Response

目前协议支持的命令类型包括如下三种:

  • put: 将对象存储到缓存中。
  • get: 从缓存中检索对象。
  • close: 请求缓存程序优雅退出。

显然,通过KnownCommands机制,Go命令可以支持未来协议的扩展。

文档中还给出了协议请求响应模型中Request和Response的定义,这个我们在Go命令的实现中也能找到:

// $GOROOT/src/cmd/go/internal/cacheprog/cacheprog.go

// Cmd is a command that can be issued to a child process.
//
// If the interface needs to grow, the go command can add new commands or new
// versioned commands like "get2" in the future. The initial [Response] from
// the child process indicates which commands it supports.
type Cmd string

const (
    // CmdPut tells the cache program to store an object in the cache.
    //
    // [Request.ActionID] is the cache key of this object. The cache should
    // store [Request.OutputID] and [Request.Body] under this key for a
    // later "get" request. It must also store the Body in a file in the local
    // file system and return the path to that file in [Response.DiskPath],
    // which must exist at least until a "close" request.
    CmdPut = Cmd("put")

    // CmdGet tells the cache program to retrieve an object from the cache.
    //
    // [Request.ActionID] specifies the key of the object to get. If the
    // cache does not contain this object, it should set [Response.Miss] to
    // true. Otherwise, it should populate the fields of [Response],
    // including setting [Response.OutputID] to the OutputID of the original
    // "put" request and [Response.DiskPath] to the path of a local file
    // containing the Body of the original "put" request. That file must
    // continue to exist at least until a "close" request.
    CmdGet = Cmd("get")

    // CmdClose requests that the cache program exit gracefully.
    //
    // The cache program should reply to this request and then exit
    // (thus closing its stdout).
    CmdClose = Cmd("close")
)

// Request is the JSON-encoded message that's sent from the go command to
// the GOCACHEPROG child process over stdin. Each JSON object is on its own
// line. A ProgRequest of Type "put" with BodySize > 0 will be followed by a
// line containing a base64-encoded JSON string literal of the body.
type Request struct {
    // ID is a unique number per process across all requests.
    // It must be echoed in the Response from the child.
    ID int64

    // Command is the type of request.
    // The go command will only send commands that were declared
    // as supported by the child.
    Command Cmd

    // ActionID is the cache key for "put" and "get" requests.
    ActionID []byte `json:",omitempty"` // or nil if not used

    // OutputID is stored with the body for "put" requests.
    //
    // Prior to Go 1.24, when GOCACHEPROG was still an experiment, this was
    // accidentally named ObjectID. It was renamed to OutputID in Go 1.24.
    OutputID []byte `json:",omitempty"` // or nil if not used

    // Body is the body for "put" requests. It's sent after the JSON object
    // as a base64-encoded JSON string when BodySize is non-zero.
    // It's sent as a separate JSON value instead of being a struct field
    // send in this JSON object so large values can be streamed in both directions.
    // The base64 string body of a Request will always be written
    // immediately after the JSON object and a newline.
    Body io.Reader `json:"-"`

    // BodySize is the number of bytes of Body. If zero, the body isn't written.
    BodySize int64 `json:",omitempty"`

    // ObjectID is the accidental spelling of OutputID that was used prior to Go
    // 1.24.
    //
    // Deprecated: use OutputID. This field is only populated temporarily for
    // backwards compatibility with Go 1.23 and earlier when
    // GOEXPERIMENT=gocacheprog is set. It will be removed in Go 1.25.
    ObjectID []byte `json:",omitempty"`
}

// Response is the JSON response from the child process to the go command.
//
// With the exception of the first protocol message that the child writes to its
// stdout with ID==0 and KnownCommands populated, these are only sent in
// response to a Request from the go command.
//
// Responses can be sent in any order. The ID must match the request they're
// replying to.
type Response struct {
    ID  int64  // that corresponds to Request; they can be answered out of order
    Err string `json:",omitempty"` // if non-empty, the error

    // KnownCommands is included in the first message that cache helper program
    // writes to stdout on startup (with ID==0). It includes the
    // Request.Command types that are supported by the program.
    //
    // This lets the go command extend the protocol gracefully over time (adding
    // "get2", etc), or fail gracefully when needed. It also lets the go command
    // verify the program wants to be a cache helper.
    KnownCommands []Cmd `json:",omitempty"`

    // For "get" requests.

    Miss     bool       `json:",omitempty"` // cache miss
    OutputID []byte     `json:",omitempty"` // the ObjectID stored with the body
    Size     int64      `json:",omitempty"` // body size in bytes
    Time     *time.Time `json:",omitempty"` // when the object was put in the cache (optional; used for cache expiration)

    // For "get" and "put" requests.

    // DiskPath is the absolute path on disk of the body corresponding to a
    // "get" (on cache hit) or "put" request's ActionID.
    DiskPath string `json:",omitempty"`
}

Request是由Go命令发送的请求,它包含的几个字段的含义如下:

  • ID: 每个进程中所有请求的唯一编号
  • Command: 请求类型(put/get/close)
  • ActionID: 缓存键
  • OutputID: 存储在缓存中的对象ID,实际也是Body数据的Sha256的值。
  • Body: “put”请求的主体数据,”get”和”close”请求没有Body。
  • BodySize: Body的字节数

Response则是由缓存程序回复给Go命令的结构,它的定义中的几个字段的含义如下:

  • ID: 对应请求的ID
  • Err: 错误信息(如有)
  • KnownCommands: 支持的命令列表(用于初始Response)
  • Miss: 缓存未命中标志
  • OutputID: 存储在缓存中的对象ID
  • Size: 主体大小(字节)
  • Time: 对象放入缓存的时间
  • DiskPath: 对应缓存项在磁盘上的绝对路径

这里要注意几点:

  • 除了init Response,其他Response可以乱序返回,Go命令会通过Response中的ID来匹配对应的Request。
  • 不论缓存数据存储在哪里,最终提供给Go命令的都应该在本地文件系统中,并通过Response中的DiskPath来指示该数据对应的绝对路径。

为了能更好地理解这个协议的交互,我这里画了一幅Go命令与my-cache-prog之间的交互示意图:

到这里,还有一个地方尚未清楚,那就是put请求与put/get请求之间以及put请求内部body的编码格式并未说清楚。在文档中,这部分也不是那么清晰,但这却决定了后续实现的正确性。为了给后面的实现做好铺垫,我们可以通过查看Go命令的对put请求的编码实现来确认这部分内容。在

// $GOROOT/src/cmd/go/internal/cache/prog.go

func (c *ProgCache) writeToChild(req *cacheprog.Request, resc chan<- *cacheprog.Response) (err error) {
    c.mu.Lock()
    if c.inFlight == nil {
        return errCacheprogClosed
    }
    c.nextID++
    req.ID = c.nextID
    c.inFlight[req.ID] = resc
    c.mu.Unlock()

    defer func() {
        if err != nil {
            c.mu.Lock()
            if c.inFlight != nil {
                delete(c.inFlight, req.ID)
            }
            c.mu.Unlock()
        }
    }()

    c.writeMu.Lock()
    defer c.writeMu.Unlock()

    if err := c.jenc.Encode(req); err != nil {
        return err
    }
    if err := c.bw.WriteByte('\n'); err != nil {
        return err
    }
    if req.Body != nil && req.BodySize > 0 {
        if err := c.bw.WriteByte('"'); err != nil {
            return err
        }
        e := base64.NewEncoder(base64.StdEncoding, c.bw)
        wrote, err := io.Copy(e, req.Body)
        if err != nil {
            return err
        }
        if err := e.Close(); err != nil {
            return nil
        }
        if wrote != req.BodySize {
            return fmt.Errorf("short write writing body to GOCACHEPROG for action %x, output %x: wrote %v; expected %v",
                req.ActionID, req.OutputID, wrote, req.BodySize)
        }
        if _, err := c.bw.WriteString("\"\n"); err != nil {
            return err
        }
    }
    if err := c.bw.Flush(); err != nil {
        return err
    }
    return nil
}

通过上述代码,我们可以总结出下面put请求的编码格式:

解释一下这张图。

  • 顶部(蓝色区域): JSON编码的请求元数据

包含ID、ActionID、OutputID和BodySize等字段。这部分使用标准JSON格式。

  • 中间(黄色条): 换行符分隔符(‘\n’)

JSON元数据后的第一个换行符。

  • 中部(绿色区域): Base64编码的请求体(可选)

这部分以双引号(“)开始,紧接着是Base64编码的二进制数据,最后以双引号(“)结束。

  • 底部(黄色条): 最终换行符(‘\n’)

整个请求的结束标记。

总的来说,Go命令的put请求使用了JSON+Base64的组合编码方式:请求的元数据以JSON格式编码,请求体以Base64编码(base64编码前后各有一个双引号),它们之间用换行符分隔,整个请求最后以换行符结束。这种格式便于解析,同时也能处理二进制数据。

注意:根据json.Encoder.Encode的文档,编码后的json文本也会跟着一个换行符(newline)。

不过代码中还有一点非常值得注意,那就是Put请求的BodySize的值为base64编码之前的Body长度!这一点如果不看源码,很容易使用BodySize去读取Body体的内容,从而导致解码出错!

好了,详细了解了上述协议后,我们就来尝试实现一个my-cache-prog程序。程序开源到github.com/bigwhite/go-cache-prog项目中了,大家可以结合项目代码来继续阅读下面的内容。

3. 实现

3.1 整体设计

go-cache-prog的实现采用了模块化设计,将不同的功能划分到独立的包中,以提高代码的可维护性和可扩展性。整体结构如下:

go-cache-prog/
├── cmd/
│   └── go-cache-prog/
│       └── main.go      (可执行程序入口)
├── protocol/
│   └── protocol.go  (请求/响应定义和解析)
├── storage/
│   ├── storage.go   (存储后端接口)
│   └── filesystem/
│       └── filesystem.go (基于本地文件系统的存储实现)
└── cache/
    └── cache.go     (内存缓存逻辑)
  • cmd/go-cache-prog/main.go: 这是可执行程序的入口点。

它负责解析命令行参数、设置日志输出、确定缓存目录、初始化存储和缓存、发送初始能力响应、启动请求处理循环。

// cmd/go-cache-prog/main.go  (部分)
func main() {
    // ... (参数解析、日志设置、缓存目录确定) ...

    store, err := filesystem.NewFileSystemStorage(cacheDir, verbose)
    if err != nil {
        log.Fatalf("Failed to initialize filesystem storage: %v", err)
    }
    cacheInstance := cache.NewCache(store)

    // ... (发送初始响应) ...
    requestHandler := protocol.NewRequestHandler(reader, os.Stdout, cacheInstance, verbose)

    if err := requestHandler.HandleRequests(); err != nil {
        log.Fatalf("Error handling requests: %v", err)
    }
}
  • protocol: 此包处理与go命令的通信协议,定义请求/响应结构,处理请求。
// protocol/protocol.go (部分)
type RequestHandler struct {
    reader        *bufio.Reader
    writer        io.Writer
    cache         *cache.Cache
    verbose       bool
    gets          int //statistics
    getMiss       int
}

func (rh *RequestHandler) HandleRequests() error {
    for {
        req, err := rh.readRequest()
        // ... (错误处理、请求处理) ...
    }
}
  • storage: 此包定义了存储后端的抽象接口。
// storage/storage.go
type Storage interface {
    Put(actionID, outputID []byte, data []byte, size int64) (string, error)
    Get(actionID []byte) (outputID []byte, size int64, modTime time.Time, diskPath string, found bool, err error)
    // ... (可选方法) ...
}
  • storage/filesystem: 此包提供了storage.Storage接口的一个具体实现,使用本地文件系统。
// storage/filesystem/filesystem.go (部分)
type FileSystemStorage struct {
    baseDir string
    verbose bool
}

func NewFileSystemStorage(baseDir string, verbose bool) (*FileSystemStorage, error) {
    // ... (创建目录) ...
}
  • cache: 此包实现了内存缓存层, 位于存储接口之上。
// cache/cache.go (部分)
type Cache struct {
    entries map[string]CacheEntry
    mu      sync.RWMutex
    store   storage.Storage
}

func NewCache(store storage.Storage) *Cache {
    // ... (初始化 map) ...
}

3.2 协议解析

protocol包负责处理go-cache-prog与go命令之间的基于JSON的通信协议。

  • 请求 (Request):
// protocol/protocol.go
type Request struct {
    ID       int64
    Command  Cmd
    ActionID []byte `json:",omitempty"`
    OutputID []byte `json:",omitempty"`
    Body     io.Reader `json:"-"`
    BodySize int64   `json:",omitempty"`
    ObjectID []byte `json:",omitempty"` // Deprecated
}
  • 响应 (Response):
// protocol/protocol.go
type Response struct {
    ID            int64      `json:",omitempty"`
    Err           string     `json:",omitempty"`
    KnownCommands []Cmd      `json:",omitempty"`
    Miss          bool       `json:",omitempty"`
    OutputID      []byte     `json:",omitempty"`
    Size          int64      `json:",omitempty"`
    Time          *time.Time `json:",omitempty"`
    DiskPath      string     `json:",omitempty"`
}

RequestHandler的readRequest方法负责读取和解析请求:

// protocol/protocol.go (部分)
func (rh *RequestHandler) readRequest() (*Request, error) {
    line, err := rh.reader.ReadBytes('\n')
    if err != nil {
        return nil, err
    }
    // ... (处理空行) ...
    var req Request
    if err := json.Unmarshal(line, &req); err != nil {
        // 检查base64
        if len(line) >= 2 && line[0] == '"' && line[len(line)-1] == '"'{
            // ...
        }
        return nil, fmt.Errorf("failed to unmarshal request: %w", err)
    }
    return &req, nil
}

对于put请求, 如果BodySize大于0, 需要读取并解码Base64数据:

// protocol/protocol.go (部分)
func (rh *RequestHandler) handlePut(req *Request) {
    var bodyData []byte
    if req.BodySize > 0 {
        bodyLine, err := rh.reader.ReadBytes('\n')
        // ... (跳过空行)...
        bodyLine, err = rh.reader.ReadBytes('\n')
        // ... (错误处理) ...

        bodyLine = bytes.TrimSpace(bodyLine)
        if len(bodyLine) < 2 || bodyLine[0] != '"' || bodyLine[len(bodyLine)-1] != '"' {
            // ... (格式错误) ...
        }
        base64Body := bodyLine[1 : len(bodyLine)-1]
        bodyData, err = base64.StdEncoding.DecodeString(string(base64Body))
        // ... (解码错误、大小不匹配处理) ...
    }
    // ... (调用 cache.Put) ...
}

3.3 缓存管理

cache包实现了内存缓存层,减少对底层存储的访问。

  • CacheEntry结构体:
// cache/cache.go
type CacheEntry struct {
    OutputID []byte
    Size     int64
    Time     time.Time
    DiskPath string
}
  • Cache结构体和NewCache:
// cache/cache.go
type Cache struct {
    entries map[string]CacheEntry
    mu      sync.RWMutex
    store   storage.Storage
}

func NewCache(store storage.Storage) *Cache {
    return &Cache{
        entries: make(map[string]CacheEntry),
        store:   store,
    }
}
  • Put方法:
// cache/cache.go
func (c *Cache) Put(actionID, outputID []byte, data []byte, size int64) (string, error) {
    diskPath, err := c.store.Put(actionID, outputID, data, size)
    if err != nil {
        return "", err
    }

    entry := CacheEntry{ /* ... */ }

    actionIDHex := fmt.Sprintf("%x", actionID)
    c.mu.Lock()
    c.entries[actionIDHex] = entry
    c.mu.Unlock()

    return diskPath, nil
}
  • Get方法:
// cache/cache.go
func (c *Cache) Get(actionID []byte) (*CacheEntry, bool, error) {
    actionIDHex := fmt.Sprintf("%x", actionID)

    c.mu.RLock()
    entry, exists := c.entries[actionIDHex]
    c.mu.RUnlock()

    if exists {
        return &entry, true, nil // 优先从内存缓存读取
    }

    // ... (从存储中读取, 并更新内存缓存) ...
}

3.4 抽象存储接口与本地文件系统实现

storage.Storage接口定义了存储后端的抽象,目的是为了支持更多的实现扩展,比如支持在S3上存储等。

// storage/storage.go
type Storage interface {
    Put(actionID, outputID []byte, data []byte, size int64) (string, error)
    Get(actionID []byte) (outputID []byte, size int64, modTime time.Time, diskPath string, found bool, err error)
}

storage/filesystem包提供了一种基于本地文件系统的实现。

  • FileSystemStorage和NewFileSystemStorage:
// storage/filesystem/filesystem.go
type FileSystemStorage struct {
    baseDir string
    verbose bool
}

func NewFileSystemStorage(baseDir string, verbose bool) (*FileSystemStorage, error) {
    if err := os.MkdirAll(baseDir, 0755); err != nil {
        return nil, err
    }
    return &FileSystemStorage{baseDir: baseDir, verbose: verbose}, nil
}
  • Put方法:
// storage/filesystem/filesystem.go
func (fss *FileSystemStorage) Put(actionID, outputID []byte, data []byte, size int64) (string, error) {
    actionIDHex := fmt.Sprintf("%x", actionID)
    //outputIDHex := fmt.Sprintf("%x", outputID) //Might not need

    actionFile := filepath.Join(fss.baseDir, fmt.Sprintf("a-%s", actionIDHex))
    diskPath := filepath.Join(fss.baseDir, fmt.Sprintf("o-%s", actionIDHex))
    absPath, _ := filepath.Abs(diskPath)

    // Write metadata
    now := time.Now()
    ie, err := json.Marshal(indexEntry{
        Version:  1,
        OutputID: outputID,
        Size:     size,
        Time:     &now,
    })
    // ... (错误处理, 写入元数据文件) ...
    if size > 0{
        // 写入数据文件
        if err := os.WriteFile(diskPath, data, 0644); err != nil {
            return "", fmt.Errorf("failed to write cache file: %w", err)
        }
    } else {
        //创建空文件
        zf, err := os.OpenFile(diskPath, os.O_CREATE|os.O_RDWR, 0644)
        if err != nil {
            return "", fmt.Errorf("failed to create empty file: %w", err)
        }
        zf.Close()
    }

    return absPath, nil
}
  • Get方法:
// storage/filesystem/filesystem.go
func (fss *FileSystemStorage) Get(actionID []byte) (outputID []byte, size int64, modTime time.Time, diskPath string, found bool, err error) {
    actionIDHex := fmt.Sprintf("%x", actionID)
    actionFile := filepath.Join(fss.baseDir, fmt.Sprintf("a-%s", actionIDHex))

    // Read metadata
    af, err := os.ReadFile(actionFile)
    // ... (文件不存在处理) ...
    var ie indexEntry
    if err := json.Unmarshal(af, &ie); err != nil {
        return nil, 0, time.Time{}, "", false, fmt.Errorf("failed to unmarshal index entry: %w", err)
    }

    objectFile := filepath.Join(fss.baseDir, fmt.Sprintf("o-%s", actionIDHex))
    info, err := os.Stat(objectFile)
    // ... (对象文件不存在、或其他错误处理) ...
    diskPath, _ = filepath.Abs(objectFile)

    return ie.OutputID, info.Size(), info.ModTime(), diskPath, true, nil
}

storage/filesystem使用了两种类型的文件来分别存储缓存数据和元数据:

  • a-{actionID} (Action File): 元数据文件

这个文件存储了关于缓存条目的元数据,使用JSON格式。actionID是缓存键的十六进制表示。

  • o-{actionID} (Object File): 对象文件。

这个文件存储了实际的缓存数据(即Request.Body的内容)。actionID 与对应的元数据文件中的actionID 相同。

对于一些Put请求(with BodySize=0)的,同样会创建元数据文件和对象文件,只是对象文件的size为0。

这么设计便于快速查找:在执行Get操作时,go-cache-prog首先读取a-{actionID}文件。这个文件很小,因为它只包含元数据。通过读取这个文件,go-cache-prog可以快速确定:缓存条目是否存在(如果 a-{actionID} 文件不存在,则肯定不存在)。 如果存在,可以获取到OutputID、数据大小(Size)和最后修改时间(Time),并放入内存缓存中,而无需读取可能很大的o-{actionID}文件,便可以知道对象文件(o-{actionID})是否存在。

4. 验证

下载go-cache-prog源码并编译:

$git clone https://github.com/bigwhite/go-cache-prog.git
$make

注意:go-cache-prog需要与Go 1.24及以上版本配合使用。

接下来,我们将fmt包首次编译安装到go-cache-prog的默认缓存目录下(~/.gocacheprog):

$GOCACHEPROG="./go-cache-prog --verbose" go install fmt
2025/03/04 10:47:59 Using cache directory: /Users/tonybai/.gocacheprog
2025/03/04 10:47:59 Received request: ID=1, Command=get, ActionID=90c776cb58a3c3a99b5622344df5bc959fd2b90f299b40ae21ec6ccf16c77a23, OutputID=, BodySize=0
2025/03/04 10:47:59 Received request: ID=2, Command=put, ActionID=90c776cb58a3c3a99b5622344df5bc959fd2b90f299b40ae21ec6ccf16c77a23, OutputID=4e67091862cdc5ff3d44d51adaf9f5a3f5e993dcbc0b6aad884d00d929f3f4d3, BodySize=3037
2025/03/04 10:47:59 Put request: ID=2, Actual BodyLen=4055
2025/03/04 10:47:59 Received request: ID=3, Command=get, ActionID=b2d3027bda366ae198f991d65f62b5be25aa7fe41092bb81218ba24363923b69, OutputID=, BodySize=0
2025/03/04 10:47:59 Received request: ID=4, Command=get, ActionID=c48dafcc394ccfed5c334ef2e21ba8b5bd09a883956f17601cf8a3123f8afd2b, OutputID=, BodySize=0
2025/03/04 10:47:59 Received request: ID=5, Command=get, ActionID=b16400d94b83897b0e7a54ee4223208ff85b4926808bcae66e488d2dbab85054, OutputID=, BodySize=0
2025/03/04 10:47:59 Received request: ID=6, Command=get, ActionID=789f5b8e5b2390e56d26ac916b6f082bfb3e807ee34302f8aa0310e6e225ac77, OutputID=, BodySize=0

... ...
2025/03/04 10:48:03 Received request: ID=321, Command=close, ActionID=, OutputID=, BodySize=0
2025/03/04 10:48:03 Gets: 107, GetMiss: 107

由于初始情况下,默认缓存目录下(~/.gocacheprog)没有构建缓存的文件,因此上面的所有get都miss了,go命令会发送put请求,go-cache-prog会构建初始cache。在默认缓存目录下(~/.gocacheprog)下,我们可以看到类似这样的文件列表:

$ls ~/.gocacheprog
a-01fae6e8773991089b07eef70a209ee3e99e229231b4956689d7c914a84c70de
a-030b82281d0fae81d44e96b140c276fa232abe46ae92b7fe1d4b7213bc58eef1
a-046d1381c7f1061967c50c5ba2a112486374c6682e80b154f26f17302eb623a4
... ...
o-fc0a0cf26b5a438834ee47a7166286bfb4266c93b667a66e5630502db7651507
o-fc5364bf6b2b714e6a90e8b57652827666b93366f0e322875eefd21b4cc58b3f
o-fde27b35692f9efeae945f00ab029fe156cbfa961bf6149ab9767e1efd057545
o-ff141dd2b1c95d4cba6c3cda5792d8863e428824565ecb5765018710199a2f69

接下来,我们再次执行同样的命令,看看cache是否起到了作用:

$GOCACHEPROG="./go-cache-prog --verbose" go install fmt
2025/03/04 10:50:14 Using cache directory: /Users/tonybai/.gocacheprog
2025/03/04 10:50:14 Received request: ID=1, Command=get, ActionID=90c776cb58a3c3a99b5622344df5bc959fd2b90f299b40ae21ec6ccf16c77a23, OutputID=, BodySize=0
2025/03/04 10:50:14 Received request: ID=2, Command=get, ActionID=c48dafcc394ccfed5c334ef2e21ba8b5bd09a883956f17601cf8a3123f8afd2b, OutputID=, BodySize=0
2025/03/04 10:50:14 Received request: ID=3, Command=get, ActionID=b16400d94b83897b0e7a54ee4223208ff85b4926808bcae66e488d2dbab85054, OutputID=, BodySize=0
2025/03/04 10:50:14 Received request: ID=4, Command=get, ActionID=789f5b8e5b2390e56d26ac916b6f082bfb3e807ee34302f8aa0310e6e225ac77, OutputID=, BodySize=0
2025/03/04 10:50:14 Received request: ID=5, Command=get, ActionID=c6e6427a15f95d70621df48cc68ab039075d66c1087427eb9a04bcf729c5b491, OutputID=, BodySize=0
... ...
2025/03/04 10:50:14 Received request: ID=161, Command=close, ActionID=, OutputID=, BodySize=0
2025/03/04 10:50:14 Gets: 160, GetMiss: 0

我们看到所有的Get请求都命中了缓存(GetMiss: 0),此次执行也肉眼可见的快!

我们再来用一个可执行程序验证一下利用build cache的构建。在go-cache-prog项目下有一个examples/helloworld示例,在该目录下执行make,我们就能看到构建的输出:

$cd examples/helloworld
$make
GOCACHEPROG="../../go-cache-prog --verbose" go build
2025/03/04 10:54:35 Using cache directory: /Users/tonybai/.gocacheprog
2025/03/04 10:54:35 Received request: ID=1, Command=get, ActionID=7c1950a92d55fae91254e8923f7ea4cdfd2ce34953bcf2348ba851be3e2402a1, OutputID=, BodySize=0
2025/03/04 10:54:35 Received request: ID=2, Command=put, ActionID=7c1950a92d55fae91254e8923f7ea4cdfd2ce34953bcf2348ba851be3e2402a1, OutputID=43b1c1a308784cd610fda967d781d3c5ccfd4950263df98d18a2ddb2dd218f5a, BodySize=251
2025/03/04 10:54:35 Put request: ID=2, Actual BodyLen=339
2025/03/04 10:54:35 Received request: ID=3, Command=get, ActionID=90c776cb58a3c3a99b5622344df5bc959fd2b90f299b40ae21ec6ccf16c77a23, OutputID=, BodySize=0

... ...
2025/03/04 10:54:35 Received request: ID=165, Command=close, ActionID=, OutputID=, BodySize=0
2025/03/04 10:54:35 Gets: 163, GetMiss: 1

我们看到绝大部分都是命中缓存的。

执行构建出的helloworld,程序也会正常输出内容:

$./helloworld
hello, world!

5. 小结

本文深入探讨了Go 1.24引入的GOCACHEPROG这一实验性特性,它为Go构建缓存带来了前所未有的灵活性。通过允许开发者使用自定义程序来管理构建缓存,GOCACHEPROG解决了Go内置缓存机制在特定场景下的局限性,特别是CI环境和团队协作中的痛点。

文中,我们基于对协议的理解,逐步构建了一个名为go-cache-prog的自定义缓存程序。go-cache-prog采用了模块化设计,将协议解析、缓存管理和存储抽象分离到不同的包中,提高了代码的可维护性和可扩展性。

最后,我们通过实际的编译和安装示例,验证了go-cache-prog的功能,展示了它如何与Go命令协同工作,实现自定义的构建缓存管理。

go-cache-prog项目提供了一个坚实的基础,开发者可以在此基础上进行扩展,实现更高级的功能,例如:

  • 不同的存储后端:实现storage.Storage接口,支持将缓存数据存储到云存储(如 AWS S3、Google Cloud Storage)、分布式缓存(如 Redis、Memcached)或其他存储系统中。
  • 缓存失效策略:实现更复杂的缓存失效策略,例如基于 LRU(最近最少使用)或 TTL(生存时间)的过期机制。
  • 分布式缓存:构建一个分布式的缓存系统,支持在多个开发机器或 CI 节点之间共享构建缓存。
  • 监控和统计:添加监控和统计功能,跟踪缓存命中率、缓存大小、性能指标等。

此外,目前的go-cache-prog是顺序处理go命令的请求的,大家也可以自行将其改造为并发处理请求,不过务必注意并发处理的同步。


Gopher部落知识星球在2025年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。并且,2025年将在星球首发“Go陷阱与缺陷”和“Go原理课”专栏!此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格6$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go 1.24中值得关注的几个变化

本文永久链接 – https://tonybai.com/2025/02/16/some-changes-in-go-1-24

北京时间2025年2月12日,恰逢中国传统元宵佳节,远在美国的Go团队正式发布了Go 1.24的第一个版本Go 1.24.0。这也是Go团队在更换Tech Leader为Austin Clements后发布的首个大版本。

按照惯例,每次Go大版本发布时,我都会撰写一篇“Go 1.x中值得关注的几个变化”的文章。自2014年的Go 1.4版本起,这一系列文章已经持续了11年。

不过,随着从Go 1.17版本开始引入的“Go 1.x新特性前瞻”系列以及针对特定技术特性的专题文章,“Go 1.x中值得关注的几个变化”系列文章的形式也在不断演变。原先的“Go 1.x中值得关注的几个变化”可以理解为被目前的“Go 1.x新特性前瞻” + “特定技术特性文章” + “Go 1.x中值得关注的几个变化”所替代。

不过,随着从Go 1.17版本开始引入的“Go 1.x新特性前瞻”系列以及针对特定技术特性的专题文章,“Go 1.x中值得关注的几个变化”系列的形式也在不断演变。原先的“Go 1.x中值得关注的几个变化”已逐渐被目前的“Go 1.x新特性前瞻” + “特定技术特性文章” + “Go 1.x中值得关注的几个变化(新版)”所替代。希望各位读者能够理解这种变化,“Go 1.x中值得关注的几个变化”系列依然会延续,但文章中将不再进行细致的分析,因为这些内容已经在之前的前瞻和专题文章中讨论过了。

好了,言归正传,我们来说说Go 1.24!

1. 语言变化

正如Go一贯所做的,新版Go 1.24.0继续遵循Go1的兼容性规范。使用Go 1.24.0,你可以顺利编译和运行你用Go 1.11编写的代码。相信许多Gopher正是因为这一点而喜欢上Go,就像下面这位Gopher在Go 1.24发布后所表现出的惊喜一样:

不过,正如Go一贯所做的那样,在语法特性方面,Go显得十分“吝啬”。在Go 1.18大方地引入了泛型之后,Go团队又恢复了这种“吝啬”的风格。在Go 1.24的发布说明中,那短短的一行字充分展现了这一特点:

我们看到,Go 1.24仅仅是将Go 1.23版本中的实验特性“带有类型参数的类型别名”转正了,成为了默认特性。当然你仍然可以GOEXPERIMENT=noaliastypeparams显式关闭它。关于这个特性的具体内容,我们多次说过了,大家可以到《Go 1.24新特性前瞻:语法、编译器与运行时》温习一下它的具体内容。

不过这种“吝啬”也是很多Gopher所期望的,当年Go语言之父Rob Pike在“Simplicity is Complicated”演讲中提到的如下权威观点,影响了诸多Gopher,当然也包括我:

因此,在正在如火如荼的“spec: reduce error handling boilerplate using ?”的讨论中,就当前的情况来看,我也倾向于保持现状

2. 编译器与运行时

在2024年中旬,Fasthttp的作者、VictoriaMetrics的联合创始人Aliaksandr Valialkin曾因Go加入自定义函数迭代的特性而发文抱怨“Go正在朝着错误的方向演进”。不过他也提到,如果Go团队专注于提升Go的性能,而不是在与社区争论一些“华而不实”的语法糖,可能会赢得更多开发者的青睐:

尽管Go 1.24尚未添加对SIMD的官方支持,但引入的优化显然不会让Aliaksandr Valialkin失望。首当其冲的就是对map底层实现的优化——使用更为高效的Swiss Table。关于Swiss Table及Go 1.24重写map的思路,可以参考我的《Go map使用Swiss Table重新实现,性能最高提升近50%》一文。根据文中的实测结果,新版基于Swiss Table的map在多数测试项中表现出显著的性能提升,有些甚至接近50%!

当然,基于Swiss Table的map实现仍在不断完善,其实现者Michael Pratt将持续进行打磨和优化:

参与Go Swiss Table重写方案讨论,并提供参考实现之一的CockroachDB CTO Peter Mattis,也在X.com上分享了新map设计和实现的诞生过程与优势,大家可以阅读以加深理解。

此外,Go 1.24还优化了runtime内部的锁实现,新实现在高竞争情况下取得了显著的可扩展性提升,而不是像Go 1.24之前的实现那样随线程数增加而急剧下降。基准测试表明,在GOMAXPROCS=20时,性能提升达3倍。

更多编译器和运行时的变化,可以参考《Go 1.24新特性前瞻:语法、编译器与运行时》。

Go 1.24版本在编译器和运行时方面的优化投入和勇于改变,正是Go社区所期望的。相信后续版本在这方面的持续投入不会让Aliaksandr Valialkin失望。

3. 工具链

Go团队在Go工具链上的投入和结果一直被Go社区认可和赞扬!《Go 1.24新特性前瞻:工具链和标准库》一文中有对Go 1.24工具链变化的详细介绍,但在这里我还是要再次提及其中的三个变化。

go.mod增加tool指示符,支持对tool的依赖管理

借用《Go工具链版本已不由你定:go和toolchain指令详解》中的那幅图:

Go的目标显然是要实现对Go应用所依赖“全要素”进行版本管理”,涵盖Go版本、工具链版本、第三方包版本以及依赖工具版本的管理。而Go 1.24在go.mod中增加tool指示符就是要实现对依赖工具的版本进行管理。增加tool指示符后,你可以像管理第三方包版本那样,使用go get -tool对依赖的tool的版本进行管理,go install tool对tool进行安装,并支持一个tool同时存在多个版本在本地,这是由于通过go.mod管理的依赖的tool会被像module那样缓存在本地构建缓存中(go build cache)。

btw,再说说go 1.24对toolchain依赖管理和选择的改善。即便看了《Go工具链版本已不由你定:go和toolchain指令详解》一文,很多Gopher还是可能因为gotoolchain决策的复杂性和参与要素的众多而感到困惑,Go 1.24增加了GODEBUG=toolchaintrace=1可以输出做出决策的过程日志,告诉你Go为何会选择某个特定的toolchain版本。

go vet的增强

在Go 1.24中,go vet的功能有了较大变化,新增或增强了如下一些分析器(analyzer):

  • 新增测试分析器

可以检测test、fuzz test、基准测试和example test中的常见错误,避免因命名、签名错误或引用不存在的标识符而导致测试无法运行。

  • printf分析器增强

新增对fmt.Printf(s)的检查,如果这类调用中格式字符串并非常量且没有传入其他参数,则提醒用户使用fmt.Print。

  • buildtag分析器增强

新增对无效Go主版本构建约束的检测,避免错误引用次版本号。例如,如果你使用//go:build go1.23.1,该分析器会提醒你应该使用//go:build go1.23。

  • copylock分析器增强

增强对经典三段式for循环中包含sync.Locker的变量复制的不安全操作的诊断,防止锁的复制带来的潜在问题。这也是Go 1.23修正loopvar语义后避免Go用户误用的一个防卫手段。

新增GOCACHEPROG

另一个大家可能忽视的值得关注的改变是新增了GOCACHEPROG环境变量。

Go语言的cmd/go工具已经具备了强大的缓存支持,但其缓存机制仅限于基于文件系统的缓存。这种缓存方式在某些场景下效率不高,尤其是在CI(持续集成)环境中,用户通常需要将GOCACHE目录打包和解压缩,这往往比CI操作本身还要慢。此外,用户可能希望利用位于网络上的共享缓存(比如S3)或公司内部的P2P缓存协议来提高缓存效率,但这些功能并不适合直接集成到cmd/go工具中。

为了解决上述问题,Brad Fitzpatrick提出了一个新的环境变量GOCACHEPROG,类似于现有的GOCACHE变量。通过设置GOCACHEPROG,用户可以指定一个外部程序,该程序将作为子进程运行,并通过标准输入/输出来与cmd/go工具进行通信。cmd/go工具将通过这个接口与外部缓存程序交互,外部程序可以根据需要实现任意的缓存机制和策略。其大致结构如下:

显然一旦可以在云上存储build cache,也能缓解一下Go用户抱怨本地缓存过大的问题。当然从实际情况来看(我的本地环境),go build cache还不是最大的:

$go env|grep CACHE
GOCACHE='/Users/tonybai/Library/Caches/go-build'
GOCACHEPROG=''
GOMODCACHE='/Users/tonybai/Go/pkg/mod'
$cd /Users/tonybai/Library/Caches/go-build
$du -sh
155M    .

$cd /Users/tonybai/Go/pkg/mod
$du -sh
7.0G

我们看到在我本地的环境中,go build cache和go module cache的size相比,简直是不值得一提,所以说如果后续要有个GOMODCACHEPROG就更好了,我也十分希望能将go module cache搬移到云端(比如S3)中,甚至可以让组织内的Gopher共享这些go module cache(当然要区分不同arch和os)。

更多关于工具链的变化,可以参考《Go 1.24新特性前瞻:工具链和标准库》。

4. 标准库

Go标准库向来是变化的大户,这里我显然不会列出所有变化,甚至一些值得关注的变化,比如:json包增加对omitzero选项的支持新增weak包和weak指针等,也都在新特性前瞻或技术专题性文章中有过详细说明。

这里要说的是Go对fips 140-3合规性的支持,因为这个最终版本与当初新特性前瞻时有所变化。

基于最新的Go fips 140-3文档,我们可以得到关于fips 140-3使用方法的说明,这里简要梳理如下:

  • Go 1.24及更高版本开始,Go二进制文件可以原生运行在FIPS 140-3合规模式下,不必依赖注入boringssl等第三方C++包。
  • Go新增了的一个特殊的Go加密模块 (Go Cryptographic Module),其下有一组新增的标准库包(位于crypto/internal/fips140/…下),实现了 FIPS 140-3批准的算法。这个cryptographic module的版本当前为v1.0.0,目前正在接受CMVP认证实验室的测试。

Go引入了GOFIPS140环境变量,用于go build、go install和go test命令,以选择要链接到可执行程序中的Go加密模块版本。该环境变量有三类可选值:

  • off (默认): 使用标准库中的crypto/internal/fips140/…包。
  • latest: 类似off,但默认启用FIPS 140-3模式。
  • v1.0.0: 使用Go加密模块 v1.0.0 版本(在Go 1.24中首次发布,并在2025年初冻结),默认启用FIPS 140-3模式。

在运行时,可以通过GODEBUG=fips140=xxx来控制上述编译到Go中的Go cryptographic module是否运行在FIPS 140-3模式下,默认是off。

当使用GODEBUG=fips140=on时,Go运行时将会启用Go cryptographic module的FIPS 140-3模式。启用后,Go加密模块会执行以下操作:

  • 完整性自检: 在init阶段,会验证模块对象文件的校验和,确保代码未被篡改。
  • 已知答案自检: 根据FIPS 140-3指南,在init阶段或首次使用时,对算法进行已知答案测试。
  • 密钥一致性测试: 对生成的密钥进行配对一致性测试 (这可能导致某些密钥类型生成速度减慢,特别是临时密钥)。
  • crypto/rand.Reader改进: 使用NIST SP 800-90A DRBG,并从平台CSPRNG获取随机字节混合到输出中。
  • crypto/tls限制: 仅协商符合NIST SP 800-52r2 的协议版本、密码套件、签名算法和密钥交换机制。
  • crypto/rsa.SignPSS限制: 使用PSSSaltLengthAuto时,盐的长度会被限制为哈希的长度。

当使用GODEBUG=fips140=only时,不符合FIPS140-3的加密算法会返回错误或者panic。但是此模式仅为尽力而为,不保证符合所有的FIPS 140-3要求。

不过大家要知道的是:在Go 1.24版本中,GODEBUG=fips140=on和only在OpenBSD、Wasm、AIX和32位Windows平台上暂不受支持。

另外要想要检测FIPS 140-3模式是否已经激活,可以调用crypto/fips140.Enabled函数。

之前,一些场合用户使用BoringCrypto模块来实现某些FIPS 140-3算法的机制仍然可用,但已不被官方支持,并计划在未来版本中移除。另外要知道Go+BoringCrypto与原生FIPS 140-3模式并不兼容。这也是Microsoft Go依旧宣称将保留自己维护的符合fips140-3的Go版本的原因

5. 其他

最后重点说说WebAssembly port。

Go从Go 1.11版本开始通过js/wasm增加了对编译到Wasm的支持。Go 1.21版本又增加了对WASI的支持(GOOS=wasip1),Go 1.24版本中,Go对Wasm的支持又有了新的特性。在Go 1.24发布没多久,Cherry Mui便在官博发表了名为“Extensible Wasm Applications with Go”的介绍Go 1.24中WebAssembly新特性的文章,文章介绍了Go 1.24对Wasm的支持程度以及一些限制。这里也参考了这篇文章,简单梳理一下Cherry给出的内容要点。

Go 1.24引入了新的编译器指示符go:wasmexport,允许将Go函数导出,以便从Wasm模块外部(通常是从运行Wasm运行时的主机应用程序)调用。该指示符指示编译器将带注释的函数作为Wasm导出提供,在生成的Wasm二进制文件中可用,比如:

//go:wasmexport add
func add(a, b int32) int32 { return a + b }

这样,Wasm模块将具有一个名为add的导出函数,可以从主机调用。

这是如何实现的呢?Cherry告诉我们这是通过构建一种名为WASI Reactor的Wasm模块来实现的。WASI Reactor是一种持续运行的WebAssembly模块,可以多次调用以响应事件或请求。与在主函数完成后终止的“命令”模块不同,reactor实例在初始化后保持活动状态,其导出保持可访问状态。

在Go 1.24中,要构建一个WASI reactor需要使用下面命令:

$GOOS=wasip1 GOARCH=wasm go build -buildmode=c-shared -o reactor.wasm

该构建命令指示链接器不生成_start函数(wasm命令模块的入口点),而是生成_initialize函数(执行运行时和包初始化)以及任何导出的函数及其依赖项。_initialize函数必须在任何其他导出函数之前调用。而main函数不会自动调用。

go:wasmexport指示符和reactor构建模式允许通过调用基于Go的Wasm代码来扩展应用程序。这对于采用Wasm作为具有明确定义接口的插件或扩展机制的应用程序特别有价值。通过导出Go函数,应用程序可以利用Go Wasm模块提供功能,而无需重新编译整个应用程序。此外,构建为reactor可确保可以多次调用导出的函数而无需重新初始化,使其适用于长时间运行的应用程序或服务。

次卧,Go 1.24还放宽了对可用于go:wasmimport函数的输入和结果参数类型的限制。例如,可以传递bool、string、指向int32的指针或指向嵌入structs.HostLayout并包含受支持字段类型的结构体的指针,这使得Go Wasm应用程序可以用更自然的方式编写,并消除了不必要的类型转换。

不过,go:wasmexport当前也有局限性,首先,Wasm 是单线程架构,没有并行性。go:wasmexport标识的函数可以生成新的goroutine。但是,如果函数创建了后台goroutine,则当go:wasmexport指示的函数返回时,它将不会继续执行,直到回调到基于Go的Wasm模块。

另外,尽管Go 1.24中放宽了一些类型限制,但对于可与go:wasmimport和go:wasmexport函数一起使用的类型仍然存在限制。比如由于客户端的64位体系结构和主机的32位体系结构之间的不匹配,我们无法传递内存中的指针。例如,go:wasmimport指示的函数不能采用指向包含指针类型字段的结构体的指针。

但不可否认的是go:wasmexport的支持,让Go更稳固了自己成为主流wasm开发语言之一的位置,虽然还有各种不足。近期Docker之父的初创公司Dagger就发博客宣称使用了Go+WebAssembly重写了其Dagger Cloud的前端

6. 小结

Go 1.24的发布,标志着Go语言在保持其核心理念——简洁与兼容性的同时,进入了一个新的发展阶段。这个版本没有在语法上大刀阔斧,而是将重心放在了底层性能优化、工具链完善和新兴技术布局上,展现出Go团队务实且具有前瞻性的发展策略。同时,Go 1.24也可以看成是一个承上启下的版本。它既巩固了Go语言在性能和工具链方面的优势,又为未来的发展方向做出了积极的布局。Go语言正以稳健的步伐,朝着更高效、更安全、更具适应性的方向迈进。我们可以期待,在未来的版本中,Go将继续在云原生计算、WebAssembly、AI应用等领域发挥更大的作用,为开发者带来更多的惊喜。

借此文章插播一条国内Go社区的news!

近期GoCN社区发文“Farewell Go,Hello AI:是时候说再见了”和所有国内Go开发人员分享了“GoCN社区将正式转型升级为ThinkInAI社区”,全面拥抱AI的决定!这也意味国内最大Go技术社区的退出,最大Go技术大会GopherChina的正式落幕!除了AI是热门赛道这一原因之外,文章也给出了Go技术分享遇到瓶颈的说法:

不过就像文中所说的“这是任何技术发展到成熟阶段的必然现象”,在评论中一些Gopher也提到:一个技术不再被更多讨论是成熟的标志

这其实与我在《2024年Go语言盘点:排名历史新高,团队新老传承》一文中表达的Go演进趋势不谋而合!Go真的进入了成熟期了!

GoCn不在了,但go在国内的传播和使用依然会继续。请继续关注诸如Gopher Daily、我的公众号以及国内其他诸如像鸟窝老师的blog以及公众号,了解Go的最新动态以及技术理解。

最后感谢AstaXie(谢孟军)对国内Go社区发展所做出的卓越贡献,我也因有幸多次参与GopherChina以及会上分享而感到无比自豪。


Gopher部落知识星球在2025年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。并且,2025年将在星球首发“Go陷阱与缺陷”和“Go原理课”专栏!此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格6$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats