标签 Windows 下的文章

十分钟入门Go语言

本文永久链接 – https://tonybai.com/2023/02/23/learn-go-in-10-min

本文旨在带大家快速入门Go语言,期望小伙伴们在花费十分钟左右通读全文后能对Go语言有一个初步的认知,为后续进一步深入学习Go奠定基础。

本文假设你完全没有接触过Go,你可能是一名精通其他编程语言的程序员,也可能是毫无编程经验、刚刚想转行为码农的热血青年。

编程简介

编程就是生产可在计算机上执行的程序的过程(如下图)。在这个过程中,程序员是“劳动力”,编程语言是工具,可执行的程序是生产结果。而Go语言就是程序员在编程生产过程中使用的一种优秀生产工具。

作为“劳动力”的程序员在这个过程中要做的就是使用某种编程语言作为生产工具,将事先设计好的执行逻辑组织和表达出来,这与一个作家将其大脑中设计好的故事情节用人类语言组织和书写在纸上的过程颇为类似(如下图)。

通过这个类比来看,学习一门编程语言,就好比学习一门人类语言,其词汇和语法将是我们的主要学习内容,本文就将围绕Go语言的主要“词汇”和语法形式进行快速说明。

Go简介

Go语言是由Google公司的三位大神级程序员Robert Griesemer、Rob Pike和Ken Thompson在2007年共同开发的一种新的后端编程语言,2009年,Go语言宣布开源。

Go语言的特点是简单易学、静态类型、编译速度快,运行效率高,代码简洁,并且原生支持并发编程。它还支持自动内存管理,可以让开发者更加专注于编程本身,而不用担心内存泄漏的问题。此外,Go语言还支持多核处理器,可以更好地利用多核处理器的优势,提高程序的运行效率。

经过十多年的发展,Go语言现在已经成为一种流行的编程语言,它可以用于开发各种应用程序,包括Web应用、网络服务、系统管理工具、移动应用、游戏开发、数据库管理等。Go语言常用于构建大型分布式系统,以及构建高性能的服务器端应用程序。Go为当前的云原生计算时代开发了一批“杀手级”应用,包括Docker、Kubernetes、Prometheus、InfluxDB、Cilium等。

安装Go

Go是静态语言,需要先编译,再执行,因此在开发Go程序之前,我们首先需要安装Go编译器以及相关工具链。安装的步骤很简单:

  • Go官网下载最新版本的Go语言安装包 – https://go.dev/dl/
  • 解压安装包,并将其复制到您想要安装的位置,例如:/usr/local/go;如果是Windows、MacOS平台,也可以下载图形化安装的安装包;
  • 设置环境变量,将Go语言的安装路径添加到PATH变量中;
  • 打开终端,输入go version,检查Go语言是否安装成功。如输出类似下面的内容,则表明安装成功!
$go version
go version go1.20 darwin/amd64

注:位于中国大陆的开发者们还需要一个额外的设置:export GOPROXY=’https://goproxy.cn’或将这个设置置于shell配置文件(比如.bashrc)中并使之生效。

第一个Go程序:Hello World

建立一个新目录,并在其中创建新文件helloworld.go,用任意编辑器打开helloworld.go,输入下面Go源码:

//helloworld.go

package main

import "fmt"

func main() {
    fmt.Println("Hello, World!")
}

Go支持直接运行某个源文件:

$go run helloworld.go
Hello, World!

但通常我们会先编译这个源文件(helloworld.go),生成可执行的二进制程序(./helloworld),然后再运行它:

$go build -o helloworld helloworld.go
$./helloworld
Hello, World!

Go包(package)

Go包是Go语言中的一种封装技术,它可以将一组Go语言源文件组织成一个可重用的单元,以便在其他Go程序中使用。同属于一个Go包的所有源文件放在一个目录下,并且按惯例该目录的名字与包名相同。以Go标准库的io包为例,其包内的源文件列表如下:

// $GOROOT/src/io目录下的文件列表:
io.go
multi.go
pipe.go

Go包也是Go编译的基本单元,Go编译器可以将包编译为可执行文件(如何该包为main包,且包含main函数实现),也可以编译为可重用的库文件(.a)。

包声明

Go包的声明通常是在每个Go源文件的开头,使用关键字package进行声明,例如:

// mypackage.go
package mypackage

... ...

package的名字按惯例通常为全小写的单个单词或缩略词,比如io、net、os、fmt、strconv、bytes等。

导入Go包

如果要复用已有的Go包,我们需要在源码中导入该包。要导入Go包,可以使用import关键字,例如:

import "fmt"                    // 导入标准库的fmt包

import "github.com/spf13/pflag" // 导入spf13开源的pflag包

import _ "net/http/pprof"       // 导入标准库net/http/pprof包,
                                // 但不显式使用该包中的类型、变量、函数等标识符

import myfmt "fmt"              // 将导入的包重命名为myfmt

Go模块

Go模块(module)是Go语言在1.11版本中引入的新特性,Go module是一组相关的Go package的集合,这个包集合被当做一个独立的单元进行统一版本管理。Go module这种新的依赖管理机制可以让开发者更轻松地管理Go语言项目的依赖关系,并且可以更好地支持多版本的依赖管理。在具有实用价值的Go项目中,我们都会使用Go module进行依赖管理。Go module有版本之分,Go module的版本依赖关系是建立在对语义版本(semver)严格遵守的前提下的。

Go使用go.mod文件来精确记录依赖关系要求,下面是go.mod中依赖关系的操作方法:

$go mod init demo // 创建一个module root为demo的go.mod
$go mod init github.com/bigwhite/mymodule // 创建一个module root为github.com/bigwhite/mymodule的go.mod

$go get github.com/bigwhite/foo@latest  // 向go.mod中添加一个依赖包github.com/bigwhite/foo的最新版本
$go get github.com/bigwhite/foo         // 与上面命令等价
$go get github.com/bigwhite/foo@v1.2.3  // 显式指定要获取v1.2.3版本

$go mod tidy   // 自动添加缺失的依赖包和清理不用的依赖包
$go mod verify // 确认所有依赖都有效

Go最小项目结构

Go官方并没有规定Go项目的标准结构布局,下面是Go核心团队技术负责人Russ Cox推荐的Go最小项目结构:

// 在Go项目仓库根路径下

- go.mod
- LICENSE
- README
- xx.go
- yy.go
... ...

// 在Go项目仓库根路径下

- go.mod
- LICENSE
- README
- package1/
    - package1.go
- package2/
    - package2.go
... ...

变量

Go语言有两种变量声明方式:

  • 使用var关键字

使用var关键字进行声明的方式适合所有场合。

var a int     // 声明一个int型变量a,初值为0
var b int = 5 // 声明一个int型变量b,初值为5
var c = 6     // Go会根据右值自动为变量c的赋予默认类型,默认的整型为int

var (         // 我们可以将变量声明统一放置在一个var块中,这与上面的声明方式等价
    a int
    b int = 5
    c = 6
)

注:Go变量声明采用变量在前,类型在后的方式,这与C、C++、Java等静态编程语言有较大不同。

  • 使用短声明方式声明变量
a := 5       // 声明一个变量a,Go会根据右值自动为变量a的赋予默认类型,默认的整型为int
s := "hello" // 声明一个变量s,Go会根据右值自动为变量s的赋予默认类型,默认的字符串类型为string

注:这种声明方式仅限于在函数或方法内使用,不能用于声明包级变量或全局变量。

常量

Go语言的常量使用const关键字进行声明:

const a int       // 声明一个int型常量a,其值为0
const b int = 5   // 声明一个int型常量b,其值为5
const c = 6       // 声明一个常量c,Go会根据右值自动为常量c的赋予默认类型,默认的整型为int
const s = "hello" // 声明一个常量s,Go会根据右值自动为常量s的赋予默认类型,默认的字符串类型为string

const (           // 我们可以将常量声明统一放置在一个const块中,这与上面的声明方式等价
    a int
    b int = 5
    c = 6
    s = "hello"
)

类型

Go原生内置了多种基本类型与复合类型。

基本类型

Go原生支持的基本类型包括布尔型、数值类型(整型、浮点型、复数类型)、字符串类型,下面是一些示例:

bool  // 布尔类型,默认值false

uint     // 架构相关的无符号整型,64位平台上其长度为8字节
int      // 架构相关的有符号整型,64位平台上其长度为8字节
uintptr  // 架构相关的用于表示指针值的类型,它是一个无符号的整数,大到足以存储一个任意类型的指针的值

uint8    // 架构无关的8位无符号整型
uint16   // 架构无关的16位无符号整型
uint32   // 架构无关的32位无符号整型
uint64   // 架构无关的64位无符号整型

int8     // 架构无关的8位有符号整型
int16    // 架构无关的16位有符号整型
int32    // 架构无关的32位有符号整型
int64    // 架构无关的64位有符号整型

byte     // uint8类型的别名
rune     // int32类型的别名,用于表示一个unicode字符(码点)

float32     // 单精度浮点类型,满足IEEE-754规范
float64     // 双精度浮点类型,满足IEEE-754规范

complex64   // 复数类型,其实部和虚部均为float32浮点类型
complex128  // 复数类型,其实部和虚部均为float64浮点类型

string      // 字符串类型,默认值为""

我们可以使用预定义函数complex来构造复数类型,比如:complex(1.0, -1.4)构造的复数为1 – 1.4i。

复合类型

Go原生支持的复合类型包括数组(array)、切片(slice)、结构体(struct)、指针(pointer)、函数(function)、接口(interface)、map、channel。

数组类型

数组类型是一组同构类型元素组成的连续体,它具有固定的长度(length),不能动态伸缩:

[8]int      // 一个元素类型为int、长度为16的数组类型
[32]byte    // 一个元素类型为byte、长度为32的数组类型
[2]string   // 一个元素类型为string、长度为2的数组类型
[N]T        // 一个元素类型为T、长度为N的数组类型

通过预定义函数len可以得到数组的长度:

var a = [8]int{11, 12, 13, 14, 15, 16, 17, 18}
println(len(a)) // 8

通过数组下标(从0开始)可以直接访问到数组中的任意元素:

println(a[0]) // 11
println(a[2]) // 13
println(a[7]) // 18

Go支持声明多维数组,即数组的元素类型依然为数组类型:

[2][3][5]float64  // 一个多维数组类型,等价于[2]([3]([5]float64))

切片类型

切片类型与数组类型类似,也是同构类型元素的连续体。不同的是切片类型的长度可变,我们在声明切片类型时无需传入长度属性:

[]int       // 一个元素类型为int的切片类型
[]string    // 一个元素类型为string的切片类型
[]T         // 一个元素类型为T的切片类型
[][][]float64 // 多维切片类型,等价于[]([]([]float64))

通过预定义函数len可以得到切片的当前长度:

var sl = []int{11, 12} // 一个元素类型为int的切片,其长度(len)为2, 其值为[11 12]
println(len(sl)) // 2

切片还有一个属性,那就是容量,通过预定义函数cap可以获得其容量值:

println(cap(sl)) // 2

和数组不同,切片可以动态伸缩,Go会根据元素的数量动态对切片容量进行扩展。我们可以通过append函数向切片追加元素:

sl = append(sl, 13)     // 向sl中追加新元素,操作后sl为[11 12 13]
sl = append(sl, 14)     // 向sl中追加新元素,操作后sl为[11 12 13 14]
sl = append(sl, 15)     // 向sl中追加新元素,操作后sl为[11 12 13 14 15]
println(len(sl), cap(sl)) // 5 8 追加后切片容量自动扩展为8

和数组一样,切片也是使用下标直接访问其中的元素:

println(sl[0]) // 11
println(sl[2]) // 13
println(sl[4]) // 15

结构体类型

Go的结构体类型是一种异构类型字段的聚合体,它提供了一种通用的、对实体对象进行聚合抽象的能力。下面是一个包含三个字段的结构体类型:

struct {
    name string
    age  int
    gender string
}

我们通常会给这样的一个结构体类型起一个名字,比如下面的Person:

type Person struct {
    name string
    age  int
    gender string
}

下面声明了一个Person类型的变量:

var p = Person {
    name: "tony bai",
    age: 20,
    gender: "male",
}

我们可以通过p.FieldName来访问结构体中的字段:

println(p.name) // tony bai
p.age = 21

结构体类型T的定义中可以包含类型为*T的字段成员,但不能递归包含T类型的字段成员:

type T struct {
    ... ...
    p *T    // ok
    t T     // 错误:递归定义
}

Go结构体亦可以在定义中嵌入其他类型:

type F struct {
    ... ...
}

type MyInt int

type T struct {
    MyInt
    F
    ... ...
}

嵌入类型的名字将作为字段名:

var t = T {
    MyInt: 5,
    F: F {
        ... ...
    },
}

println(t.MyInt) // 5

Go支持不包含任何字段的空结构体:

struct{}
type Empty struct{}        // 一个空结构体类型

空结构体类型的大小为0,这在很多场景下很有用(省去了内存分配的开销):

var t = Empty{}
println(unsafe.Sizeof(t)) // 0

指针类型

int类型对应的指针类型为*int,推而广之T类型对应的指针类型为*T。和非指针类型不同,指针类型变量存储的是内存单元的地址,*T指针类型变量的大小与T类型大小无关,而是和系统地址的表示长度有关。

*int     // 一个int指针类型
*[4]byte // 一个[4]byte数组指针类型

var a = 6
var p *T // 声明一个T类型指针变量p,默认值为nil
p = &a   // 用变量a的内存地址给指针变量p赋值
*p = 7   // 指针解引用,通过指针p将变量a的值由6改为7

n := new(int)  // 预定义函数返回一个*int类型指针
arr := new([4]int)  // 使用预定义函数new分配一个[4]int数组并返回一个*[4]int类型指针

map类型

map是Go语言提供的一种抽象数据类型,它表示一组无序的键值对,下面定义了一组map类型:

map[string]int                // 一个key类型为string,value类型为int的map类型
map[*T]struct{ x, y float64 } // 一个key类型为*T,value类型为struct{ x, y float64 }的map类型
map[string]interface{}        // 一个key类型为string,value类型为interface{}的map类型

我们可以用map字面量或make来创建一个map类型实例:

var m = map[string]int{}      // 声明一个map[string]int类型变量并初始化
var m1 = make(map[string]int) // 与上面的声明等价
var m2 = make(map[string]int, 100) // 声明一个map[string]int类型变量并初始化,其初始容量建议为100

操作map变量的方法也很简单:

m["key1"] = 5  // 添加/设置一个键值对
v, ok := m["key1"]  // 获取“key1”这个键的值,如果存在,则其值存储在v中,ok为true
delete(m, "key1") // 从m这个map中删除“key1”这个键以及其对应的值

其他类型

函数、接口、channel类型在后面有详细说明。

自定义类型

使用type关键字可以实现自定义类型:

type T1 int         // 定义一个新类型T1,其底层类型(underlying type)为int
type T2 string      // 定义一个新类型T2,其底层类型为string
type T3 struct{     // 定义一个新类型T3,其底层类型为一个结构体类型
    x, y int
    z string
}
type T4 []float64   // 定义一个新类型T4,其底层类型为[]float64切片类型
type T5 T4          // 定义一个新类型T5,其底层类型为[]float64切片类型

Go也支持为类型定义别名(alias),其形式如下;

type T1 = int       // 定义int的类型别名为T1,T1与int等价
type T2 = string    // 定义string的类型别名为T2,T2与string等价
type T3 = T2        // 定义T的类型别名为T3,T3与T2等价,也与string等价

类型转换

Go不支持隐式自动转型,如果要进行类型转换操作,我们必须显式进行,即便两个类型的底层类型相同也需如此:

type T1 int
type T2 int
var t1 T1
var n int = 5
t1 = T1(n)      // 显式将int类型变量转换为T1类型
var t2 T2
t2 = T2(t1)     // 显式将T1类型变量转换为T2类型

Go很多原生类型支持相互转换:

// 数值类型的相互转换

var a int16 = 16
b := int32(a)
c := uint16(a)
f := float64(a)

// 切片与数组的转换(Go 1.17版本及后续版本支持)

var a [3]int = [3]int([]int{1,2,3}) // 切片转换为数组
var pa *[3]int = (*[3]int)([]int{1,2,3}) // 切片转换为数组指针
sl := a[:] // 数组转换为切片

// 字符串与切片的相互转换

var sl = []byte{'h', 'e','l', 'l', 'o'}
var s = string(sl) // s为hello
var sl1 = []byte(s) // sl1为['h' 'e' 'l' 'l' 'o']
string([]rune{0x767d, 0x9d6c, 0x7fd4})  // []rune切片到string的转换

控制语句

Go提供了常见的控制语句,包括条件分支(if)、循环语句(for)和选择分支语句(switch)。

条件分支语句

// if ...

if a == 1 {
    ... ...
}

// if - else if - else

if a == 1 {

} else if b == 2 {

} else {

}

// 带有条件语句自用变量
if a := 1; a != 0 {

}

// if语句嵌套

if a == 1 {
    if b == 2 {

    } else if c == 3 {

    } else {

    }
}

循环语句

// 经典循环

for i := 0; i < 10; i++ {
    ...
}

// 模拟while ... do

for i < 10 {

}

// 无限循环

for {

}

// for range

var s = "hello"
for i, c := range s {

}

var sl = []int{... ...}
for i, v := range sl {

}

var m = map[string]int{}
for k, v := range m {

}

var c = make(chan int, 100)
for v := range c {

}

选择分支语句

var n = 5
switch n {
    case 0, 1, 2, 3:
        s1()
    case 4, 5, 6, 7:
        s2()
    default: // 默认分支
        s3()
}

switch n {
    case 0, 1:
        fallthrough  // 显式告知执行下面分支的动作
    case 2, 3:
        s1()
    case 4, 5, 6, 7:
        s2()
    default:
        s3()
}

switch x := f(); {
    case x < 0:
        return -x
    default:
        return x
}

switch {
    case x < y:
        f1()
    case x < z:
        f2()
    case x == 4:
        f3()
}

函数

Go使用func关键字来声明一个函数:

func greet(name string) string {
    return fmt.Sprintf("Hello %s", name)
}

函数由函数名、可选的参数列表和返回值列表组成。Go函数支持返回多个返回值,并且我们通常将表示错误值的返回类型放在返回值列表的最后面:

func Atoi(s string) (int, error) {
    ... ...
    return n, nil
}

在Go中函数是一等公民,因此函数自身也可以作为参数或返回值:

func MultiplyN(n int) func(x int) int {
  return func(x int) int {
    return x * n
  }
}

像上面MultiplyN函数中定义的匿名函数func(x int) int,它的实现中引用了它的外围函数MultiplyN的参数n,这样的匿名函数也被称为闭包(closure)

说到函数,我们就不能不提defer。在某函数F调用的前面加上defer,该函数F的执行将被“延后”至其调用者A结束之后:

func F() {
    fmt.Println("call F")
}

func A() {
    fmt.Println("call A")
    defer F()
    fmt.Println("exit A")
}

func main() {
    A()
}

上面示例输出:

call A
exit A
call F

在一个函数中可以多次使用defer:

func B() {
    defer F()
    defer G()
    defer H()
}

被defer修饰的函数将按照“先入后出”的顺序在B函数结束后被调用,上面B函数执行后将输出:

call H
call G
call F

方法

方法是带有receiver的函数。下面是Point类型的一个方法Length:

type Point struct {
    x, y float64
}

func (p Point) Length() float64 {
    return math.Sqrt(p.x * p.x + p.y * p.y)
}

而在func关键字与函数名之间的部分便是receiver。这个receiver也是Length方法与Point类型之间纽带。我们可以通过Point类型变量来调用Length方法:

var p = Point{3,4}
fmt.Println(p.Length())

亦可以将方法当作函数来用:

var p = Point{3,4}
fmt.Println(Point.Length(p)) // 这种用法也被称为方法表达式(method expression)

接口

接口是一组方法的集合,它代表一个“契约”,下面是一个由三个方法组成的方法集合的接口类型:

type MyInterface interface {
    M1(int) int
    M2(string) error
    M3()
}

Go推崇面向接口编程,因为通过接口我们可以很容易构建低耦合的应用。

Go还支持在接口类型(如I)中嵌套其他接口类型(如io.Writer、sync.Locker),其结果就是新接口类型I的方法集合为其方法集合与嵌入的接口类型Writer和Locker的方法集合的并集:

type I interface { // 一个嵌入了其他接口类型的接口类型
   io.Writer
   sync.Locker
}

接口实现

如果一个类型T实现了某个接口类型MyInterface方法集合中的所有方法,那么我们说该类型T实现了接口MyInterface,于是T类型的变量t可以赋值给接口类型MyInterface的变量i,此时变量i的动态类型为T:

var t T
var i MyInterface = t // ok

通过上述变量i可以调用T的方法:

i.M1(5)
i.M2("demo")
i.M3()

方法集合为空的接口类型interface{}被称为“空接口类型”,空白的“契约”意味着任何类型都实现了该空接口类型,即任何变量都可以赋值给interface{}类型的变量:

var i interface{} = 5 // ok
i = "demo"            // ok
i = T{}               // ok
i = &T{}              // ok
i = []T{}             // ok

注:Go 1.18中引入的新预定义标识符any与interface{}是等价类型。

接口的类型断言

Go支持通过类型断言从接口变量中提取其动态类型的值:

v, ok := i.(T) // 类型断言

如果接口变量i的动态类型确为T,那么v将被赋予该动态类型的值,ok为true;否则,v为T类型的零值,ok为false。

类型断言也支持下面这种语法形式:

v := i.(T)

但在这种形式下,一旦接口变量i之前被赋予的值不是T类型的值,那么这个语句将抛出panic。

接口类型的type switch

“type switch”这是一种特殊的switch语句用法,仅用于接口类型变量:

func main() {
    var x interface{} = 13
    switch x.(type) {
    case nil:
        println("x is nil")
    case int:
        println("the type of x is int") // 执行这一分支case
    case string:
        println("the type of x is string")
    case bool:
        println("the type of x is string")
    default:
        println("don't support the type")
    }
}

switch关键字后面跟着的表达式为x.(type),这种表达式形式是switch语句专有的,而且也只能在switch语句中使用。这个表达式中的x必须是一个接口类型变量,表达式的求值结果是这个接口类型变量对应的动态类型。

上述例子中switch后面的表达式也可由x.(type)换成了v := x.(type)。v中将存储变量x的动态类型对应的值信息:

var x interface{} = 13
switch x.(type) {
    case nil:
        println("v is nil")
    case int:
        println("the type of v is int, v =", v) // 执行这一分支case,v = 13
    ... ...
}

泛型

Go从1.18版本开始支持泛型。Go泛型的基本语法是类型参数(type parameter),Go泛型方案的实质是对类型参数的支持,包括:

  • 泛型函数(generic function):带有类型参数的函数;
  • 泛型类型(generic type):带有类型参数的自定义类型;
  • 泛型方法(generic method):泛型类型的方法。

泛型函数

下面是一个泛型函数max的定义:

type ordered interface {
    ~int | ~int8 | ~int16 | ~int32 | ~int64 |
        ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
        ~float32 | ~float64 |
        ~string
}

func max[T ordered](sl []T) T {
    ... ...
}

与普通Go函数相比,max函数在函数名称与函数参数列表之间多了一段由方括号括起的代码:[T ordered];max参数列表中的参数类型以及返回值列表中的返回值类型都是T,而不是某个具体的类型。

max函数中多出的[T ordered]就是Go泛型的类型参数列表(type parameters list),示例中这个列表中仅有一个类型参数T,ordered为类型参数的类型约束(type constraint)。

我们可以像普通函数一样调用泛型函数,我们可以显式指定类型实参:

var m int = max[int]([]int{1, 2, -4, -6, 7, 0})  // 显式指定类型实参为int
fmt.Println(m) // 输出:7

Go也支持自动推断出类型实参:

var m int = max([]int{1, 2, -4, -6, 7, 0}) // 自动推断T为int
fmt.Println(m) // 输出:7

泛型类型

所谓泛型类型,就是在类型声明中带有类型参数的Go类型:

type Set[T comparable] map[T]string

type element[T any] struct {
    next *element[T]
    val  T
}

type Map[K, V any] struct {
  root    *node[K, V]
  compare func(K, K) int
}

以泛型类型Set为例,其使用方法如下:

var s = Set[string]{}
s["key1"] = "value1"
println(s["key1"]) // value1

泛型方法

Go类型可以拥有自己的方法(method),泛型类型也不例外,为泛型类型定义的方法称为泛型方法(generic method)。

type Set[T comparable] map[T]string

func (s Set[T]) Insert(key T, val string) {
    s[key] = val
}

func (s Set[T]) Get(key T) (string, error) {
    val, ok := s[key]
    if !ok {
        return "", errors.New("not found")
    }
    return val, nil
}

func main() {
    var s = Set[string]{
        "key": "value1",
    }
    s.Insert("key2", "value2")
    v, err := s.Get("key2")
    fmt.Println(v, err) // value2 <nil>
}

类型约束

Go通过类型约束(constraint)对泛型函数的类型参数以及泛型函数中的实现代码设置限制。Go使用扩展语法后的interface类型来定义约束。

下面是使用常规接口类型作为约束的例子:

type Stringer interface {
    String() string
}

func Stringify[T fmt.Stringer](s []T) (ret []string) { // 通过Stringer约束了T的实参只能是实现了Stringer接口的类型
    for _, v := range s {
        ret = append(ret, v.String())
    }
    return ret
}

Go接口类型声明语法做了扩展,支持在接口类型中放入类型元素(type element)信息:

type ordered interface {
    ~int | ~int8 | ~int16 | ~int32 | ~int64 |
        ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
        ~float32 | ~float64 | ~string
}

func Less[T ordered](a, b T) bool {
    return a < b
}

type Person struct {
    name string
    age  int
}

func main() {
    println(Less(1, 2)) // true
    println(Less(Person{"tony", 11}, Person{"tom", 23})) // Person不满足ordered的约束,会导致编译错误
}

并发

Go语言原生支持并发,Go并没有使用操作系统线程作为并发的基本执行单元,而是实现了goroutine这一由Go运行时(runtime)负责调度的、轻量的用户级线程,为并发程序设计提供原生支持。

goroutine

通过go关键字+函数/方法的方式,我们便可以创建一个goroutine。创建后,新goroutine将拥有独立的代码执行流,并与创建它的goroutine一起被Go运行时调度。

go fmt.Println("I am a goroutine")

// $GOROOT/src/net/http/server.go
c := srv.newConn(rw)
go c.serve(connCtx)

goroutine的执行函数返回后,goroutine便退出。如果是主goroutine(执行main.main的goroutine)退出,那么整个Go应用进程将会退出,程序生命周期结束。

channel

Go提供了原生的用于goroutine之间通信的机制channel,channel的定义与操作方式如下:

// channel类型
chan T          // 一个元素类型为T的channel类型
chan<- float64  // 一个元素类型为float64的只发送channel类型
<-chan int      // 一个元素类型为int的只接收channel类型

var c chan int             // 声明一个元素类型为int的channel类型的变量,初值为nil
c1 := make(chan int)       // 声明一个元素类型为int的无缓冲的channel类型的变量
c2 := make(chan int, 100)  // 声明一个元素类型为int的带缓冲的channel类型的变量,缓冲大小为100
close(c)                   // 关闭一个channel

下面是两个goroutine基于channel通信的例子:

func main() {
    var c = make(chan int)
    go func(a, b int) {
        c <- a + b
    }(3,4)
    println(<-c) // 7
}

当涉及同时对多个channel进行操作时,Go提供了select机制。通过select,我们可以同时在多个channel上进行发送/接收操作:

select {
case x := <-ch1:     // 从channel ch1接收数据
  ... ...

case y, ok := <-ch2: // 从channel ch2接收数据,并根据ok值判断ch2是否已经关闭
  ... ...

case ch3 <- z:       // 将z值发送到channel ch3中:
  ... ...

default:             // 当上面case中的channel通信均无法实施时,执行该默认分支
}

错误处理

Go提供了简单的、基于错误值比较的错误处理机制,这种机制让每个开发人员必须显式地去关注和处理每个错误。

error类型

Go用error这个接口类型表示错误,并且按惯例,我们通常将error类型返回值放在返回值列表的末尾。

// $GOROOT/src/builtin/builtin.go
type error interface {
    Error() string
}

任何实现了error的Error方法的类型的实例,都可以作为错误值赋值给error接口变量。

Go提供了便捷的构造错误值的方法:

err := errors.New("your first demo error")
errWithCtx = fmt.Errorf("index %d is out of bounds", i)

错误处理形式

Go最常见的错误处理形式如下:

err := doSomething()
if err != nil {
    ... ...
    return err
}

通常我们会定义一些“哨兵”错误值来辅助错误处理方检视(inspect)错误值并做出错误处理分支的决策:

// $GOROOT/src/bufio/bufio.go
var (
    ErrInvalidUnreadByte = errors.New("bufio: invalid use of UnreadByte")
    ErrInvalidUnreadRune = errors.New("bufio: invalid use of UnreadRune")
    ErrBufferFull        = errors.New("bufio: buffer full")
    ErrNegativeCount     = errors.New("bufio: negative count")
)

func doSomething() {
    ... ...
    data, err := b.Peek(1)
    if err != nil {
        switch err {
        case bufio.ErrNegativeCount:
            // ... ...
            return
        case bufio.ErrBufferFull:
            // ... ...
            return
        case bufio.ErrInvalidUnreadByte:
            // ... ...
            return
        default:
            // ... ...
            return
        }
    }
    ... ...
}

Is和As

从Go 1.13版本开始,标准库errors包提供了Is函数用于错误处理方对错误值的检视。Is函数类似于把一个error类型变量与“哨兵”错误值进行比较:

// 类似 if err == ErrOutOfBounds{ … }
if errors.Is(err, ErrOutOfBounds) {
    // 越界的错误处理
}

不同的是,如果error类型变量的底层错误值是一个包装错误(Wrapped Error),errors.Is方法会沿着该包装错误所在错误链(Error Chain),与链上所有被包装的错误(Wrapped Error)进行比较,直至找到一个匹配的错误为止。

标准库errors包还提供了As函数给错误处理方检视错误值。As函数类似于通过类型断言判断一个error类型变量是否为特定的自定义错误类型:

// 类似 if e, ok := err.(*MyError); ok { … }
var e *MyError
if errors.As(err, &e) {
    // 如果err类型为*MyError,变量e将被设置为对应的错误值
}

如果error类型变量的动态错误值是一个包装错误,errors.As函数会沿着该包装错误所在错误链,与链上所有被包装的错误的类型进行比较,直至找到一个匹配的错误类型,就像errors.Is函数那样。

小结

读到这里,你已经对Go语言有了入门级的认知,但要想成为一名Gopher(对Go开发人员的称呼),还需要更进一步的学习与实践。我的极客时间专栏《Go语言第一课》是一个很好的起点,欢迎大家订阅学习^_^。

BTW,本文部分内容由ChatGPT生成!你能猜到是哪些部分吗^_^。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go程序员拥抱C语言简明指南

本文永久链接 – https://tonybai.com/2022/05/16/the-short-guide-of-embracing-c-lang-for-gopher

本文是为于航老师的极客时间专栏《深入C语言和程序运行原理》写的加餐文章《Tony Bai:Go程序员拥抱C语言简明指南》,这里分享给大家,尤其是那些想学习C语言的Gopher们。


你好,我是Tony Bai。

也许有同学对我比较熟悉,看过我在极客时间上的专栏《Tony Bai ·Go语言第一课》,或者是关注了我的博客。那么,作为一个Gopher,我怎么跑到这个C语言专栏做分享了呢?其实,在学习Go语言并成为一名Go程序员之前,我也曾是一名地地道道的C语言程序员。

大学毕业后,我就开始从事C语言后端服务开发工作,在电信增值领域摸爬滚打了十多年。不信的话,你可以去翻翻我的博客,数一数我发的C语言相关文章是不是比关于Go的还多。一直到近几年,我才将工作中的主力语言从C切换到了Go。不过这并不是C语言的问题,主要原因是我转换赛道了。我目前在智能网联汽车领域从事面向云原生平台的先行研发,而在云原生方面,新生代的Go语言有着更好的生态。

不过作为资深C程序员,C语言已经在我身上打下了深深的烙印。虽然Go是我现在工作中的主力语言,但我仍然会每天阅读一些C开源项目的源码,每周还会写下数百行的C代码。在一些工作场景中,特别是在我参与先行研发一些车端中间件时,C语言有着资源占用小、性能高的优势,这一点是Go目前还无法匹敌的。

正因为我有着C程序员和Go程序员的双重身份,接到这个加餐邀请时,我就想到了一个很适合聊的话题——在 Gopher(泛指Go程序员)与C语言之间“牵线搭桥”。在这门课的评论区里,我看到一些同学说,“正是因为学了Go,所以我想学好C”。如果你也对Go比较熟悉,那么恭喜你,这篇加餐简直是为你量身定制的:一个熟悉Go的程序员在学习C时需要注意的问题,还有可能会遇到的坑,我都替你总结好了。

当然,我知道还有一些对Go了解不多的同学,看到这里也别急着退出去。因为C和Go这两门语言的比较,本身就是一个很有意思的话题。今天的加餐,会涉及这两门语言的异同点,通过对C与Go语言特性的比较,你就能更好地理解“C 语言为什么设计成现在这样”。

一. C语言是现代IT工业的根基

在比较C和Go之前,先说说我推荐Gopher学C的最重要原因吧:用一句话总结,C语言在IT工业中的根基地位,是Go和其他语言目前都无法动摇的

C语言是由美国贝尔实验室的丹尼斯·里奇(Dennis Ritchie)以Unix发明人肯·汤普森(Ken Thompson)设计的B语言为基础而创建的高级编程语言。诞生于上个世纪(精确来说是1972年)的它,到今年(2022年)已到了“知天命”的半百年纪。 年纪大、设计久远一直是“C语言过时论”兴起的根源,但如果你相信这一论断,那就大错特错了。下面,我来为你分析下个中缘由。

首先,我们说说C语言本身:C语言一直在演进,从未停下过脚步

虽然C语言之父丹尼斯·里奇不幸于2011年永远地离开了我们,但C语言早已成为ANSI(美国国家标准学会)标准以及ISO/IEC(国际标准化组织和国际电工委员会)标准,因此其演进也早已由标准委员会负责。我们来简单回顾一下C语言标准的演进过程:

  • 1989年,ANSI发布了首个C语言标准,被称为C89,又称ANSI C。次年,ISO和IEC把ANSI C89标准定为C语言的国际标准(ISO/IEC 9899:1990),又称C90,它也是C语言的第一个官方版本;
  • 1999年,ISO和IEC发布了C99标准(ISO/IEC 9899:1999),它是C语言的第二个官方版本;
  • 2011年,ISO和IEC发布了C11标准(ISO/IEC 9899:2011),它是C语言的第三个官方版本;
  • 2018年,ISO和IEC发布了C18标准(ISO/IEC 9899:2018),它是C语言的第四个官方版本。
    目前,ISO/IEC标准化委员会正在致力于C2x标准的改进与制定,预计它会在2023年发布。

其次,时至今日,C语言的流行度仍然非常高

著名编程语言排行榜TIOBE的数据显示,各大编程语言年度平均排名的总位次,C语言多年来高居第一,如下图(图片来自TIOBE)所示:

这说明,无论是在过去还是现在,C语言都是一门被广泛应用的工业级编程语言。

最后,也是最重要的一点是:C语言是现代IT工业的根基,我们说C永远不会退出IT行业舞台也不为过。

如今,无论是普通消费者端的Windows、macOS、Android、苹果iOS,还是服务器端的Linux、Unix等操作系统,亦或是各个工业嵌入式领域的操作系统,其内核实现语言都是C语言。互联网时代所使用的主流Web服务器,比如 Nginx、Apache,以及主流数据库,比如MySQL、Oracle、PostgreSQL等,也都是使用C语言开发的杰作。可以说,现代人类每天都在跟由C语言实现的系统亲密接触,并且已经离不开这些系统了。回到我们程序员的日常,Git、SVN等我们时刻在用的源码版本控制软件也都是由C语言实现的。

可以说,C语言在IT工业中的根基地位,不光Go语言替代不了,C++、Rust等系统编程语言也无法动摇,而且不仅短期如此,长期来看也是如此。

总之,C语言具有紧凑、高效、移植性好、对内存的精细控制等优秀特性,这使得我们在任何时候学习它都不会过时。不过,我在这里推荐Gopher去了解和系统学习C语言,其实还有另一个原因。我们继续往下看。

二. C与Go的相通之处:Gopher拥抱C语言的“先天优势”

众所周知,Go 是在C语言的基础上衍生而来的,二者之间有很多相通之处,因此 Gopher 在学习C语言时是有“先天优势”的。接下来,我们具体看看C和Go的相通之处有哪些。

1. 简单且语法同源

Go语言以简单著称,而作为Go先祖的C语言,入门门槛同样不高:Go有25个关键字,C有32个关键字(C89标准),简洁程度在伯仲之间。C语言曾长期作为高校计算机编程教育的首选编程语言,这与C的简单也不无关系。

和Go不同的是,C语言是一个小内核、大外延的编程语言,其简单主要体现在小内核上了。这个“小内核”包括C基本语法与其标准库,我们可以快速掌握它。但需要注意的是,与Go语言“开箱即用、内容丰富”的标准库不同,C标准库非常小(在C11标准之前甚至连thread库都不包含),所以掌握“小内核”后,在LeetCode平台上刷题是没有任何问题的,但要写出某一领域的工业级生产程序,我们还有很多外延知识技能要学习,比如并发原语、操作系统的系统调用,以及进程间通信等。

C语言的这种简单很容易获得Gopher们的认同感。当年Go语言之父们在设计Go语言时,也是主要借鉴了C语言的语法。当然,这与他们深厚的C语言背景不无关系:肯·汤普森(Ken Thompson)是Unix之父,与丹尼斯·里奇共同设计了C语言;罗博·派克(Rob Pike)是贝尔实验室的资深研究员,参与了Unix系统的演进、Plan9操作系统的开发,还是UTF-8编码的发明人;罗伯特·格瑞史莫(Robert Griesemer)也是用C语言手写Java虚拟机的大神级人物。

Go的第一版编译器就是由肯·汤普森(Ken Thompson)用C语言实现的。并且,Go语言的早期版本中,C代码的比例还不小。以Go语言发布的第一个版本,Go 1.0版本为例,我们通过loccount工具对其进行分析,会得到下面的结果:

$loccount .
all          SLOC=460992  (100.00%) LLOC=193045  in 2746 files
Go           SLOC=256321  (55.60%)  LLOC=109763  in 1983 files
C            SLOC=148001  (32.10%)  LLOC=73458   in 368 files
HTML         SLOC=25080   (5.44%)   LLOC=0       in 57 files
asm          SLOC=10109   (2.19%)   LLOC=0       in 133 files
... ...

这里我们看到,在1.0版本中,C语言代码行数占据了32.10%的份额,这一份额直至Go 1.5版本实现自举后,才下降为不到1%。

我当初对Go“一见钟情”,其中一个主要原因就是Go与C语言的语法同源。相对应地,相信这种同源的语法也会让Gopher们喜欢上C语言。

2. 静态编译且基础范式相同

除了语法同源,C语言与Go语言的另一个相同点是,它们都是静态编译型语言。这意味着它们都有如下的语法特性:

  • 变量与函数都要先声明后才能使用;
  • 所有分配的内存块都要有对应的类型信息,并且在确定其类型信息后才能操作;
  • 源码需要先编译链接后才能运行。

相似的编程逻辑与构建过程,让学习C语言的Gopher可以做到无缝衔接。

除此之外,Go 和C的基础编程范式都是命令式编程(imperative programming),即面向算法过程,由程序员通过编程告诉计算机应采取的动作。然后,计算机按程序指令执行一系列流程,生成特定的结果,就像菜谱指定了厨师做蛋糕时应遵循的一系列步骤一样。

从Go看 C,没有面向对象,没有函数式编程,没有泛型(Go 1.18已加入),满眼都是类型与函数,可以说是相当亲切了。

3. 错误处理机制如出一辙

对于后端编程语言来说,错误处理机制十分重要。如果两种语言的错误处理机制不同,那么这两种语言的代码整体语法风格很可能大不相同。

在C语言中,我们通常用一个类型为整型的函数返回值作为错误状态标识,函数调用者基于值比较的方式,对这一代表错误状态的返回值进行检视。通常,当这个返回值为0时,代表函数调用成功;当这个返回值为其他值时,代表函数调用出现错误。函数调用者需根据该返回值所代表的错误状态,来决定后续执行哪条错误处理路径上的代码。

C语言这种简单的基于错误值比较的错误处理机制,让每个开发人员必须显式地去关注和处理每个错误。经过显式错误处理的代码会更为健壮,也会让开发人员对这些代码更有信心。另外,这些错误就是普通的值,我们不需要额外的语言机制去处理它们,只需利用已有的语言机制,像处理其他普通类型值那样去处理错误就可以了。这让代码更容易调试,我们也更容易针对每个错误处理的决策分支进行测试覆盖。

C语言错误处理机制的这种简单与显式,跟Go语言的设计哲学十分契合,于是Go语言设计者决定继承这种错误处理机制。因此,当Gopher们来到C语言的世界时,无需对自己的错误处理思维做出很大的改变,就可以很容易地适应C语言的风格。

三. 知己知彼,来看看C与Go的差异

虽说 Gopher 学习C语言有“先天优势”,但是不经过脚踏实地的学习与实践就想掌握和精通C语言,也是不可能的。而且,C 和Go还是有很大差异的,Gopher 们只有清楚这些差异,做到“知己知彼”,才能在学习过程中分清轻重,有的放矢。俗话说,“磨刀不误砍柴功”,下面我们就一起看看C与Go有哪些不同。

1. 设计哲学

在人类自然语言学界,有一个很著名的假说——“萨丕尔-沃夫假说”。这个假说的内容是这样的:语言影响或决定人类的思维方式。对我来说,编程语言也不仅仅是一门工具,它还影响着程序员的思维方式。每次开始学习一门新的编程语言时,我都会先了解这门编程语言的设计哲学。

每种编程语言都有自己的设计哲学,即便这门语言的设计者没有将其显式地总结出来,它也真真切切地存在,并影响着这门语言的后续演进,以及这门语言程序员的思维方式。我在《Tony Bai · Go语言第一课》专栏里,将Go语言的设计哲学总结成了5点,分别是简单、显式、组合、并发和面向工程

那么C语言的设计哲学又是什么呢?从表面上看,简单紧凑、性能至上、极致资源、全面移植,这些都可以作为C的设计哲学,但我倾向于一种更有人文气息的说法:满足和相信程序员

在这样的设计哲学下,一方面,C语言提供了几乎所有可以帮助程序员表达自己意图的语法手段,比如宏、指针与指针运算、位操作、pragma指示符、goto语句,以及跳转能力更为强大的longjmp等;另一方面,C语言对程序员的行为并没有做特别严格的限定与约束,C程序员可以利用语言提供的这些语法手段,进行天马行空的发挥:访问硬件、利用指针访问内存中的任一字节、操控任意字节中的每个位(bit)等。总之,C语言假定程序员知道他们在做什么,并选择相信程序员。

C语言给了程序员足够的自由,可以说,在C语言世界,你几乎可以“为所欲为”。但这种哲学也是有代价的,那就是你可能会犯一些莫名其妙的错误,比如悬挂指针,而这些错误很少或不可能在其他语言中出现。

这里再用一个比喻来更为形象地表达下:从Go世界到C世界,就好比在动物园中饲养已久的动物被放归到野生自然保护区,有了更多自由,但周围也暗藏着很多未曾遇到过的危险。因此,学习C语言的Gopher们要有足够的心理准备。

2. 内存管理

接下来我们来看C与Go在内存管理方面的不同。我把这一点放在第二位,是因为这两种语言在内存管理上有很大的差异,而且这一差异会给程序员的日常编码带来巨大影响。

我们知道,Go是带有垃圾回收机制(俗称GC)的静态编程语言。使用Go编程时,内存申请与释放,在栈上还是在堆上分配,以及新内存块的清零等等,这一切都是自动的,且对程序员透明。

但在C语言中,上面说的这些都是程序员的责任。手工内存管理在带来灵活性的同时,也带来了极大的风险,其中最常见的就是内存泄露(memory leak)与悬挂指针(dangling pointer)问题。

内存泄露主要指的是程序员手工在堆上分配的内存在使用后没有被释放(free),进而导致的堆内存持续增加。而悬挂指针的意思是指针指向了非法的内存地址,未初始化的指针、指针所指对象已经被释放等,都是导致悬挂指针的主要原因。针对悬挂指针进行解引用(dereference)操作将会导致运行时错误,从而导致程序异常退出的严重后果。

Go语言带有GC,而C语言不带GC,这都是由各自语言设计哲学所决定的。GC是不符合C语言的设计哲学的,因为一旦有了GC,程序员就远离了机器,程序员直面机器的需求就无法得到满足了。并且,一旦有了GC,无论是在性能上还是在资源占用上,都不可能做到极致了。

在C中,手工管理内存到底是一种什么感觉呢?作为一名有着十多年C开发经验的资深C程序员,我只能告诉你:与内存斗,其乐无穷!这是在带GC的编程语言中无法体会到的。

3. 语法形式

虽然C语言是Go的先祖,并且Go也继承了很多C语言的语法元素,但在变量/函数声明、行尾分号、代码块是否用括号括起、标识符作用域,以及控制语句语义等方面,二者仍有较大差异。因此,对Go已经很熟悉的程序员在初学C时,受之前编码习惯的影响,往往会踩一些“坑”。基于此,我总结了Gopher学习C语言时需要特别注意的几点,接下来我们具体看看。

第一,注意声明变量时类型与变量名的顺序

前面说过,Go与C都是静态编译型语言,这就要求我们在使用任何变量之前,需要先声明这个变量。但Go采用的变量声明语法颇似Pascal语言,即变量名在前,变量类型在后,这与C语言恰好相反,如下所示:

Go:

var a, b int
var p, q *int

vs.

C:
int a, b;
int *p, *q;

此外,Go支持短变量声明,并且由于短变量声明更短小,无需显式提供变量类型,Go编译器会根据赋值操作符后面的初始化表达式的结果,自动为变量赋予适当类型。因此,它成为了Gopher们喜爱和重度使用的语法。但短声明在C中却不是合法的语法元素:

int main() {
    a := 5; //  error: expected expression
    printf("a = %d\n", a);
}

不过,和上面的变量类型与变量名声明的顺序问题一样,C编译器会发现并告知我们这个问题,并不会给程序带来实质性的伤害。

第二,注意函数声明无需关键字前缀

无论是C语言还是Go语言,函数都是基本功能逻辑单元,我们也可以说C程序就是一组函数的集合。实际上,我们日常的C代码编写大多集中在实现某个函数上。

和变量一样,函数在两种语言中都需要先声明才能使用。Go语言使用func关键字作为函数声明的前缀,并且函数返回值列表放在函数声明的最后。但在C语言中,函数声明无需任何关键字作为前缀,函数只支持单一返回值,并且返回值类型放在函数名的前面,如下所示:

Go:
func Add(a, b int) int {
    return a+b
}

vs.

C:
int Add(int a, int b) {
    return a+b;
}

第三,记得加上代码行结尾的分号

我们日常编写Go代码时,极少手写分号。这是因为,Go设计者当初为了简化代码编写,提高代码可读性,选择了由编译器在词法分析阶段自动在适当位置插入分号的技术路线。如果你是一个被Go编译器惯坏了的Gopher,来到C语言的世界后,一定不要忘记代码行尾的分号。比如上面例子中的C语言Add函数实现,在return语句后面记得要手动加上分号。

第四,补上“省略”的括号

同样是出于简化代码、增加可读性的考虑,Go设计者最初就取消掉了条件分支语句(if)、选择分支语句(switch)和循环控制语句(for)中条件表达式外围的小括号:

// Go代码
func f() int {
    return 5
}
func main() {
    a := 1
    if a == 1 { // 无需小括号包裹条件表达式
        fmt.Println(a)
    }

    switch b := f(); b { // 无需小括号包裹条件表达式
    case 4:
        fmt.Println("b = 4")
    case 5:
        fmt.Println("b = 5")
    default:
        fmt.Println("b = n/a")
    }

    for i := 1; i < 10; i++ { // 无需小括号包裹循环语句的循环表达式
        a += i
    }
    fmt.Println(a)
}

这一点恰恰与C语言“背道而驰”。因此,我们在使用C语言编写代码时,务必要想着补上这些括号:

// C代码
int f() {
        return 5;
}

int main() {
    int a = 1;
    if (a == 1) { // 需用小括号包裹条件表达式
        printf("%d\n", a);
    }

    int b = f();
    switch (b) { // 需用小括号包裹条件表达式
    case 4:
        printf("b = 4\n");
        break;
    case 5:
        printf("b = 5\n");
        break;
    default:
        printf("b = n/a\n");
    }

    int i = 0;
    for (i = 1; i < 10; i++) { // 需用小括号包裹循环语句的循环表达式
        a += i;
    }
    printf("%d\n", a);
}

第五,留意C与Go导出符号的不同机制

C语言通过头文件来声明对外可见的符号,所以我们不用管符号是不是首字母大写的。但在Go中,只有首字母大写的包级变量、常量、类型、函数、方法才是可导出的,即对外部包可见。反之,首字母小写的则为包私有的,仅在包内使用。Gopher一旦习惯了这样的规则,在切换到C语言时,就会产生“心理后遗症”:遇到在其他头文件中定义的首字母小写的函数时,总以为不能直接使用。

第六,记得在switch case语句中添加break

C 语言与Go语言在选择分支语句的语义方面有所不同:C语言的 case 语句中,如果没有显式加入break语句,那么代码将向下自动掉落执行。而Go在最初设计时就重新规定了switch case的语义,默认不自动掉落(fallthrough),除非开发者显式使用fallthrough关键字。

适应了Go的switch case语句的语义后再回来写C代码,就会存在潜在的“风险”。我们来看一个例子:

// C代码:
int main() {
    int a = 1;
    switch(a) {
        case 1:printf("a = 1\n");
        case 2:printf("a = 2\n");
        case 3:printf("a = 3\n");
        default:printf("a = ?\n");
    }
}

这段代码是按Go语义编写的switch case,编译运行后得到的结果如下:

a = 1
a = 2
a = 3
a = ?

这显然不符合我们输出“a = 1”的预期。对于初学C的Gopher而言,这个问题影响还是蛮大的,因为这样编写的代码在C编译器眼中是完全合法的,但所代表的语义却完全不是开发人员想要的。这样的程序一旦流入到生产环境,其缺陷可能会引发生产故障。

一些Clint 工具可以检测出这样的问题,因此对于写C代码的Gopher,我建议在提交代码前使用lint工具对代码做一下检查。

4. 构建机制

Go与C都是静态编译型语言,它们的源码需要经过编译器和链接器处理,这个过程称为构建(build),构建后得到的可执行文件才是最终交付给用户的成果物。

和Go语言略有不同的是,C语言的构建还有一个预处理(pre-processing)阶段,预处理环节的输出才是C编译器的真正输入。C语言中的宏就是在预处理阶段展开的。不过,Go没有预处理阶段。

C语言的编译单元是一个C源文件(.c),每个编译单元在编译过程中会对应生成一个目标文件(.o/.obj),最后链接器将这些目标文件链接在一起,形成可执行文件。

而Go则是以一个包(package)为编译单元的,每个包内的源文件生成一个.o文件,一个包的所有.o文件聚合(archive)成一个.a文件,链接器将这些目标文件链接在一起形成可执行文件。

Go语言提供了统一的Go命令行工具链,且Go编译器原生支持增量构建,源码构建过程不需要Gopher手工做什么配置。但在C语言的世界中,用于构建C程序的工具有很多,主流的包括gcc/clang,以及微软平台的C编译器。这些编译器原生不支持增量构建,为了提升工程级构建的效率,避免每次都进行全量构建,我们通常会使用第三方的构建管理工具,比如make(Makefile)或CMake。考虑移植性时,我们还会使用到configure文件,用于在目标机器上收集和设置编译器所需的环境信息。

5. 依赖管理

我在前面提过,C语言仅提供了一个“小内核”。像依赖管理这类的事情,C语言本身并没有提供跟Go中的Go Module类似的,统一且相对完善的解决方案。在C语言的世界中,我们依然要靠外部工具(比如CMake)来管理第三方的依赖。

C语言的第三方依赖通常以静态库(.a)或动态共享库(.so)的形式存在。如果你的应用要使用静态链接,那就必须在系统中为C编译器提供第三方依赖的静态库文件。但在实际工作中,完全采用静态链接有时是会遇到麻烦的。这是因为,很多操作系统在默认安装时是不带开发包的,也就是说,像 libc、libpthread 这样的系统库只提供了动态共享库版本(如/lib下提供了libc的共享库libc.so.6),其静态库版本是需要自行下载、编译和安装的(如libc的静态库libc.a在安装后是放在/usr/lib下面的)。所以多数情况下,我们是将****静态、动态****两种链接方式混合在一起使用的,比如像libc这样的系统库多采用动态链接。

动态共享库通常是有版本的,并且按照一定规则安装到系统中。举个例子,一个名为libfoo的动态共享库,在安装的目录下文件集合通常是这样:

2022-03-10 12:28 libfoo.so -> libfoo.so.0.0.0*
2022-03-10 12:28 libfoo.so.0 -> libfoo.so.0.0.0*
2022-03-10 12:28 libfoo.so.0.0.0*

按惯例,每个动态共享库都有多个名字属性,包括real name、soname和linker name。下面我们来分别看下。

  • real name:实际包含共享库代码的那个文件的名字(如上面例子中的libfoo.so.0.0.0)。动态共享库的真实版本信息就在real name中,显然real name中的版本号符合语义版本规范,即major.minor.patch。当两个版本的major号一致,说明是向后兼容的两个版本;
  • soname:shared object name的缩写,也是这三个名字中最重要的一个。无论是在编译阶段还是在运行阶段,系统链接器都是通过动态共享库的soname(如上面例子中的libfoo.so.0)来唯一识别共享库的。我们看到的soname实际上是仅包含major号的共享库名字;
  • linker name:编译阶段提供给编译器的名字(如上面例子中的libfoo.so)。如果你构建的共享库的real name跟上面例子中libfoo.so.0.0.0类似,带有版本号,那么你在编译器命令中直接使用-L path -lfoo是无法让链接器找到对应的共享库文件的,除非你为libfoo.so.0.0.0提供了一个linker name(如libfoo.so,一个指向libfoo.so.0.0.0的符号链接)。linker name一般在共享库安装时手工创建。
    动态共享库有了这三个名称属性,依赖管理就有了依据。但由于在链接的时候使用的是linker name,而linker name并不带有版本号,真实版本与主机环境有关,因此要实现C应用的可重现构建还是比较难。在实践中,我们通常会使用专门的构建主机,项目组将该主机上的依赖管理起来,进而保证每次构建所使用的依赖版本是可控的。同时,应用部署的目标主机上的依赖版本也应该得到管理,避免运行时出现动态共享库版本不匹配的问题。

6. 代码风格

Go语言是历史上首次实现了代码风格全社区统一的编程语言。它基本上消除了开发人员在代码风格上的无休止的、始终无法达成一致的争论,以及不同代码风格带来的阅读、维护他人代码时的低效。gofmt工具格式化出来的代码风格已经成为Go开发者的一种共识,融入到Go语言的开发文化当中了。所以,如果你让某个Go开发者说说gofmt后的代码风格是什么样的,多数Go开发者可能说不出,因为代码会被gofmt自动变成那种风格,大家已经不再关心风格了。

而在C语言的世界,代码风格仍存争议。但经过多年的演进,以及像Go这样新兴语言的不断“教育”,C社区也在尝试进行这方面的改进,涌现出了像clang-format这样的工具。目前,虽然还没有在全社区达成一致的代码风格(由于历史原因,这很难做到),但已经可以减少很多不必要的争论。

对于正在学习C语言,并进行C编码实践的Gopher,我的建议是:不要拘泥于使用什么代码风格,先用clang-format,并确定一套风格模板就好

四. 小结

作为一名对Go跟随和研究了近十年的程序员,我深刻体会到,Go的简单性、性能和生产力使它成为了创建面向用户的应用程序和服务的理想语言。快速的迭代让团队能够快速地作出反应,以满足用户不断变化的需求,让团队可以将更多精力集中在保持灵活性上。

但Go也有缺点,比如缺少对内存以及一些低级操作的精确控制,而C语言恰好可以弥补这个缺陷。C 语言提供的更精细的控制允许更多的精确性,使得C成为低级操作的理想语言。这些低级操作不太可能发生变化,并且C相比Go还提高了性能。所以,如果你是一个有性能与低级操作需求的 Gopher ,就有充分的理由来学习C语言。

C 的优势体现在最接近底层机器的地方,而Go的优势在离用户较近的地方能得到最大发挥。当然,这并不是说两者都不能在对方的空间里工作,但这样做会增加“摩擦”。当你的需求从追求灵活性转变为注重效率时,用C重写库或服务的理由就更充分了。

总之,虽然Go和C的设计有很大的不同,但它们也有很多相似性,具备发挥兼容优势的基础。并且,当我们同时使用这二者时,就可以既有很大的灵活性,又有很好的性能,可以说是相得益彰!

五. 写在最后

今天的加餐中,我主要是基于C与Go的比较来讲解的,对于Go语言的特性并没有作详细展开。如果你还想进一步了解Go语言的设计哲学、语法特性、程序设计相关知识,欢迎来学习我在极客时间上的专栏《Tony Bai ·Go语言第一课》。在这门课里,我会用我十年Gopher的经验,带给你一条系统、完整的Go语言入门路径。

感谢你看到这里,如果今天的内容让你有所收获,欢迎把它分享给你的朋友。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats