标签 编译器 下的文章

Go 1.6中值得关注的几个变化

北京时间2016年2月18日凌晨,在Go 1.5发布 半年后,Go 1.6正式Release 了。与Go 1.5的“惊天巨变”(主要指Go自举)相比,Go 1.6的Change 算是很小的了,当然这也与Go 1.6的dev cycle过于短暂有关。但Go社区对此次发布却甚是重视,其热烈程度甚至超出了Go 1.5。在Dave Cheney的倡导 下,Gophers们在全球各地举行了Go 1.6 Release Party。 Go Core Team也在Reddit上开了一个AMA – Ask Me Anything,RobPike、Russ Cox(Rsc)、Bradfitz等Go大神齐上阵,对广大Gophers们在24hour内的问题有问必答。

言归正传,我们来看看Go 1.6中哪些变化值得我们关注。不过在说变化之前,我们先提一嘴Go 1.6没变的,那就是Go语言的language specification,依旧保持Go 1兼容不变。预计在未来的几个stable release版本中,我们也不会看到Go language specification有任何改动。

一、cgo

cgo的变化在于:
1、定义了在Go code和C code间传递Pointer,即C code与Go garbage collector共存的rules和restriction;
2、在runtime加入了对违规传递的检查,检查的开关和力度由GODEBUG=cgocheck=1[0,2]控制。1是默认;0是关闭检 查;2是更全面彻底但代价更高的检查。

这个Proposal是由Ian Lance Taylor提出的。大致分为两种情况:

(一) Go调用C Code时

Go调用C Code时,Go传递给C Code的Go Pointer所指的Go Memory中不能包含任何指向Go Memory的Pointer。我们分为几种情况来探讨一下:

1、传递一个指向Struct的指针

//cgo1_struct.go
package main

/*
#include <stdio.h>
struct Foo{
    int a;
    int *p;
};

void plusOne(struct Foo *f) {
    (f->a)++;
    *(f->p)++;
}
*/
import "C"
import "unsafe"
import "fmt"

func main() {
    f := &C.struct_Foo{}
    f.a = 5
    f.p = (*C.int)((unsafe.Pointer)(new(int)))
    //f.p = &f.a

    C.plusOne(f)
    fmt.Println(int(f.a))
}

从cgo1_struct.go代码中可以看到,Go code向C code传递了一个指向Go Memory(Go分配的)指针f,但f指向的Go Memory中有一个指针p指向了另外一处Go Memory: new(int),我们来run一下这段代码:

$go run cgo1_struct.go
# command-line-arguments
./cgo1_struct.go:12:2: warning: expression result unused [-Wunused-value]
panic: runtime error: cgo argument has Go pointer to Go pointer

goroutine 1 [running]:
panic(0x4068400, 0xc82000a110)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main.main()
    /Users/tony/test/go/go16/cgo/cgo1_struct.go:24 +0xb9
exit status 2

代码出现了Panic,并提示:“cgo argument has Go pointer to Go pointer”。我们的代码违背了Cgo Pointer传递规则,即便让f.p指向struct自身内存也是不行的,比如f.p = &f.a。

2、传递一个指向struct field的指针

按照rules中的说明,如果传递的是一个指向struct field的指针,那么”Go Memory”专指这个field所占用的内存,即便struct中有其他field指向其他Go memory也不打紧:

//cgo1_structfield.go
package main

/*
#include <stdio.h>
struct Foo{
    int a;
    int *p;
};

void plusOne(int *i) {
    (*i)++;
}
*/
import "C"
import (
    "fmt"
    "unsafe"
)

func main() {
    f := &C.struct_Foo{}
    f.a = 5
    f.p = (*C.int)((unsafe.Pointer)(new(int)))

    C.plusOne(&f.a)
    fmt.Println(int(f.a))
}

上述程序的运行结果:

$go run cgo1_structfield.go
6

3、传递一个指向slice or array中的element的指针

和传递struct field不同,传递一个指向slice or array中的element的指针时,需要考虑的Go Memory的范围不仅仅是这个element,而是整个Array或整个slice背后的underlying array所占用的内存区域,要保证这个区域内不包含指向任意Go Memory的指针。我们来看代码示例:

//cgo1_sliceelem.go
package main

/*
#include <stdio.h>
void plusOne(int **i) {
    (**i)++;
}
*/
import "C"
import (
    "fmt"
    "unsafe"
)

func main() {
    sl := make([]*int, 5)
    var a int = 5
    sl[1] = &a
    C.plusOne((**C.int)((unsafe.Pointer)(&sl[0])))
    fmt.Println(sl[0])
}

从这个代码中,我们看到我们传递的是slice的第一个element的地址,即&sl[0]。我们并未给sl[0]赋值,但sl[1] 被赋值为另外一块go memory的address(&a),当我们将&sl[0]传递给plusOne时,执行结果如下:

$go run cgo1_sliceelem.go
panic: runtime error: cgo argument has Go pointer to Go pointer

goroutine 1 [running]:
panic(0x40dbac0, 0xc8200621d0)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main.main()
    /Users/tony/test/go/go16/cgo/cgo1_sliceelem.go:19 +0xe4
exit status 2

由于违背规则,因此runtime panic了。

(二) C调用Go Code时

1、C调用的Go函数不能返回指向Go分配的内存的指针

我们看下面例子:

//cgo2_1.go

package main

// extern int* goAdd(int, int);
//
// static int cAdd(int a, int b) {
//     int *i = goAdd(a, b);
//     return *i;
// }
import "C"
import "fmt"

//export goAdd
func goAdd(a, b C.int) *C.int {
    c := a + b
    return &c
}

func main() {
    var a, b int = 5, 6
    i := C.cAdd(C.int(a), C.int(b))
    fmt.Println(int(i))
}

可以看到:goAdd这个Go函数返回了一个指向Go分配的内存(&c)的指针。运行上述代码,结果如下:

$go run cgo2_1.go
panic: runtime error: cgo result has Go pointer

goroutine 1 [running]:
panic(0x40dba40, 0xc82006e1c0)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main._cgoexpwrap_872b2f2e7532_goAdd.func1(0xc820049d98)
    command-line-arguments/_obj/_cgo_gotypes.go:64 +0x3a
main._cgoexpwrap_872b2f2e7532_goAdd(0x600000005, 0xc82006e19c)
    command-line-arguments/_obj/_cgo_gotypes.go:66 +0x89
main._Cfunc_cAdd(0x600000005, 0x0)
    command-line-arguments/_obj/_cgo_gotypes.go:45 +0x41
main.main()
    /Users/tony/test/go/go16/cgo/cgo2_1.go:20 +0x35
exit status 2

2、Go code不能在C分配的内存中存储指向Go分配的内存的指针

下面的例子模拟了这一情况:

//cgo2_2.go
package main

// #include <stdlib.h>
// extern void goFoo(int**);
//
// static void cFoo() {
//     int **p = malloc(sizeof(int*));
//     goFoo(p);
// }
import "C"

//export goFoo
func goFoo(p **C.int) {
    *p = new(C.int)
}

func main() {
    C.cFoo()
}

不过针对此例,默认的GODEBUG=cgocheck=1偏是无法check出问题。我们将GODEBUG=cgocheck改为=2试试:

$GODEBUG=cgocheck=2 go run cgo2_2.go
write of Go pointer 0xc82000a0f8 to non-Go memory 0x4300000
fatal error: Go pointer stored into non-Go memory

runtime stack:
runtime.throw(0x4089800, 0x24)
    /Users/tony/.bin/go16/src/runtime/panic.go:530 +0x90
runtime.cgoCheckWriteBarrier.func1()
    /Users/tony/.bin/go16/src/runtime/cgocheck.go:44 +0xae
runtime.systemstack(0x7fff5fbff8c0)
    /Users/tony/.bin/go16/src/runtime/asm_amd64.s:291 +0x79
runtime.mstart()
    /Users/tony/.bin/go16/src/runtime/proc.go:1048
... ...
goroutine 17 [syscall, locked to thread]:
runtime.goexit()
    /Users/tony/.bin/go16/src/runtime/asm_amd64.s:1998 +0x1
exit status 2

果真runtime panic: write of Go pointer 0xc82000a0f8 to non-Go memory 0×4300000

二、HTTP/2

HTTP/2原本是bradfitz维护的x项目,之前位于golang.org/x/net/http2包中,Go 1.6无缝合入Go标准库net/http包中。并且当你你使用https时,client和server端将自动默认使用HTTP/2协议。

HTTP/2与HTTP1.x协议不同在于其为二进制协议,而非文本协议,性能自是大幅提升。HTTP/2标准已经发布,想必未来若干年将大行其道。

HTTP/2较为复杂,这里不赘述,后续maybe会单独写一篇GO和http2的文章说明。

三、Templates

由于不开发web,templates我日常用的很少。这里粗浅说说templates增加的两个Feature

trim空白字符

Go templates的空白字符包括:空格、水平tab、回车和换行符。在日常编辑模板时,这些空白尤其难于处理,由于是对beatiful format和code readabliity有“强迫症”的同学,更是在这方面话费了不少时间。

Go 1.6提供了{{-和-}}来帮助大家去除action前后的空白字符。下面的例子很好的说明了这一点:

//trimwhitespace.go
package main

import (
    "log"
    "os"
    "text/template"
)

var items = []string{"one", "two", "three"}

func tmplbefore15() {
    var t = template.Must(template.New("tmpl").Parse(`
    <ul>
    {{range . }}
        <li>{{.}}</li>
    {{end }}
    </ul>
    `))

    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func tmplaftergo16() {
    var t = template.Must(template.New("tmpl").Parse(`
    <ul>
    {{range . -}}
        <li>{{.}}</li>
    {{end -}}
    </ul>
    `))

    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func main() {
    tmplbefore15()
    tmplaftergo16()
}

这个例子的运行结果:

$go run trimwhitespace.go

    <ul>

        <li>one</li>

        <li>two</li>

        <li>three</li>

    </ul>

    <ul>
    <li>one</li>
    <li>two</li>
    <li>three</li>
    </ul>

block action

block action提供了一种在运行时override已有模板形式的能力。

package main

import (
    "log"
    "os"
    "text/template"
)

var items = []string{"one", "two", "three"}

var overrideItemList = `
{{define "list" -}}
    <ul>
    {{range . -}}
        <li>{{.}}</li>
    {{end -}}
    </ul>
{{end}}
`

var tmpl = `
    Items:
    {{block "list" . -}}
    <ul>
    {{range . }}
        <li>{{.}}</li>
    {{end }}
    </ul>
    {{end}}
`

var t *template.Template

func init() {
    t = template.Must(template.New("tmpl").Parse(tmpl))
}

func tmplBeforeOverride() {
    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func tmplafterOverride() {
    t = template.Must(t.Parse(overrideItemList))
    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func main() {
    fmt.Println("before override:")
    tmplBeforeOverride()
    fmt.Println("after override:")
    tmplafterOverride()
}

原模板tmpl中通过block action定义了一处名为list的内嵌模板锚点以及初始定义。后期运行时通过re-parse overrideItemList达到修改模板展示形式的目的。

上述代码输出结果:

$go run blockaction.go
before override:

    Items:
    <ul>

        <li>one</li>

        <li>two</li>

        <li>three</li>

    </ul>

after override:

    Items:
    <ul>
    <li>one</li>
    <li>two</li>
    <li>three</li>
    </ul>

四、Runtime

降低大内存使用时的GC latency

Go 1.5.x用降低一些吞吐量的代价换取了10ms以下的GC latency。不过针对Go 1.5,官方给出的benchmark图中,内存heap size最多20G左右。一旦超过20G,latency将超过10ms,也许会线性增长。
在Go 1.6中,官方给出的benchmark图中当内存heap size在200G时,GC latency依旧可以稳定在10ms;在heap size在20G以下时,latency降到了6ms甚至更小。

panic info

Go 1.6之前版本,一旦程序以panic方式退出,runtime便会将所有goroutine的stack信息打印出来:

$go version
go version go1.5.2 darwin/amd64
[ ~/test/go/go16/runtime]$go run panic.go
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xb code=0x1 addr=0x0 pc=0x20d5]

goroutine 1 [running]:
main.main()
    /Users/tony/test/go/go16/runtime/panic.go:19 +0x95

goroutine 4 [select (no cases)]:
main.main.func1(0x8200f40f0)
    /Users/tony/test/go/go16/runtime/panic.go:13 +0x26
created by main.main
    /Users/tony/test/go/go16/runtime/panic.go:14 +0x72
... ...

而Go 1.6后,Go只会打印正在running的goroutine的stack信息,因此它才是最有可能造成panic的真正元凶:

go 1.6:
$go run panic.go
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xb code=0x1 addr=0x0 pc=0x20d5]

goroutine 1 [running]:
panic(0x61e80, 0x8200ee0c0)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main.main()
    /Users/tony/test/go/go16/runtime/panic.go:19 +0x95
exit status 2

map race detect

Go原生的map类型是goroutine-unsafe的,长久以来,这给很多Gophers带来了烦恼。这次Go 1.6中Runtime增加了对并发访问map的检测以降低gopher们使用map时的心智负担。

这里借用了Francesc Campoy在最近一期”The State of Go”中的示例程序:

package main

import "sync"

func main() {
    const workers = 100

    var wg sync.WaitGroup
    wg.Add(workers)
    m := map[int]int{}
    for i := 1; i <= workers; i++ {
        go func(i int) {
            for j := 0; j < i; j++ {
                m[i]++
            }
            wg.Done()
        }(i)
    }
    wg.Wait()
}

执行结果:

$ go run map.go
fatal error: concurrent map writes
fatal error: concurrent map writes
... ...

这里在双核i5 mac air下亲测时,发现当workers=2,3,4均不能检测出race。当workers >= 5时可以检测到。

五、其他

手写parser替代yacc生成的parser

这个变化对Gopher们是透明的,但对于Go compiler本身却是十分重要的。

Robert Riesemer在Go 1.6代码Freezing前commit了手写Parser,以替代yacc生成的parser。在AMA上RobPike给出了更换Parser的些许理由:
1、Go compiler可以少维护一个yacc工具,这样更加cleaner;
2、手写Parser在性能上可以快那么一点点。

Go 1.6中GO15VENDOREXPERIMENT将默认开启

根据当初在Go 1.5中引入vendor时的计划,Go 1.6中GO15VENDOREXPERIMENT将默认开启。这显然会导致一些不兼容的情况出现:即如果你的代码在之前并未使用vendor机制,但目录组织中有vendor目录。Go Core team给出的解决方法就是删除vendor目录或改名。

遗留问题是否解决

Go 1.5发布后,曾经发现两个问题,直到Go 1.5.3版本发布也未曾解决,那么Go 1.6是否解决了呢?我们来验证一下。

internal问题

该问题的具体细节可参看我在go github上提交的issue 12217,我在自己的experiments中提交了问题的验证环境代码,这次我们使用Go 1.6看看internal问题是否还存在:

$cd $GOPATH/src/github.com/bigwhite/experiments/go15-internal-issue-12217
$cd otherpkg/
$go build main.go
package main
    imports github.com/bigwhite/experiments/go15-internal-issue-12217/mypkg/internal/foo: use of internal package not allowed

这回go compiler给出了error,而不是像之前版本那样顺利编译通过。看来这个问题是fix掉了。

GOPATH之外vendor机制是否起作用的问题

我们先建立实验环境:

$tree
.
└── testvendor
    └── src
        └── proj1
            ├── main.go
            └── vendor
                └── github.com
                    └── bigwhite
                        └── foo
                            └── foolib.go

进入proj1,build main.go

go build main.go
main.go:3:8: cannot find package "github.com/bigwhite/foo" in any of:
    /Users/tony/.bin/go16/src/github.com/bigwhite/foo (from $GOROOT)
    /Users/tony/Test/GoToolsProjects/src/github.com/bigwhite/foo (from $GOPATH)

go 1.6编译器没有关注同路径下的vendor目录,build失败。

我们设置GOPATH=xxx/testvendor后,再来build:

$export GOPATH=~/Test/go/go16/others/testvendor
$go run main.go
Hello from temp vendor

这回编译运行ok。

由此看来,Go 1.6 vendor在GOPATH外依旧不生效。

六、小结

Go 1.6标准库细微变化还是有很多的,在Go 1.6 Release Notes中可细细品味。

Go 1.6的编译速度、编译出的程序的运行性能与Go 1.5.x也大致无二异。

另外本文实现环境如下:

go version go1.6 darwin/amd64
Darwin tonydeair-2.lan 13.1.0 Darwin Kernel Version 13.1.0: Thu Jan 16 19:40:37 PST 2014; root:xnu-2422.90.20~2/RELEASE_X86_64 x86_64

实验代码可在这里下载。

Go 1.5中值得关注的几个变化

GopherCon2015开幕之 际,Google Go Team终于放出了Go 1.5Beta1版本的安装包。在go 1.5Beta1的发布说明中,Go Team也诚恳地承认Go 1.5将打破之前6个月一个版本的发布周期,这是因为Go 1.5变动太大,需要更多时间来准备这次发布(fix bug, Write doc)。关于Go 1.5的变化,之前Go Team staff在各种golang技术会议的slide  中暴露不少,包括:

- 编译器和运行时由C改为Go(及少量汇编语言)重写,实现了Go的self Bootstrap(自举)
- Garbage Collector优化,大幅降低GC延迟(Stop The World),实现Gc在单独的goroutine中与其他user goroutine并行运行。
- 标准库变更以及一些go tools的引入。

每项变动都会让gopher激动不已。但之前也只是激动,这次beta1出来后,我们可以实际体会一下这些变动带来的“快感”了。Go 1.5beta1的发布文档目前还不全,有些地方还有“待补充”字样,可能与最终go 1.5发布时的版本有一定差异,不过大体内容应该是固定不变的了。这篇文章就想和大家一起浅显地体验一下go 1.5都给gophers们带来了哪些变化吧。

一、语言

【map literal】

go 1.5依旧兼容Go 1 language specification,但修正了之前的一个“小疏忽”。

Go 1.4及之前版本中,我们只能这么来写代码:

//testmapliteral.go
package main

import (
    "fmt"
)

type Point struct {
    x int
    y int
}

func main() {
    var sl = []Point{{3, 4}, {5, 6}}
    var m = map[Point]string{
        Point{3,4}:"foo1",
        Point{5,6}:"foo2",
    }
    fmt.Println(sl)
    fmt.Println(m)
}

可以看到,对于Point这个struct来说,在初始化一个slice时,slice value literal中无需显式的带上元素类型Point,即

var sl = []Point{{3, 4}, {5, 6}}

而不是

var sl = []Point{Point{3, 4}, Point{5, 6}}

但当Point作为map类型的key类型时,初始化map时则要显式带上元素类型Point。Go team承认这是当初的一个疏忽,在本次Go 1.5中将该问题fix掉了。也就是说,下面的代码在Go 1.5中可以顺利编译通过:

func main() {
    var sl = []Point{{3, 4}, {5, 6}}
    var m = map[Point]string{
        {3,4}:"foo1",
        {5,6}:"foo2",
    }
    fmt.Println(sl)
    fmt.Println(m)
}

【GOMAXPROCS】

就像这次GopherCon2015上现任Google Go project Tech Lead的Russ Cox的开幕Keynote中所说的那样:Go目标定位于高度并发的云环境。Go 1.5中将标识并发系统线程个数的GOMAXPROCS的初始值由1改为了运行环境的CPU核数。

// testgomaxprocs.go
package main

import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Println(runtime.GOMAXPROCS(-1))
    fmt.Println(runtime.NumGoroutine())
}

这个代码在Go 1.4下(Mac OS X 4核)运行结果是:

$go run testgomaxprocs.go
1
4

而在go 1.5beta1下,结果为:

$go run testgomaxprocs.go
4
4

二、编译

【简化跨平台编译】

1.5之前的版本要想实现跨平台编译,需要到$GOROOT/src下重新执行一遍make.bash,执行前设置好目标环境的环境变量(GOOS和 GOARCH),Go 1.5大大简化这个过程,使得跨平台编译几乎与普通编译一样简单。下面是一个简单的例子:

//testcrosscompile.go
package main

import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Println(runtime.GOOS)
}

在我的Mac上,本地编译执行:
$go build -o testcrosscompile_darwin testcrosscompile.go
$testcrosscompile_darwin
darwin

跨平台编译linux amd64上的目标程序:

$GOOS=linux GOARCH=amd64 go build -o testcrosscompile_linux testcrosscompile.go

上传testcrosscompile_linux到ubuntu 14.04上执行:
$testcrosscompile_linux
linux

虽然从用户角度跨平台编译命令很简单,但事实是go替你做了很多事情,我们可以通过build -x -v选项来输出编译的详细过程,你会发现go会先进入到$GOROOT/src重新编译runtime.a以及一些平台相关的包。编译输出的信息 太多,这里就不贴出来了。但在1.5中这个过程非常快(10秒以内),与1.4之前版本的跨平台编译相比,完全不是一个级别,这也许就是编译器用Go重写完的好处之一吧。

除了直接使用go build,我们还可以使用go tool compile和go tool link来编译程序,实际上go build也是调用这两个工具完成编译过程的。

$go tool compile testcrosscompile.go
testcrosscompile.o
$go tool link testcrosscompile.o
a.out
$a.out
darwin

go 1.5移除了以前的6a,6l之类的编译连接工具,将这些工具整合到go tool中。并且go tool compile的输出默认改为.o文件,链接器输出默认改为了a.out。

【动态共享库】

个人不是很赞同Go语言增加对动态共享库的支持,.so和.dll这类十多年前的技术在如今内存、磁盘空间都“非常大”的前提下,似乎已经失去了以往的魅 力。并且动态共享库所带来的弊端:"DLL hell"会让程序后续的运维痛苦不已。Docker等轻量级容器的兴起,面向不变性的架构(immutable architecture)受到更多的关注。人们更多地会在container这一层进行操作,一个纯static link的应用在部署和维护方面将会有天然优势,.so只会增加复杂性。如果单纯从与c等其他语言互操作的角度,似乎用途也不会很广泛(但游戏或ui领域 可能会用到)。不过go 1.5还是增加了对动态链接库的支持,不过从go tool compile和link的doc说明来看,目前似乎还处于实验阶段。

既然go 1.5已经支持了shared library,我们就来实验一下。我们先规划一下测试repository的目录结构:

$GOPATH
    /src
        /testsharedlib
            /shlib
                – lib.go
        /app
            /main.go

lib.go中的代码很简单:

//lib.go
package shlib

import "fmt"

// export Method1
func Method1() {
    fmt.Println("shlib -Method1")
}

对于希望导出的方法,采用export标记。

我们来将这个lib.go编译成shared lib,注意目前似乎只有linux平台支持编译go shared library:

$ go build -buildmode=shared testsharedlib/shlib
# /tmp/go-build709704006/libtestsharedlib-shlib.so
warning: unable to find runtime/cgo.a

编译ok,那个warning是何含义不是很理解。

要想.so被其他go程序使用,需要将.so安装到相关目录下。我们install一下试试:

$ go install -buildmode=shared testsharedlib/shlib
multiple roots /home1/tonybai/test/go/go15/pkg/linux_amd64_dynlink & /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink

go工具居然纠结了,不知道选择放在哪里,一个是$GOPATH/pkg/linux_amd64_dynlink,另外一个则是$GOROOT/pkg/linux_amd64_dynlink,我不清楚这是不是一个bug。

在Google了之后,我尝试了网上的一个解决方法,先编译出runtime的动态共享库:

$go install -buildmode=shared runtime sync/atomic

编译安装后,你就会在$GOROOT/pkg下面看到多出来一个目录:linux_amd64_dynlink。这个目录下的结构如下:

$ ls -R
.:
libruntime,sync-atomic.so  runtime  runtime.a  runtime.shlibname  sync

./runtime:
cgo.a  cgo.shlibname

./sync:
atomic.a  atomic.shlibname

这里看到了之前warning提到的runtime/cgo.a,我们再来重新执行一下build,看看能不能消除warning:

$ go build -buildmode=shared testsharedlib/shlib
# /tmp/go-build086398801/libtestsharedlib-shlib.so
/home1/tonybai/.bin/go15beta1/go/pkg/tool/linux_amd64/link: cannot implicitly include runtime/cgo in a shared library

这回连warnning都没有了,直接是一个error。这里提示:无法在一个共享库中隐式包含runtime/cgo。也就是说我们在构建 testshared/shlib这个动态共享库时,还需要显式的link到runtime/cgo,这里就需要另外一个命令行标志:- linkshared。我们再来试试:

$ go build  -linkshared -buildmode=shared testsharedlib/shlib

这回build成功!我们再来试试install:

$ go install  -linkshared -buildmode=shared testsharedlib/shlib

同样成功了。并且我们在$GOPATH/pkg/linux_amd64_dynlink下发现了共享库:

$ ls -R
.:
libtestsharedlib-shlib.so  testsharedlib

./testsharedlib:
shlib.a  shlib.shlibname

$ ldd libtestsharedlib-shlib.so
    linux-vdso.so.1 =>  (0x00007fff93983000)
    libruntime,sync-atomic.so => /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink/libruntime,sync-atomic.so (0x00007fa150f1b000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa150b3f000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa150921000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fa1517a7000)

好了,既然共享库编译出来了。我们就来用一下这个共享库。

//app/main.go

package main

import (
    "testsharedlib/shlib"
)

func main() {
    shlib.Method1()
}

$ go build -linkshared main.go
$ ldd main
    linux-vdso.so.1 =>  (0x00007fff579f7000)
    libruntime,sync-atomic.so => /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink/libruntime,sync-atomic.so (0x00007fa8d6df2000)
    libtestsharedlib-shlib.so => /home1/tonybai/test/go/go15/pkg/linux_amd64_dynlink/libtestsharedlib-shlib.so (0x00007fa8d6962000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa8d6586000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa8d6369000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fa8d71ef000)

$ main
shlib -Method1

编译执行ok。从输出结果来看,我们可以清晰看到main依赖的.so以及so的路径。我们再来试试,如果将testsharedlib源码目录移除后,是否还能编译ok:

$ go build -linkshared main.go
main.go:4:2: cannot find package "testsharedlib/shlib" in any of:
    /home1/tonybai/.bin/go15beta1/go/src/testsharedlib/shlib (from $GOROOT)
    /home1/tonybai/test/go/go15/src/testsharedlib/shlib (from $GOPATH)

go编译器无法找到shlib,也就说即便是动态链接,我们也要有动态共享库的源码,应用才能编译通过。

internal package

internal包不是go 1.5的原创,在go 1.4中就已经提出对internal package的支持了。但go 1.4发布时,internal package只能用于GOROOT下的go core核心包,用户层面GOPATH不支持internal package。按原计划,go 1.5中会将internal包机制工作范围全面扩大到所有repository的。我原以为1.5beta1以及将internal package机制生效了,但实际结果呢,我们来看看示例代码:

测试目录结构如下:

testinternal/src
    mypkg/
        /internal
            /foo
                foo.go
        /pkg1
            main.go

    otherpkg/
            main.go

按照internal包的原理,预期mypkg/pkg1下的代码是可以import "mypkg/internal/foo"的,otherpkg/下的代码是不能import "mypkg/internal/foo"的。

//foo.go
package foo

import "fmt"

func Foo() {
    fmt.Println("mypkg/internal/foo")
}

//main.go
package main

import "mypkg/internal/foo"

func main() {
    foo.Foo()
}

在pkg1和otherpkg下分别run main.go:

mypkg/pkg1$ go run main.go
mypkg/internal/foo

otherpkg$ go run main.go
mypkg/internal/foo

可以看到在otherpkg下执行时,并没有任何build error出现。看来internal机制并未生效。

我们再来试试import $GOROOT下某些internal包,看看是否可以成功:

package main

import (
    "fmt"
    "image/internal/imageutil"
)

func main() {
    fmt.Println(imageutil.DrawYCbCr)
}

我们run这个代码:

$go run main.go
0x6b7f0

同样没有出现任何error。

不是很清楚为何在1.5beta1中internal依旧无效。难道非要等最终1.5 release版么?

【Vendor】
Vendor机制是go team为了解决go第三方包依赖和管理而引入的实验性技术。你执行以下go env:

$go env
GOARCH="amd64"
GOBIN="/Users/tony/.bin/go15beta1/go/bin"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="darwin"
GOOS="darwin"
GOPATH="/Users/tony/Test/GoToolsProjects"
GORACE=""
GOROOT="/Users/tony/.bin/go15beta1/go"
GOTOOLDIR="/Users/tony/.bin/go15beta1/go/pkg/tool/darwin_amd64"
GO15VENDOREXPERIMENT=""
CC="clang"
GOGCCFLAGS="-fPIC -m64 -pthread -fno-caret-diagnostics -Qunused-arguments -fmessage-length=0 -fno-common"
CXX="clang++"
CGO_ENABLED="1"

从结果中你会看到新增一个GO15VENDOREXPERIMENT变量,这个就是用来控制vendor机制是否开启的环境变量,默认不开启。若要开启,可以在环境变量文件中设置或export GO15VENDOREXPERIMENT=1临时设置。

vendor机制是在go 1.5beta1发布前不长时间临时决定加入到go 1.5中的,Russ Cox在Keith Rarick之前的一个Proposal的基础上重新做了设计而成,大致机制内容:

If there is a source directory d/vendor, then,
    when compiling a source file within the subtree rooted at d,
    import "p" is interpreted as import "d/vendor/p" if that exists.

    When there are multiple possible resolutions,
    the most specific (longest) path wins.

    The short form must always be used: no import path can
    contain “/vendor/” explicitly.

    Import comments are ignored in vendored packages.

下面我们来测试一下这个机制。首先我们临时开启vendor机制,export GO15VENDOREXPERIMENT=1,我们的测试目录规划如下:

testvendor
    vendor/
        tonybai.com/
            foolib/
                foo.go
    main/
        main.go

$GOPATH/src/tonybai.com/foolib/foo.go

//vendor/tonybai.com/foolib/foo.go
package foo

import "fmt"

func Hello() {
    fmt.Println("foo in vendor")
}

//$GOPATH/src/tonybai.com/foolib/foo.go
package foo

import "fmt"

func Hello() {
    fmt.Println("foo in gopath")
}

vendor和gopath下的foo.go稍有不同,主要在输出内容上,以方便后续区分。

现在我们编译执行main.go

//main/main.go
package main

import (
    "tonybai.com/foolib"
)

func main() {
    foo.Hello()
}

$go run main.go
foo in gopath

显然结果与预期不符,我们通过go list -json来看main.go的依赖包路径:

$go list -json
{
… …
    "Imports": [
        "tonybai.com/foolib"
    ],
    "Deps": [
        "errors",
        "fmt",
        "io",
        "math",
        "os",
        "reflect",
        "runtime",
        "strconv",
        "sync",
        "sync/atomic",
        "syscall",
        "time",
        "tonybai.com/foolib",
        "unicode/utf8",
        "unsafe"
    ]
}

可以看出并没有看到vendor路径,main.go import的是$GOPATH下的foo。难道是go 1.5beta1的Bug?于是翻看各种资料,最后在go 1.5beta1发布前最后提交的revison的commit log中得到了帮助:

cmd/go: disable vendoredImportPath for code outside $GOPATH
It was crashing.
This fixes the build for
GO15VENDOREXPERIMENT=1 go test -short runtime

Fixes #11416.

Change-Id: I74a9114cdd8ebafcc9d2a6f40bf500db19c6e825
Reviewed-on: https://go-review.googlesource.com/11964
Reviewed-by: Russ Cox <rsc@golang.org>

从commit log来看,大致意思是$GOPATH之外的代码的vendor机制被disable了(因为某个bug)。也就是说只有$GOPATH路径下的包在 import时才会考虑vendor路径,我们的代码的确没有在$GOPATH下,我们重新设置一下$GOPATH。

$export GOPATH=~/test/go/go15
[tony@TonydeMacBook-Air-2 ~/test/go/go15/src/testvendor/main]$go list -json
{
  
  … …
    "Imports": [
        "testvendor/vendor/tonybai.com/foolib"
    ],
    "Deps": [
        "errors",
        "fmt",
        "io",
        "math",
        "os",
        "reflect",
        "runtime",
        "strconv",
        "sync",
        "sync/atomic",
        "syscall",
        "testvendor/vendor/tonybai.com/foolib",
        "time",
        "unicode/utf8",
        "unsafe"
    ]
}

这回可以看到vendor机制生效了。执行main.go:

$go run main.go
foo in vendor

这回与预期结果就相符了。

前面提到,关闭GOPATH外的vendor机制是因为一个bug,相信go 1.5正式版发布时,这块会被enable的。

三、小结

Go 1.5还增加了很多工具,如trace,但因文档不全,尚不知如何使用。

Go 1.5标准库也有很多小的变化,这个只有到使用时才能具体深入了解。

Go 1.5更多是Go语言骨子里的变化,也就是runtime和编译器重写。语法由于兼容Go 1,所以基本frozen,因此从外在看来,基本没啥变动了。

至于Go 1.5的性能,官方的说法是,有的程序用1.5编译后会变得慢点,有的会快些。官方bench的结果是总体比1.4快上一些。但Go 1.5在性能方面主要是为了减少gc延迟,后续版本才会在性能上做进一步优化,优化空间还较大的,这次runtime、编译器由c变go,很多地方的go 代码并非是最优的,多是自动翻译,相信经过Go team的优化后,更idiomatic的Go code会让Go整体性能更为优异。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats