算法神话的祛魅:Russ Cox 与浮点数转换的 15 年求索之路

本文永久链接 – https://tonybai.com/2026/02/03/russ-cox-15-year-war-on-floating-point-conversion
大家好,我是Tony Bai。
“浮点数到十进制的转换一直被认为很难。但本质上,它们非常简单直接。” —— Russ Cox (2011)
“我错了。快速的转换器也可以很简单,这篇文章将展示如何做到。” —— Russ Cox (2026)
在计算机科学的深处,潜伏着一条名为“浮点数转换”的恶龙。将一个二进制浮点数(如 float64)转换为人类可读的十进制字符串(如 “0.1″),看似简单,实则是一个困扰了业界半个世纪的难题。
2011 年,Go 语言的核心人物 Russ Cox 写下了一篇博文,试图用一种简单的算法来“驯服”这条龙。然而,在随后的十几年里,学术界和工业界爆发了一场军备竞赛:Dragon4, Grisu3, Ryū, Schubfach, Dragonbox… 每一个新算法都试图在速度上压倒前一个,但也让代码变得越来越复杂,数学证明越来越晦涩。
2026 年初,Russ Cox 带着他的新系列文章强势回归。这一次,他不仅带来了一套比所有已知算法都更快的全新算法,而且证明了:极致的性能不需要极致的复杂性。
这套算法已被确定将在 Go 1.27 (2026年8月) 中发布。今天,我们就来深度解析这项可能改写浮点数处理历史的技术突破。

历史的迷宫与“不可能三角”
要理解 Russ Cox 的成就,我们首先要理解这个问题的难度。一个完美的浮点数打印算法,必须同时满足三个苛刻的条件(“不可能三角”):
- 正确性 (Correctness):转换必须是双射的。Parse(Print(f)) == f 必须恒成立。这意味着你不能随意丢弃精度。
- 最短性 (Shortest):输出的字符串必须是所有能转回原值的字符串中最短的。例如,0.3 在二进制中无法精确表示,打印时应该是 “0.3″ 而不是 “0.2999999999999999889″。
- 速度 (Speed):在大规模数据处理(如 JSON 序列化)中,转换速度直接决定了系统的吞吐量。
历史的演进:
* Dragon4 (1990):实现了正确性和最短性,但依赖大整数(BigInt)运算,慢如蜗牛。
* Grisu3 (2010):Google 的 V8 引擎引入。速度极快,但不保证最短性,约 0.5% 的情况会失败并回退到慢速算法。
* Ryū (2018) & Dragonbox (2020):通过复杂的数学技巧(查表法),终于在不使用 BigInt 的情况下实现了正确且最短。这是性能的巅峰,但代码极其复杂,充满魔术数字。
Russ Cox 的目标,就是打破这个迷宫:能不能既像 Ryū 一样快且正确,又像 2011 年的那个算法一样简单?
核心技术——“未舍入缩放” (Unrounded Scaling)
Russ Cox 的新算法核心,源于一个极其精妙的数学原语:快速未舍入缩放 (Fast Unrounded Scaling)。
什么是“未舍入数”?
在传统算法中,我们总是纠结于“何时舍入”。Russ Cox 引入了 “未舍入数” (Unrounded Number) 的概念 ⟨x⟩。它由三部分组成:
- 整数部分: floor(x)
- ½ bit: 标记 x – floor(x) >= 0.5
- sticky bit (粘滞位): 标记 x 是否有非零的小数残余。
这种表示法不仅保留了用于正确舍入(Round half to even)的所有必要信息,而且可以通过极其廉价的位运算(| 和 &)来维护。这就像是在计算过程中保留了一个“高精度的尾巴”,直到最后一步才决定如何截断。
缩放的魔法
浮点数打印本质上是计算 f = m * 2^e 对应的十进制 d * 10^p。核心步骤是将 m * 2^e 乘以 10^p。
Russ Cox 使用查表法(预计算 10^p 的 128 位近似值)来实现这一缩放。但他最惊人的发现是:在 64 位浮点数转换的场景下,我们甚至不需要完整的 128 位乘法!
他证明了:只需计算 64 位 x 64 位的高位结果,并利用低位的“粘滞位”来修正,就能得到完全正确的结果。这意味着,曾经需要几十次乘法或大整数运算的转换过程,现在被缩减为极少数几次 CPU 原生乘法。
这一发现被称为 “Omit Needless Multiplications”(省略不必要的乘法),它是新算法性能超越 Ryū 的关键。
从理论到 Go 1.27
基于这个核心原语,Russ Cox 构建了一整套算法家族:
- FixedWidth: 定点打印(如 %.2f)。
- Shortest: 最短表示打印(如 %g)。
- Parse: 字符串转浮点数。
性能碾压
Russ Cox 在 Apple M4 和 AMD Ryzen 9 上进行了详尽的基准测试:
- 定点打印:新算法 (uscale) 显著快于 glibc 和 double-conversion,甚至快于 Ryū。
- 最短打印:在纯算法层面,新算法与业界最快的 Dragonbox 持平或更快,但代码逻辑要简单得多。
- 解析:同样基于该原理的解析算法,性能超越了目前业界标杆 fast_float (Eisel-Lemire 算法)。
更令人兴奋的是,Go 1.27 将直接集成这套算法或算法的一部分。对于 Gopher 来说,这意味着你的 fmt.Sprintf、json.Marshal 和 strconv.ParseFloat 将在下个版本中自动获得显著的性能提升,而无需修改一行代码。
证明的艺术
除了代码,Russ Cox 还做了一件很“极客”的事:他用 Ivy(一种 APL 风格的语言)编写了完整的数学证明。
他没有选择形式化验证工具(如 Coq),而是通过编写可执行的代码来验证算法在每一个可能的 float64 输入下都是正确的。这种“通过计算来证明” (Proof by Computation) 的方法,不仅验证了算法的正确性,也为后来者留下了一份可交互的、活生生的文档。
小结:简单是终极的复杂
从 2011 年的初次尝试,到 2026 年的最终突破,Russ Cox 用 15 年的时间完成了一个完美的闭环。
这一系列文章是一种工程哲学的胜利。它告诉我们:当我们面对复杂的遗留问题时,不要只是盲目地堆砌优化技巧。回到数学的源头,重新审视问题的本质,或许能找到那条既简单又快的“捷径”。
现在的 Go 标准库中,即将拥有一颗比以往任何时候都更强大、更轻盈的“心脏”。
资料链接:https://research.swtch.com/fp-all
你更看重哪一点?
在算法的世界里,正确性、最短表示、运行速度,这“不可能三角”总是让我们反复权衡。在你平时的开发中,有哪些场景曾让你被浮点
能或精度困扰?或者,你对 Russ Cox 这种“死磕 15 年”的工程精神有何感触?
欢迎在评论区分享你的看法!如果这篇文章让你对浮点数实现算法方面有了新的认识,别忘了点个【赞】和【在看】,并转发给你的Go开发朋友们!
还在为“复制粘贴喂AI”而烦恼?我的新专栏 《AI原生开发工作流实战》 将带你:
- 告别低效,重塑开发范式
- 驾驭AI Agent(Claude Code),实现工作流自动化
- 从“AI使用者”进化为规范驱动开发的“工作流指挥家”
扫描下方二维码,开启你的AI原生开发之旅。

你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?
- 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
- 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
- 想打造生产级的Go服务,却在工程化实践中屡屡受挫?
继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!
我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。
目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。




评论