标签 Dockerfile 下的文章

Go社区的“轻框架”理念:自由的馈赠还是无形的枷锁?

本文永久链接 – https://tonybai.com/2025/05/13/go-prefer-less-framework

大家好,我是 Tony Bai。

Go 语言自诞生以来,就以其简洁、高效和强大的并发模型赢得了全球开发者的青睐。它的设计者们,包括 Rob Pike、Ken Thompson 这些计算机界的巨匠,在创造 Go 的时候,秉持了一种鲜明的风格:“少即是多” (Less is More)。这不仅体现在其精简的语法和关键字上,更深刻地影响了 Go 社区对于“框架” (Frameworks) 的普遍态度。

虽然 Go 官方从未明确宣称“轻框架或无框架”是其核心哲学,但从其设计选择——如强大的标准库、鼓励组合优于继承——以及社区早期的主流声音来看,Go 显著地倾向于“轻框架”,或者说“反大型、侵入式框架”

但这种在语言层面推崇的“轻盈”与“自由”,在实际的团队协作和大型项目开发中,究竟是解放生产力的“馈赠”,还是悄然套上了一层限制效率的“无形枷锁”?今天,我们就来探讨一下 Go 社区这种独特的“轻框架”理念。

“轻框架”的初心:拥抱简洁、掌控与标准库的力量

Go 社区对“轻框架”的偏爱,并非空穴来风,而是源于对传统大型框架某些弊端的回避,以及对 Go 自身优势的充分自信:

  1. 对“重框架”的反思: Go 的设计者们深谙大型框架(如 Java Spring, Ruby on Rails 等早期版本)在提供便利的同时,也可能带来学习曲线陡峭、过度设计、灵活性受限、性能开销以及难以捉摸的“魔法”等问题。Go 倾向于让开发者更接近底层,更清晰地理解代码的执行路径。
  2. 强大的标准库 “自带电池”: 这是 Go “轻框架”理念的底气所在。Go 标准库异常强大且全面,覆盖了网络、HTTP、JSON/XML 处理、加密、并发原语、测试等核心功能。许多在其他语言中需要依赖框架才能便捷实现的功能,Go 标准库直接提供,鼓励开发者首先“向内求”。
  3. 组合优于继承,接口驱动设计: Go 语言本身的设计哲学鼓励通过组合小而专注的组件来构建复杂的系统,并通过接口实现解耦和多态。这种范式使得代码更易于理解、测试和维护,自然降低了对庞大、层级复杂的框架的需求。
  4. 赋予开发者掌控权: “轻框架”意味着更少的隐藏逻辑和约定。开发者对代码的执行流程有更强的掌控感,这对于构建高性能、高可靠性的系统至关重要。
  5. 鼓励针对性解决方案: Go 社区倾向于针对特定问题选择或构建小而美的库,而不是试图用一个“万能框架”解决所有问题。这促进了 Go 生态中大量高质量、专注的第三方库的涌现。

这种“轻框架”理念带来的益处显而易见:

  • 学习曲线相对平缓: 开发者可以更快地掌握语言核心和标准库,而不必先学习一个庞大的框架体系。
  • 高度灵活性: 开发者可以根据项目具体需求自由选择技术栈、架构模式和第三方库,不受框架的强约束。
  • 性能透明且可控: 避免了大型框架可能引入的未知性能开销。
  • 社区库的“专而精”: 催生了大量专注于解决特定问题的优秀第三方库,开发者可以像搭积木一样按需选用和组合。

对于许多追求极致性能、需要高度定制化、或者开发者经验丰富的场景,Go 的这种“轻框架”倾向无疑是一种解放。

当“轻盈”遭遇“团队”:浮现的挑战与“结构缺失”感

然而,当我们将视角从个体开发者的“自由创作”转向需要多人协作、长期维护的大型复杂系统时,Go 社区这种“轻框架”的理念,有时却可能带来新的挑战,让团队感受到一种“结构缺失”的困扰,甚至演变成效率瓶颈:

  • 缺乏共享约定,导致“决策疲劳”与“风格各异”:

    • 项目结构“百花齐放”: 由于缺乏官方或广泛接受的项目布局“最佳实践”,不同团队甚至同一团队的不同项目都可能采用迥异的目录结构和代码组织方式。这无疑增加了新成员的上手门槛,也使得在项目间复用经验和代码变得困难。
    • 技术选型无尽的“圣战”: 路由用 Gin、Echo 还是 Chi?日志库选 Zap、Logrus 还是标准库 log 加封装?配置管理、数据库迁移、RPC 框架……由于缺乏“一锤定音”的框架推荐,团队常常需要在这些基础组件的选择、集成、封装和推广上耗费大量精力,进行无休止的调研、讨论甚至内部“站队”。
    • “重复发明轮子”的诱惑: 因为没有现成的、整合好的框架提供“全家桶”服务,团队在面对常见需求(如用户认证、权限管理、任务队列)时,更容易倾向于“自己动手,丰衣足食”,这可能导致大量功能相似但实现各异的内部“准轮子”,长期维护成本高昂。
  • 基础设施与横切关注点的“重复建设”:

    • “胶水代码”与“基础设施代码”泛滥: 服务间的API调用、错误处理、链路追踪、监控埋点、配置加载、密钥管理等横切关注点,在缺乏统一框架抽象的情况下,往往需要在每个服务或模块中重复实现或集成,导致大量相似的“胶水代码”和“基础设施代码”。
    • DevOps 实践难以标准化: Dockerfile 的编写、CI/CD 流水线的配置、服务部署脚本等,如果每个项目都“各自为政”,难以形成统一、高效的 DevOps 实践,也增加了运维的复杂性。
  • 团队协作与项目传承的隐形成本:

    • “雪花服务”林立,知识孤岛化: 每个服务都可能因为开发者的不同偏好和技术选型,演变成一个拥有独特“方言”和“习俗”的“小王国”。这使得代码复用、知识共享、人员在项目间的流动都变得更加困难。
    • 维护与交接的“噩梦”: 当一个高度定制化、缺乏统一规范的“轻框架”项目(甚至可以说是“无刻意设计的框架”)交到新人手中,或者核心开发者离职后,其理解难度和维护成本可能会急剧上升。
    • 团队规模扩大后的困境: 随着团队成员增多、项目复杂度上升,缺乏统一框架带来的沟通成本、集成成本和质量控制难度会指数级增长。

对于追求快速迭代、需要保持高度一致性、或者团队成员经验水平参差不齐的团队来说,Go 这种“过度自由”的“轻框架”理念,有时反而会成为一种负担。开发者可能会怀念在 Rails、Django 或 Spring Boot 这类成熟框架中那种“约定优于配置”、开箱即用的便利感。

实践中的平衡:在“轻盈”与“结构”间寻找智慧

面对 Go 社区“轻框架”的理念,以及它在团队协作中可能带来的挑战,我们并非束手无策。关键在于如何在享受其“轻盈”与“自由”的同时,有意识地为团队引入必要的“结构”与“秩序”:

  • 建立团队内部的“强约定”与“最佳实践指南”:
    • 这是最核心的应对策略。即使 Go 官方不提供,团队内部也必须投入精力沉淀和推广一套自己的项目模板、代码规范(如 Uber Go Style Guide)、推荐库列表(形成内部“技术雷达”)、以及针对常见场景的架构模式和解决方案。
    • 通过严格的 Code Review、定期的技术分享、完善的内部文档,确保这些“内部标准”得到遵守和持续迭代。
  • 拥抱“轻框架/微框架”和高质量的第三方库,形成“技术栈共识”:
    • Go 社区有大量优秀的、专注于解决特定问题的库(如 Gin/Echo 用于 Web 开发,GORM/sqlx 用于数据库交互,Zap/Logrus 用于日志等)。团队应在充分调研的基础上,选择并标准化一套适合自己的“技术全家桶”,并围绕它们构建开发模式,避免成员随意引入未经评估的库。
  • 善用代码生成、脚手架与项目模板:
    • 针对常见的样板代码(如 API 接口定义、CRUD 操作、项目初始化),可以开发或引入代码生成工具(如 go-swagger, protoc-gen-go 等)和标准化的项目脚手架,提高开发效率,保证代码风格和结构的一致性。
  • 强化架构设计能力,明确模块化与接口:
    • 在项目初期投入足够的时间进行良好的架构设计,明确服务边界、模块职责、数据模型和接口定义。清晰的架构是应对复杂性的基石,其重要性在“轻框架”环境下尤为突出。
    • 即使没有框架的强制约束,也要通过清晰的模块化和精心设计的接口来降低耦合,提高代码的可测试性和可维护性。
  • 投资于平台工程与 DevOps 工具链:
    • 将基础设施的配置、部署、监控、日志收集等工作尽可能平台化、自动化,减少手动操作和人为错误。
    • 构建统一的 CI/CD 流水线,提供标准化的 Docker 镜像基础,推广基础设施即代码 (IaC) 的理念。
  • 审慎评估并引入“有观点”的 Go 开发平台或框架 (如果真正适合):
    • 近年来,Go 社区也开始涌现一些试图提供更完整解决方案、更具“观点”的开发平台或集成度更高的框架。它们可能内置了项目结构、服务发现、API 定义、部署等方面的约定。如果团队的痛点与这些工具试图解决的问题高度匹配,并且其引入成本和学习曲线可接受,可以考虑审慎评估和引入,它们或许能在 Go 的自由与团队所需的结构之间提供一种新的平衡点。

结语:自由的艺术在于自律与智慧的构建

Go 社区的“轻框架”理念,本质上是将设计的权力和责任更多地交还给了开发者和团队。这既是一种极大的自由,让我们能够摆脱不必要的束缚,打造出极致性能和高度定制化的系统;同时,它也是一种严峻的考验,要求我们具备更高的技术素养、更强的架构能力和更严格的团队自律。

  • 对于经验丰富、纪律性强、且有能力驾驭这种自由的团队或个人,它可以释放出巨大的创造力和效率。
  • 但对于缺乏经验、规范不足、或追求快速标准化的团队,这种“轻盈”也可能导致“结构缺失”的混乱和低效。

最终,Go 的“轻框架”理念是馈赠还是枷锁,并不取决于理念本身,而取决于使用它的人和团队如何理解这种理念,并有意识地、智慧地去构建适合自己的“秩序”与“结构”。在 Go 的世界里,真正的自由,或许并非随心所欲,而是通过团队的共同智慧和高度自律,构建起一套虽“轻”却不失章法的“隐形框架”,从而在享受简洁与高效的同时,也能保障项目的稳健、协作的顺畅与长远的发展。

你和你的团队在 Go 项目中是如何平衡自由与结构的?你们是否也曾感受到“轻框架”或“结构缺失”带来的困扰,又是如何解决的?欢迎在评论区分享你的宝贵经验和思考!


精进有道,更上层楼!

如果你已经掌握了 Go 语言的基础,渴望在语法强化、代码设计以及工程实践等方面获得更深层次的提升,那么我最新上架的Go语言进阶课程正是为你准备的!这门进阶课程,是我多年 Go 实战经验和深度思考的结晶,旨在帮助你突破瓶颈,从“会用 Go”迈向“精通 Go”

扫描下方二维码,立即解锁你的 Go 语言进阶之路!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

追求极简:Docker镜像构建演化史

本文首发于CSDN《程序员》杂志2017.12期,这里是原文地址

本文为《程序员》杂志授权转载,谢绝其他转载。全文如下:

自从2013年dotCloud公司(现已改名为Docker Inc)发布Docker容器技术以来,到目前为止已经有四年多的时间了。这期间Docker技术飞速发展,并催生出一个生机勃勃的、以轻量级容器技术为基础的庞大的容器平台生态圈。作为Docker三大核心技术之一的镜像技术在Docker的快速发展之路上可谓功不可没:镜像让容器真正插上了翅膀,实现了容器自身的重用和标准化传播,使得开发、交付、运维流水线上的各个角色真正围绕同一交付物,“test what you write, ship what you test”成为现实。

对于已经接纳和使用Docker技术在日常开发工作中的开发者而言,构建Docker镜像已经是家常便饭。但如何更高效地构建以及构建出Size更小的镜像却是很多Docker技术初学者心中常见的疑问,甚至是一些老手都未曾细致考量过的问题。本文将从一个Docker用户角度来阐述Docker镜像构建的演化史,希望能起到一定的解惑作用。

一、镜像:继承中的创新

谈镜像构建之前,我们先来简要说下镜像

Docker技术本质上并不是新技术,而是将已有技术进行了更好地整合和包装。内核容器技术以一种完整形态最早出现在Sun公司Solaris操作系统上,Solaris是当时最先进的服务器操作系统。2005年Sun发布了Solaris Container技术,从此开启了内核容器之门。

2008年,以Google公司开发人员为主导实现的Linux Container(即LXC)功能在被merge到Linux内核中。LXC是一种内核级虚拟化技术,主要基于NamespacesCgroups技术,实现共享一个操作系统内核前提下的进程资源隔离,为进程提供独立的虚拟执行环境,这样的一个虚拟的执行环境就是一个容器。本质上说,LXC容器与现在的Docker所提供容器是一样的。Docker也是基于Namespaces和Cgroups技术之上实现的,Docker的创新之处在于其基于Union File System技术定义了一套容器打包规范,真正将容器中的应用及其运行的所有依赖都封装到一种特定格式的文件中去,而这种文件就被称为镜像(即image),原理见下图(引自Docker官网):

img{512x368}
图1:Docker镜像原理

镜像是容器的“序列化”标准,这一创新为容器的存储、重用和传输奠定了基础。并且“坐上了巨轮”的容器镜像可以传播到世界每一个角落,这无疑助力了容器技术的飞速发展。

Solaris Container、LXC等早期内核容器技术不同,Docker为开发者提供了开发者体验良好的工具集,这其中就包括了用于镜像构建的Dockerfile以及一种用于编写Dockerfile领域特定语言。采用Dockerfile方式构建成为镜像构建的标准方法,其可重复、可自动化、可维护以及分层精确控制等特点是采用传统采用docker commit命令提交的镜像所不能比拟的。

二、“镜像是个筐”:初学者的认知

“镜像是个筐,什么都往里面装” – 这句俏皮话可能是大部分Docker初学者对镜像最初认知的真实写照。这里我们用一个例子来生动地展示一下。我们将httpserver.go这个源文件编译为httpd程序并通过镜像发布,考虑到被编译的源码并非本文重点,这里使用了一个极简的demo代码:

//httpserver.go

package main

import (
        "fmt"
        "net/http"
)

func main() {
        fmt.Println("http daemon start")
        fmt.Println("  -> listen on port:8080")
        http.ListenAndServe(":8080", nil)
}

接下来,我们来编写一个用于构建目标image的Dockerfile:

From ubuntu:14.04

RUN apt-get update \
      && apt-get install -y software-properties-common \
      && add-apt-repository ppa:gophers/archive \
      && apt-get update \
      && apt-get install -y golang-1.9-go \
                            git \
      && rm -rf /var/lib/apt/lists/*

ENV GOPATH /root/go
ENV GOROOT /usr/lib/go-1.9
ENV PATH="/usr/lib/go-1.9/bin:${PATH}"

COPY ./httpserver.go /root/httpserver.go
RUN go build -o /root/httpd /root/httpserver.go \
      && chmod +x /root/httpd

WORKDIR /root
ENTRYPOINT ["/root/httpd"]

构建这个Image:

# docker build -t repodemo/httpd:latest .
//...构建输出这里省略...

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd                   latest              183dbef8eba6        2 minutes ago       550MB
ubuntu                           14.04               dea1945146b9        2 months ago        188MB

整个镜像的构建过程因环境而定。如果您的网络速度一般,这个构建过程可能会花费你10多分钟甚至更多。最终如我们所愿,基于repodemo/httpd:latest这个镜像的容器可以正常运行:

# docker run repodemo/httpd
http daemon start
  -> listen on port:8080

一个Dockerfile最终生产出一个镜像。Dockerfile由若干Command组成,每个Command执行结果都会单独形成一个layer。我们来探索一下构建出来的镜像:

# docker history 183dbef8eba6
IMAGE               CREATED             CREATED BY                                      SIZE                COMMENT
183dbef8eba6        21 minutes ago      /bin/sh -c #(nop)  ENTRYPOINT ["/root/httpd"]   0B
27aa721c6f6b        21 minutes ago      /bin/sh -c #(nop) WORKDIR /root                 0B
a9d968c704f7        21 minutes ago      /bin/sh -c go build -o /root/httpd /root/h...   6.14MB
... ...
aef7700a9036        30 minutes ago      /bin/sh -c apt-get update       && apt-get...   356MB
.... ...
<missing>           2 months ago        /bin/sh -c #(nop) ADD file:8f997234193c2f5...   188MB

我们去除掉那些Size为0或很小的layer,我们看到三个size占比较大的layer,见下图:

img{512x368}
图2:Docker镜像分层探索

虽然Docker引擎利用r缓存机制可以让同主机下非首次的镜像构建执行得很快,但是在Docker技术热情催化下的这种构建思路让docker镜像在存储和传输方面的优势荡然无存,要知道一个ubuntu-server 16.04的虚拟机ISO文件的大小也就不过600多MB而已。

三、”理性的回归”:builder模式的崛起

Docker使用者在新技术接触初期的热情“冷却”之后迎来了“理性的回归”。根据上面分层镜像的图示,我们发现最终镜像中包含构建环境是多余的,我们只需要在最终镜像中包含足够支撑httpd运行的运行环境即可,而base image自身就可以满足。于是我们应该去除不必要的中间层:

img{512x368}
图3:去除不必要的分层

现在问题来了!如果不在同一镜像中完成应用构建,那么在哪里、由谁来构建应用呢?至少有两种方法:

  1. 在本地构建并COPY到镜像中;
  2. 借助构建者镜像(builder image)构建。

不过方法1本地构建有很多局限性,比如:本地环境无法复用、无法很好融入持续集成/持续交付流水线等。借助builder image进行构建已经成为Docker社区的一个最佳实践,Docker官方为此也推出了各种主流编程语言的官方base image,比如:gojava、node、python以及ruby等。借助builder image进行镜像构建的流程原理如下图:

img{512x368}
图4:借助builder image进行镜像构建的流程图

通过原理图,我们可以看到整个目标镜像的构建被分为了两个阶段:

  1. 第一阶段:构建负责编译源码的构建者镜像;
  2. 第二阶段:将第一阶段的输出作为输入,构建出最终的目标镜像。

我们选择golang:1.9.2作为builder base image,构建者镜像的Dockerfile.build如下:

// Dockerfile.build

FROM golang:1.9.2

WORKDIR /go/src
COPY ./httpserver.go .

RUN go build -o httpd ./httpserver.go

执行构建:

# docker build -t repodemo/httpd-builder:latest -f Dockerfile.build .

构建好的应用程序httpd放在了镜像repodemo/httpd-builder中的/go/src目录下,我们需要一些“胶水”命令来连接两个构建阶段,这些命令将httpd从构建者镜像中取出并作为下一阶段构建的输入:

# docker create --name extract-httpserver repodemo/httpd-builder
# docker cp extract-httpserver:/go/src/httpd ./httpd
# docker rm -f extract-httpserver
# docker rmi repodemo/httpd-builder

通过上面的命令,我们将编译好的httpd程序拷贝到了本地。下面是目标镜像的Dockerfile:

//Dockerfile.target
From ubuntu:14.04

COPY ./httpd /root/httpd
RUN chmod +x /root/httpd

WORKDIR /root
ENTRYPOINT ["/root/httpd"]

接下来我们来构建目标镜像:

# docker build -t repodemo/httpd:latest -f Dockerfile.target .

我们来看看这个镜像的“体格”:

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd                   latest              e3d009d6e919        12 seconds ago      200MB

200MB!目标镜像的Size降为原来的 1/2 还多。

四、“像赛车那样减去所有不必要的东西”:追求最小镜像

前面我们构建出的镜像的Size已经缩小到200MB,但这还不够。200MB的“体格”在我们的网络环境下缓存和传输仍然很难令人满意。我们要为镜像进一步减重,减到尽可能的小,就像赛车那样,为了能减轻重量将所有不必要的东西都拆除掉:我们仅保留能支撑我们的应用运行的必要库、命令,其余的一律不纳入目标镜像。当然不仅仅是Size上的原因,小镜像还有额外的好处,比如:内存占用小,启动速度快,更加高效;不会因其他不必要的工具、库的漏洞而被攻击,减少了“攻击面”,更加安全。

img{512x368}
图5:目标镜像还能更小些吗?

一般应用开发者不会从scratch镜像从头构建自己的base image以及目标镜像的,开发者会挑选适合的base image。一些“蝇量级”甚至是“草量级”的官方base image的出现为这种情况提供了条件。

img{512x368}
图6:一些base image的Size比较(来自imagelayers.io截图)

从图中看,我们有两个选择:busyboxalpine

单从image的size上来说,busybox更小。不过busybox默认的libc实现是uClibc,而我们通常运行环境使用的libc实现都是glibc,因此我们要么选择静态编译程序,要么使用busybox:glibc镜像作为base image。

而 alpine image 是另外一种蝇量级 base image,它使用了比 glibc 更小更安全的 musl libc 库。 不过和 busybox image 相比,alpine image 体积还是略大。除了因为 musl比uClibc 大一些之外,alpine还在镜像中添加了自己的包管理系统apk,开发者可以使用apk在基于alpine的镜像中添 加需要的包或工具。因此,对于普通开发者而言,alpine image显然是更佳的选择。不过alpine使用的libc实现为musl,与基于glibc上编译出来的应用程序不兼容。如果直接将前面构建出的httpd应用塞入alpine,在容器启动时会遇到下面错误,因为加载器找不到glibc这个动态共享库文件:

standard_init_linux.go:185: exec user process caused "no such file or directory"

对于Go应用来说,我们可以采用静态编译的程序,但一旦采用静态编译,也就意味着我们将失去一些libc提供的原生能力,比如:在linux上,你无法使用系统提供的DNS解析能力,只能使用Go自实现的DNS解析器。

我们还可以采用基于alpine的builder image,golang base image就提供了alpine 版本。 我们就用这种方式构建出一个基于alpine base image的极小目标镜像。

img{512x368}
图7:借助 alpine builder image 进行镜像构建的流程图

我们新建两个用于 alpine 版本目标镜像构建的 Dockerfile:Dockerfile.build.alpine 和Dockerfile.target.alpine:

//Dockerfile.build.alpine
FROM golang:alpine

WORKDIR /go/src
COPY ./httpserver.go .

RUN go build -o httpd ./httpserver.go

// Dockerfile.target.alpine
From alpine

COPY ./httpd /root/httpd
RUN chmod +x /root/httpd

WORKDIR /root
ENTRYPOINT ["/root/httpd"]

构建builder镜像:

#  docker build -t repodemo/httpd-alpine-builder:latest -f Dockerfile.build.alpine .

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED              SIZE
repodemo/httpd-alpine-builder    latest              d5b5f8813d77        About a minute ago   275MB

执行“胶水”命令:

# docker create --name extract-httpserver repodemo/httpd-alpine-builder
# docker cp extract-httpserver:/go/src/httpd ./httpd
# docker rm -f extract-httpserver
# docker rmi repodemo/httpd-alpine-builder

构建目标镜像:

# docker build -t repodemo/httpd-alpine -f Dockerfile.target.alpine .

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd-alpine            latest              895de7f785dd        13 seconds ago      16.2MB

16.2MB!目标镜像的Size降为不到原来的十分之一。我们得到了预期的结果。

五、“要有光,于是便有了光”:对多阶段构建的支持

至此,虽然我们实现了目标Image的最小化,但是整个构建过程却是十分繁琐,我们需要准备两个Dockerfile、需要准备“胶水”命令、需要清理中间产物等。作为Docker用户,我们希望用一个Dockerfile就能解决所有问题,于是就有了Docker引擎对多阶段构建(multi-stage build)的支持。注意:这个特性非常新,只有Docker 17.05.0-ce及以后的版本才能支持。

现在我们就按照“多阶段构建”的语法将上面的Dockerfile.build.alpine和Dockerfile.target.alpine合并到一个Dockerfile中:

//Dockerfile

FROM golang:alpine as builder

WORKDIR /go/src
COPY httpserver.go .

RUN go build -o httpd ./httpserver.go

From alpine:latest

WORKDIR /root/
COPY --from=builder /go/src/httpd .
RUN chmod +x /root/httpd

ENTRYPOINT ["/root/httpd"]

Dockerfile的语法还是很简明和易理解的。即使是你第一次看到这个语法也能大致猜出六成含义。与之前Dockefile最大的不同在于在支持多阶段构建的Dockerfile中我们可以写多个“From baseimage”的语句了,每个From语句开启一个构建阶段,并且可以通过“as”语法为此阶段构建命名(比如这里的builder)。我们还可以通过COPY命令在两个阶段构建产物之间传递数据,比如这里传递的httpd应用,这个工作之前我们是使用“胶水”代码完成的。

构建目标镜像:

# docker build -t repodemo/httpd-multi-stage .

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd-multi-stage       latest              35e494aa5c6f        2 minutes ago       16.2MB

我们看到通过多阶段构建特性构建的Docker Image与我们之前通过builder模式构建的镜像在效果上是等价的。

六、来到现实

沿着时间的轨迹,Docker 镜像构建走到了今天。追求又快又小的镜像已成为了 Docker 社区 的共识。社区在自创 builder 镜像构建的最佳实践后终于迎来了多阶段构建这柄利器,从此构建 出极简的镜像将不再困难。


微博:@tonybai_cn
微信公众号:iamtonybai
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats