标签 Go 下的文章

大项目构建太慢?Brad Fitzpatrick 提议引入 -cachelink 降低测试等待时间

本文永久链接 – https://tonybai.com/2026/02/05/brad-fitzpatrick-cachelink-reduce-go-test-wait-time

大家好,我是Tony Bai。

在维护大型 Go 单体仓库(Monorepo)时,你是否遇到过这样的场景:明明只是修改了测试的运行参数(比如 -run 的正则),或者在不同的 CI 节点上运行同一个包的测试,却发现 go test 依然在缓慢地执行“链接(Linking)”步骤?

对于代码量巨大的项目,链接过程往往是构建链条中最耗时的一环。为了解决这一痛点,Go 社区领袖、Tailscale 核心开发者 Brad Fitzpatrick 近日提交了 #77349 提案,建议引入 -cachelink 标志。这一看似微小的改动,有望在分布式测试和重复执行场景下,显著“挤出”原本被浪费的等待时间。

被忽视的瓶颈:重复链接的代价

Go 的构建缓存(GOCACHE)机制已经非常高效,它能很好地缓存编译阶段的中间产物(.a 文件)。但是,当你运行 go test 时,工具链的最后一步——将所有依赖链接成一个可执行的测试二进制文件——通常是“一次性”的。

这意味着,即使你的代码没有任何变动,只要测试指令稍有变化(例如多次运行 go test 但指定不同的测试用例),Go 工具链往往会重新触发链接器。

# 第一次运行:链接 + 执行
$ go test -run=^TestFoo$ ./pkg/

# 第二次运行(代码未变):依然触发重新链接 + 执行
$ go test -run=^TestBar$ ./pkg/

对于依赖项数以千计的大型项目,链接过程可能长达数秒甚至更久。在本地频繁调试或 CI 流水线中,这些重复的秒数累积起来就是巨大的时间浪费。

Brad 的解法:-cachelink

Brad Fitzpatrick 的提案非常直接:允许将链接器输出的最终测试二进制文件,也写入 GOCACHE。

通过显式开启 -cachelink,go test 的行为将发生变化:

  1. 它会基于构建输入(代码、依赖、环境变量等)计算哈希。
  2. 如果发现 GOCACHE 中已经存在已链接好的测试二进制文件。
  3. 直接跳过链接步骤,复用该文件进行测试。

这样,上述例子中的第二次调用将瞬间启动,因为最耗时的构建步骤被完全省去了。

为什么不做成默认行为?

既然能提速,为什么不默认开启?Brad 在提案讨论中给出了专业的权衡分析:

空间 vs. 时间

测试二进制文件通常包含完整的符号表和调试信息,体积比普通的中间对象文件大得多。如果默认缓存所有测试二进制文件,开发者的磁盘空间(GOCACHE)会迅速膨胀。因此,这是一个以空间换时间的策略,更适合由开发者根据项目规模手动开启,或者在 CI 环境中配置。

分布式 CI 的“加速器”

该提案真正的杀手级应用场景是 分布式 CI 系统。

许多大厂使用 GOCACHEPROG 来在构建集群间共享缓存。在典型的 CI 流程中,测试任务往往会被分片(Sharding)到数十台机器上并发执行。

  • 现状:每一台机器拉取源码后,都需要各自进行一次链接操作,浪费计算资源。
  • 引入 -cachelink 后:第一台完成构建的机器会将二进制文件上传到共享缓存。后续几十台机器直接下载该文件并运行,全集群的链接成本降为“1”。

不仅是 go test -c

有经验的开发者可能会问:“我为什么不直接用 go test -c 手动编译成二进制文件,然后分发运行呢?”

Brad 指出,手动管理二进制文件会绕过 Go 原生的测试结果缓存。而 -cachelink 的精妙之处在于,它既复用了二进制文件,又保留了 go test 完整的缓存与输出管理体验。你不需要编写复杂的脚本来管理这些文件,一切依然由 go 命令自动处理。

小结

目前,该提案已进入活跃评审阶段,并有了初步的代码实现。对于深受“构建慢”和“测试慢”困扰的大型项目维护者来说,这无疑是一个值得期待的性能优化利器。我们有望在 Go 1.27 或后续版本中见证它的落地。

资料链接:https://github.com/golang/go/issues/77349


聊聊你的构建之苦

链接时间正在成为你的“带薪摸鱼”理由吗?在你的项目中,go test 运行一次通常需要多久?你为了缩短测试反馈周期,还尝试过哪些黑科技(比如 GOCACHEPROG)?

欢迎在评论区分享你的实战经验或吐槽!让我们一起期待 -cachelink 的落地。


还在为“复制粘贴喂AI”而烦恼?我的新专栏 AI原生开发工作流实战 将带你:

  • 告别低效,重塑开发范式
  • 驾驭AI Agent(Claude Code),实现工作流自动化
  • 从“AI使用者”进化为规范驱动开发的“工作流指挥家”

扫描下方二维码,开启你的AI原生开发之旅。


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

承认吧,AI 写的代码,平均质量已经超过了 80% 的人类程序员!

本文永久链接 – https://tonybai.com/2026/02/05/ai-code-quality-surpasses-80-percent-of-human-programmers

大家好,我是Tony Bai。

随着 Claude Code、Gemini Cli、OpenCode 等 AI 智能体编程工具的爆火,技术圈里出现了一种流行的论调:

  • “AI 写的代码质量不高,全是 Bug。”
  • “简单的还行,复杂的还得靠人。”
  • “AI 也就是个实习生水平。”

这些批评有道理吗?当然有。AI 确实会产生幻觉,逻辑偶尔会断裂。

但这种批评忽略了一个最基本的事实:我们拿来对比的基准(Baseline),往往是我们心目中“理想的资深工程师”。

请现在、立刻、马上打开你公司的 Github私有库或GitLab,随便点开一个两年前的遗留项目,看看里面的代码:

  • 那些随意的变量命名 tmp, data1;
  • 那些长达 800 行、没有任何注释的上帝函数;
  • 那些为了赶上线而写死的 Magic Number;
  • 那些复制粘贴了 5 遍却忘了改参数的逻辑……
  • … …

这才是人类编码的常态。

如果我们摘下“幸存者偏差”的滤镜,从全局视角的大数定律来看,一个残酷的真相正在浮出水面:

AI 写的代码,虽然缺乏神韵,但其平均质量,可能已经超越了80%的人类程序员。

人类的“熵增” vs. AI 的“基准线”

人类写代码,本质上是一个对抗熵增的过程。而人类在这个过程中充满了弱点:

  • 情绪与疲劳:下午 5 点写的代码,质量通常低于上午 10 点。为了赶着回家,我们会下意识地省略错误处理(catch (e) { // TODO })。
  • 知识盲区:即使是高级工程师,也记不住所有正则表达式的语法,或者某个冷门 API 的最佳实践。
  • 懒惰:没人喜欢写文档,没人喜欢写单元测试。

相比之下,AI 简直就是代码规范的狂热信徒。

  • 标准化:只要你 Prompt 给对了,它生成的代码默认符合 PEP8、Google Style、Effective Go 或任何你指定的规范。
  • 全面性:它不厌其烦地写 Docstring,写类型注解,写样板代码。这些人类最讨厌干的脏活,是 AI 的舒适区。
  • 无情绪:它不会因为被产品经理气到了,就故意写一段晦涩难懂的代码报复社会。

AI 也许写不出 Linux 内核那样的神作(上限),但它绝对不会写出连缩进都乱七八糟的垃圾。它极大地拉高了代码质量的底线。对于商业软件而言,底线的提升,往往比上限的突破更有价值。

自动驾驶的启示:一场“平庸”的胜利

我们可以用自动驾驶来做一个绝佳的类比。

每当特斯拉撞上路桩,媒体都会大肆报道。人们会说:“你看,机器还是不靠谱。”

但我们忽略了,此时此刻,全世界有成千上万的人类司机正在因为酒驾、看手机、打瞌睡、路怒症而制造车祸。

统计数据最终会证明:只要 AI 的故障率低于人类的平均故障率,它就是巨大的进步。

编程也是一样。

AI 编程的终局,不是写出完美无瑕的代码,而是写出比“人类平均水平”更可靠的代码。

当 AI 写的代码自带测试、自带文档、没有低级语法错误时,它就已经赢了。它消灭了“垃圾代码”。这将是一场“平庸的胜利”——软件工程将不再依赖个别天才的灵光一闪,而是依赖工业化、标准化的稳定产出。

范式转移:从“写代码”到“审代码”

如果承认 AI 已经是中级工程师水平,那么人类的角色必须发生根本性的转变。

以前,我们是 Coder(代码作者)。现在,我们被迫成为了 Reviewer(审查者)和 Architect(架构师)。

这其实对人类提出了更高的要求。

  • 阅读理解能力:AI 一秒钟生成 100 行代码,你是否有能力在 10 秒内看出其中的逻辑漏洞?
  • 系统设计能力:既然“搬砖”的工作 AI 做得比你好,你必须去思考“砖头该怎么垒”——系统架构、数据模型、业务边界。

更关键的是“自动化验证”。

既然人类读代码的速度跟不上 AI 写代码的速度,我们就必须建立一套“机器审查机器”的机制。

  • AI 写代码,AI 写测试。
  • AI 写实现,Compiler/Linter 做检查。

未来的软件质量,将不取决于你手写了多少行代码,而取决于你设计了多严密的护栏(Guardrails)和验收标准(Spec)。

小结:拥抱“无人编程”时代

我们可能正在经历软件工程领域的“无人驾驶时刻”。

初期,我们需要“安全员”(人类程序员)手扶方向盘,随时准备接管。

但随着模型能力的迭代(如 GPT-5.2、Gemini 3.0 Pro、Claude 4.5 Opus等),接管的频率会越来越低。

最终,“人类手写代码”可能会被视为一种不安全的行为——就像现在“酒后驾车”一样。

因为人类是不稳定的、不可控的。而经过严格 Prompt 工程和测试约束的 AI,是稳定、可控、可追溯的。

承认 AI 比我们写得好,并不丢人。

这意味着我们可以从繁琐的语法细节中解放出来,去追求那 1% 的“神来之笔”——创造力、同理心和对未来的想象。


你怎么看这个“80%”?

你认同这个残酷的结论吗?在你看来,AI 生成的代码最让你放心的地方在哪里?最让你担心的地方又在哪里?欢迎在评论区开启你的辩论模式!

如果这篇文章戳中了你的“痛点”,别忘了点个【赞】和【在看】,并转发给你的开发伙伴,看看他们敢不敢“承认”!


如何做 AI 的“安全员”?

AI 的代码质量已经超越了大多数初级工程师。作为一个“AI 时代的 Tech Lead”,你该如何建立一套机制,来驾驭这股庞大的算力?

在我的极客时间专栏《AI 原生开发工作流实战》中,我们不谈如何写代码,而是谈如何审代码,如何构建 Test-Driven 的自动化护栏

  • 如何利用 Claude Code 自动生成高覆盖率的测试用例?
  • 如何构建 AI Code Reviewer 来预审代码?
  • 如何用 Spec 约束 AI,防止幻觉?

让我们一起,从“写代码的人”,进化为“定义代码标准的人”。

扫描下方二维码,开启你的进阶之旅。


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 AI原生开发工作流实战 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com
这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats