标签 Ubuntu 下的文章

使用istio治理微服务入门

近两年微服务架构流行,主流互联网厂商内部都已经微服务化,初创企业虽然技术积淀不行,但也通过各种开源工具拥抱微服务。再加上容器技术赋能,Kubernetes又添了一把火,微服务架构已然成为当前软件架构设计的首选。

但微服务化易弄,服务治理难搞!

一、微服务的“痛点”

微服务化没有统一标准,多数是进行业务领域垂直切分,业务按一定的粒度划分职责,并形成清晰、职责单一的服务接口,这样每一块规划为一个微服务。微服务之间的通信方案相对成熟,开源领域选择较多的有RPC或RESTful API方案,比如:gRPCapache thrift等。这些方案多偏重于数据如何打包、传输与解包,对服务治理的内容涉及甚少。

微服务治理是头疼的事,也是微服务架构中的痛点治理这个词有多元含义,很难下达一个精确定义,这里可以像小学二年级学生那样列出治理的诸多近义词:管理、控制、规则、掌控、监督、支配、规定、统治等。对于微服务而言,治理体现在以下诸多方面:

  • 服务注册与发现
  • 身份验证与授权
  • 服务的伸缩控制
  • 反向代理与负载均衡
  • 路由控制
  • 流量切换
  • 日志管理
  • 性能度量、监控与调优
  • 分布式跟踪
  • 过载保护
  • 服务降级
  • 服务部署与版本升级策略支持
  • 错误处理
  • … …

从微服务治理角度来说,微服务其实是一个“大系统”,要想将这个大系统全部落地,绝非易事,尤其是之前尚没有一种特别优雅的技术方案。多数方案(比如:dubbogo-kit等。)都或多或少地对应用逻辑有一定的侵入性,让业务开发人员不能只focus到业务本身,还要关心那些“治理”逻辑。并且市面上内置了微服务治理逻辑的框架较少,且很多编程语言相关。这种情况下,大厂多选择自研或基于某个框架改造,小厂一般只能“东拼西凑”一些“半成品”凑合着使用,就这样微服务也走过了若干年。

二、Service Mesh横空出世,istio带来“福音”

我不知道在没有TCP/IP协议的年代,主机和主机之间的应用通信时是否需要应用关心底层通信协议实现逻辑。但是和TCP/IP诞生的思想类似,在微服务使用多年后,人们发现需要独立地抽象出一层逻辑网络,专门用于“微服务通信与治理策略的落地”,让应用只关心业务,把服务治理的事情全部交由“这一层”去处理。

img{512x368}
图:传统微服务之间的微服务治理逻辑的位置

img{512x368}
图:微服务治理逻辑被独立出来之后的位置

由“Service Govern Logic”这一层组成的逻辑网络被定义为service mesh,每个微服务都包含一个service mesh的端点。

“Service Mesh”概念还非常年轻,这个词在国内被翻译为“服务网格”或“服务啮合层”,我们这里就用Service Mesh这个英文词。这里摘录一下ServiceMesh中文社区上的一篇名为“年度盘点2017之Service Mesh:群雄逐鹿烽烟起”的文章中对Service Mesh概念的回顾:

  • 在 2016 年年初,“Service Mesh”还只是 Buoyant 公司的内部词汇,而之后,它开始逐步走向社区:
  • 2016 年 9 月 29 日在 SF Microservices 上,“Service Mesh”这个词汇第一次在公开场合被使用。这标志着“Service Mesh”这个词,从 Buoyant 公司走向社区。
  • 2016 年 10 月,Alex Leong 开始在 Buoyant 公司的官方 Blog 中连载系列文章“A Service Mesh for Kubernetes”。随着“The Services must Mesh”口号的喊出,Buoyant 和 Linkerd 开始 Service Mesh 概念的布道。
  • 2017 年 4 月 25 日,William Morgan 发布博文“What’s a service mesh? And why do I need one?”。正式给 Service Mesh 做了一个权威定义。

而Service Mesh真正引起大家关注要源于istio项目的开源发布。为什么呢?个人觉得还是因为“爹好”!istio项目由Google、IBM共同合作创建,lyft公司贡献了envoy项目将作为istio service mesh的data panel。Google、IBM的影响力让Service Mesh概念迅速传播,同时也让大家认识到了istio项目在service mesh领域的重要性,于是纷纷选择积极支持并将自己的产品或项目与istio项目集成。

istio项目是service mesh概念的最新实现,旨在所有主流集群管理平台上提供service mesh层,初期以实现Kubernetes上的服务治理层为目标。它由控制平面和数据平面组成(是不是感觉和SDN的设计理念相似啊)。控制平面由Go语言实现,包括pilot、mixer、auth三个组件;数据平面功能暂由envoy在pod中以sidecar的部署形式提供。下面是官方的架构图:

img{512x368}
图:istio架构图(来自官网)

sidecar中envoy代理了pod中真正业务container的所有进出流量,并对这些流量按照控制平面设定的“治理逻辑”进行处理。而这一切对pod中的业务应用是透明的,开发人员可以专心于业务逻辑,而无需再关心微服务治理的逻辑。istio代表的service mesh的设计理念被认为是下一代“微服务统一框架”,甚至有人认为是微服务框架演化的终点。

istio于2017 年 5 月 24 日发布了0.1 release 版本,截至目前为止istio的版本更新到v0.4.0,演进速度相当快,不过目前依然不要用于生产环境,至少要等到1.0版本发布吧。但对于istio的早期接纳者而言,现在正是深入研究istio的好时机。在本篇的接下来内容中,我们将带领大家感性的认识一下istio,入个门儿。

三、istio安装

istio目前支持最好的就是kubernetes了,因此我们的实验环境就定在kubernetes上。至于版本,istio当前最新版本为0.4.0,这个版本据说要k8s 1.7.4及以上版本用起来才不会发生小毛病:)。我的k8s集群是v1.7.6版本的,恰好满足条件。下面是安装过程:(Node上的os是ubuntu 16.04)

# wget -c https://github.com/istio/istio/releases/download/0.4.0/istio-0.4.0-linux.tar.gz

解压后,进入istio-0.4.0目录,

# ls -F
bin/  install/  istio.VERSION  LICENSE  README.md  samples/

# cat istio.VERSION
# DO NOT EDIT THIS FILE MANUALLY instead use
# install/updateVersion.sh (see install/README.md)
export CA_HUB="docker.io/istio"
export CA_TAG="0.4.0"
export MIXER_HUB="docker.io/istio"
export MIXER_TAG="0.4.0"
export PILOT_HUB="docker.io/istio"
export PILOT_TAG="0.4.0"
export ISTIOCTL_URL="https://storage.googleapis.com/istio-release/releases/0.4.0/istioctl"
export PROXY_TAG="0.4.0"
export ISTIO_NAMESPACE="istio-system"
export AUTH_DEBIAN_URL="https://storage.googleapis.com/istio-release/releases/0.4.0/deb"
export PILOT_DEBIAN_URL="https://storage.googleapis.com/istio-release/releases/0.4.0/deb"
export PROXY_DEBIAN_URL="https://storage.googleapis.com/istio-release/releases/0.4.0/deb"
export FORTIO_HUB="docker.io/istio"
export FORTIO_TAG="0.4.2"

# cd install/kubernetes

我们先不用auth功能,因此使用istio.yaml这个文件进行istio组件安装:

# kubectl apply -f istio.yaml
namespace "istio-system" created
clusterrole "istio-pilot-istio-system" created
clusterrole "istio-initializer-istio-system" created
clusterrole "istio-mixer-istio-system" created
clusterrole "istio-ca-istio-system" created
clusterrole "istio-sidecar-istio-system" created
clusterrolebinding "istio-pilot-admin-role-binding-istio-system" created
clusterrolebinding "istio-initializer-admin-role-binding-istio-system" created
clusterrolebinding "istio-ca-role-binding-istio-system" created
clusterrolebinding "istio-ingress-admin-role-binding-istio-system" created
clusterrolebinding "istio-sidecar-role-binding-istio-system" created
clusterrolebinding "istio-mixer-admin-role-binding-istio-system" created
configmap "istio-mixer" created
service "istio-mixer" created
serviceaccount "istio-mixer-service-account" created
deployment "istio-mixer" created
customresourcedefinition "rules.config.istio.io" created
customresourcedefinition "attributemanifests.config.istio.io" created
... ...
customresourcedefinition "reportnothings.config.istio.io" created
attributemanifest "istioproxy" created
attributemanifest "kubernetes" created
stdio "handler" created
logentry "accesslog" created
rule "stdio" created
metric "requestcount" created
metric "requestduration" created
metric "requestsize" created
metric "responsesize" created
metric "tcpbytesent" created
metric "tcpbytereceived" created
prometheus "handler" created
rule "promhttp" created
rule "promtcp" created
kubernetesenv "handler" created
rule "kubeattrgenrulerule" created
kubernetes "attributes" created
configmap "istio" created
customresourcedefinition "destinationpolicies.config.istio.io" created
customresourcedefinition "egressrules.config.istio.io" created
customresourcedefinition "routerules.config.istio.io" created
service "istio-pilot" created
serviceaccount "istio-pilot-service-account" created
deployment "istio-pilot" created
service "istio-ingress" created
serviceaccount "istio-ingress-service-account" created
deployment "istio-ingress" created
serviceaccount "istio-ca-service-account" created
deployment "istio-ca" created

注:我还曾在k8s v1.7.3上安装过istio 0.3.0版本,但在创建组件时会报下面错误(这个错误可能会导致后续addon安装后工作不正常):

unable to recognize "istio.yaml": no matches for config.istio.io/, Kind=metric
unable to recognize "istio.yaml": no matches for config.istio.io/, Kind=metric
unable to recognize "istio.yaml": no matches for config.istio.io/, Kind=metric
unable to recognize "istio.yaml": no matches for config.istio.io/, Kind=metric
unable to recognize "istio.yaml": no matches for config.istio.io/, Kind=metric
unable to recognize "istio.yaml": no matches for config.istio.io/, Kind=metric

安装后,我们在istio-system这个namespace下会看到如下pod和service在运行(由于istio的各个组件的image size都不小,因此pod状态变为running需要一丢丢时间,耐心等待):

# kubectl get pods -n istio-system
NAME                             READY     STATUS    RESTARTS   AGE
istio-ca-1363003450-jskp5        1/1       Running   0          3d
istio-ingress-1005666339-c7776   1/1       Running   4          3d
istio-mixer-465004155-twhxq      3/3       Running   24         3d
istio-pilot-1861292947-6v37w     2/2       Running   18         3d

# kubectl get svc -n istio-system
NAME            CLUSTER-IP       EXTERNAL-IP   PORT(S)                                                   AGE
istio-ingress   10.98.10.87      <pending>     80:31759/TCP,443:25804/TCP                         4d
istio-mixer     10.109.244.155   <none>        9091/TCP,15004/TCP,9093/TCP,9094/TCP,9102/TCP,9125/UDP,42422/TCP   4d
istio-pilot     10.105.80.55     <none>        15003/TCP,443/TCP                                              4d

istio安装成功!

四、服务治理策略验证

接下来我们来用几个例子验证一下istio在服务治理方面的能力!(istio自带一些完整的例子,比如bookinfo,用于验证服务治理的能力,但这里先不打算用这些例子)

1、验证环境和拓扑

我们先来看一下验证环境的示意图:
img{512x368}

我们看到在service mesh中部署了两个service: server_a和service_b,前者调用后者完成某项业务,后者则调用外部服务完成业务逻辑。

  • service_a: 模拟pay服务,在收到client请求后,进行pay处理,并将处理结果通过service_b提供的msg notify服务下发给user。该服务的endpoint为/pay;
  • service_b: 模拟notify服务,在收到service_a请求后,将message转发给external service,完成notify逻辑。该服务的endpoint为/notify;
  • external service: 位于service mesh之外。
  • client:我们使用curl模拟。

img{512x368}

我们先来部署service_a和service_b的v0.1版本:

以service_a的部署为例, service_a的deployment文件如下:

//svca-v0.1.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: svca
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: svca
        version: v0.1
    spec:
      containers:
      - name: svca
        image: docker.io/bigwhite/istio-demo-svca:v0.1
        imagePullPolicy: Always
---
apiVersion: v1
kind: Service
metadata:
  name: svca
  labels:
    app: svca
spec:
  ports:
  - port: 80
    targetPort: 8080
    protocol: TCP
  selector:
    app: svca

注意,我们部署service_a时不能直接使用kubectl apply -f svca-v0.1.yaml,而是要apply经过istioctl(需将istio安装目录下的bin放入PATH)处理过的yaml,以注入sidecar容器。当然也可以配置为自动为每个k8s启动的pod注入sidecar,但我们这里没有使用自动注入。我们执行下面命令:

# kubectl apply -f <(istioctl kube-inject -f svca-v0.1.yaml)
deployment "svca" created
service "svca" created

# kubectl get pods
NAME                               READY     STATUS    RESTARTS   AGE
svca-1997590752-tpwjf              2/2       Running   0          2m

同样的方法,我们来创建svcb:v0.1:

# kubectl apply -f <(istioctl kube-inject -f svcb-v0.1.yaml)
deployment "svcb" created
service "svcb" created

我们看到istio向每个pod中插入一个sidecar container,这个就是前面说的envoy,只不过container名字为istio-proxy。

接下来,我们把那个external service启动起来:

# nohup ./msgd > 1.log & 2>&1
[1] 9423

实验环境ok了。下面我们来验证一下业务是否是通的。

2、egress rule

按照之前我们的设定,我们使用curl去访问service_a服务的/pay端点,我们查看一下svca服务的ip和端口:

# kubectl get svc
NAME               CLUSTER-IP       EXTERNAL-IP   PORT(S)
svca               10.105.38.238    <none>        80/TCP                                         9h
svcb               10.105.119.194   <none>        80/TCP                                         9h

我们访问一下svca服务,svca的服务地址可以通过kubectl get svc查到:

# curl {svca_ip}/pay

查看svca和svcb的日志:

//service_a的日志:

service_a:v0.1 is serving the request...
service_a:v0.1 pays ok
&{500 Internal Server Error 500 HTTP/1.1 1 1 map[X-Content-Type-Options:[nosniff] Date:[Tue, 02 Jan 2018 15:41:50 GMT] Content-Length:[66] Content-Type:[text/plain; charset=utf-8]] 0xc420058d40 66 [] false false map[] 0xc4200eaf00 <nil>}
service_a:v0.1 notify customer ok

// service_b的日志:
&{GET /notify?msg=service_a:v0.1-pays-ok HTTP/1.1 1 1 map[User-Agent:[Go-http-client/1.1] Accept-Encoding:[gzip]] {} <nil> 0 [] false svcb map[] map[] <nil> map[] 127.0.0.1:58778 /notify?msg=service_a:v0.1-pays-ok <nil> <nil> <nil> 0xc4200fa3c0}
service_b:v0.1 is serving the request...
service_b:v0.1 send msg error: Get http://10.100.35.27:9997/send?msg=service_a:v0.1-pays-ok: EOF

我们看到service_a和service_b都返回了错误日志(注意:go http get方法对于non-2xx response不会返回错误,我们只是看到了response中的500状态码才意识到错误的存在)。其中源头在service_b,原因是其连不上那个external service!那么为什么连不上external service呢?这是由于缺省情况下,启用了Istio的服务是无法访问外部URL的,这是因为Pod中的iptables把所有外发传输都转向到了Sidecar代理,而这一代理只处理集群内的访问目标。因此位于service mesh内的服务svcb无法访问外部的服务(msgd),我们需要显式的添加egressrule规则:

我们创建一个允许svcb访问外部特定服务的EgressRule:

//rules/enable-svcb-engress-rule.yaml

apiVersion: config.istio.io/v1alpha2
kind: EgressRule
metadata:
  name: enable-svcb-engress-rule
spec:
  destination:
    service: 10.100.35.27
  ports:
    - port: 9997
      protocol: http

使规则生效:

# istioctl create -f enable-svcb-engress-rule.yaml
Created config egress-rule/default/enable-svcb-engress-rule at revision 30031258

这时你再尝试curl svca,我们可以看到msgd的日志中出现了下面的内容:

2018/01/02 23:58:16 &{GET /send?msg=service_a:v0.1-pays-ok HTTP/1.1 1 1 map[X-Ot-Span-Context:[2157e7ffb8105330;2157e7ffb8105330;0000000000000000] Content-Length:[0] User-Agent:[Go-http-client/1.1] X-Forwarded-Proto:[http] X-Request-Id:[13c3af6e-2f52-993d-905f-aa6aa4b57e2d] X-Envoy-Decorator-Operation:[default-route] X-B3-Spanid:[2157e7ffb8105330] X-B3-Sampled:[1] Accept-Encoding:[gzip] X-B3-Traceid:[2157e7ffb8105330] X-Istio-Attributes:[Ch8KCXNvdXJjZS5pcBISMhAAAAAAAAAAAAAA//8KLgAMCjoKCnNvdXJjZS51aWQSLBIqa3ViZXJuZXRlczovL3N2Y2ItMjAwODk3Mzc2OS1ncTBsaC5kZWZhdWx0]] {} <nil> 0 [] false 10.100.35.27:9997 map[] map[] <nil> map[] 10.100.35.28:38188 /send?msg=service_a:v0.1-pays-ok <nil> <nil> <nil> 0xc4200584c0}
2018/01/02 23:58:16 Msgd is serving the request...
2018/01/02 23:58:16 Msgd recv msg ok, msg= service_a:v0.1-pays-ok

说明Svcb到外部服务的通信被打通了!

3、迁移流量到新版本svcb:v0.2

我们经常有这样的需求,当svcb运行一段时间后,svcb添加了新feature,版本要升级到v0.2了,这时我们会部署svcb:v0.2,并将流量逐步切到v0.2上。

我们先来部署一下svcb:v0.2:

// svcb-v0.2.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: svcb-v0.2
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: svcb
        version: v0.2
    spec:
      containers:
      - name: svcb
        image: docker.io/bigwhite/istio-demo-svcb:v0.2
        imagePullPolicy: Always

我们可以看到,服务名不变,但版本的label变成了v0.2,我们来执行这次部署:

# kubectl apply -f <(istioctl kube-inject -f svcb-v0.2.yaml)
deployment "svcb-v0.2" created

# kubectl get pods
NAME                               READY     STATUS    RESTARTS   AGE
svca-1997590752-pq9zg              2/2       Running   0          9h
svcb-2008973769-gq0lh              2/2       Running   0          9h
svcb-v0.2-3233505404-0g55w         2/2       Running   0          1m

svcb服务下又增加了一个endpoint:

# kubectl describe svc/svcb

.... ...
Selector:        app=svcb
Type:            ClusterIP
IP:            10.105.119.194
Port:            <unset>    80/TCP
Endpoints:        10.40.0.28:8080,10.46.0.12:8080
... ...

此时,如果按照k8s的调度方式,v0.1和v0.2版本的两个svcb pod应该1:1均衡地承载流量。为了方便查看流量分布,我们将每个版本的svcb的pod副本数量都扩展为2个(replicas: 2),这样service mesh中一共会有4个 svcb endpoints。

通过curl访问svca注入流量后,我们发现流量都集中在一个svcb:v0.2的pod上,并且长时间没有变化。我们通过下面的route rule规则来尝试将流量在svcb:v0.1和svcb:v0.2之间1:1均衡:

// route-rules-svcb-v0.2-50.yaml
apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: route-rules-svcb
spec:
  destination:
    name: svcb
  precedence: 1
  route:
  - labels:
      version: v0.1
    weight: 50
  - labels:
      version: v0.2
    weight: 50

# istioctl create -f route-rules-svcb-v0.2-50.yaml
Created config route-rule/default/route-rules-svcb at revision 30080638

按照istio文档中的说法,这个规则的生效需要一些时间。之后我们注入流量,发现流量切换到svcb:v0.1的一个pod上去了,并且很长一段时间不曾变化,未均衡到svcb:v0.2上去。

我们更新一下route rule,将流量全部切到svcb:v0.2上去:

//route-rules-svcb-v0.2-100.yaml
apiVersion: config.istio.io/v1alpha2
kind: RouteRule
metadata:
  name: route-rules-svcb
spec:
  destination:
    name: svcb
  precedence: 1
  route:
  - labels:
      version: v0.2
    weight: 100

# istioctl replace -f route-rules-svcb-v0.2-100.yaml
Updated config route-rule/default/route-rules-svcb to revision 30082944

我们用istio的replace命令更新了规则:route-rules-svcb。更新后,再次注入流量,这回流量重新集中在svcb:v0.2的一个pod上了,再过一段时间另外一个svcb:v0.2的pod上才有了一些流量。但svcb:v0.1上不再有流量,这个切换是成功的。

在k8s的service的负载均衡中,k8s就利用了iptables的概率转发(random –probability 0.5),因此这种流量均衡并非是精确的,只有在长时间大量流量经过后,才能看到流量的分布与设定的权重是相似的,可能istio也是如此,这里仅是入门,就不深入挖掘了。

当然istio在路由规则设施方面的“能耐”远不止上面例子中所展示的那样,如果要悉数列出,那本文的长度可是要爆掉了。有兴趣的朋友可以去翻看官方文档

五、插件安装

istio的强大微服务治理能力还体现在其集成了grafanaprometheus、servicegraph、zipkin等addons,应用程序无需做任何改动,就可以具有数据收集、度量与可视化的监控能力、服务的分布式跟踪能力等。我们可以在istio的安装包中找到这些addons的安装文件,我们来逐一试试。

1、prometheus & grafana

我们先来安装一下prometheus 和 grafana插件(位于istio-0.4.0/install/kubernetes/addon下面):

# kubectl apply -f prometheus.yaml
configmap "prometheus" created
service "prometheus" created
deployment "prometheus" created

# kubectl apply -f grafana.yaml
service "grafana" created
deployment "grafana" created

# kubectl get pods -n istio-system
NAME                             READY     STATUS    RESTARTS   AGE
grafana-3617079618-zpglx         1/1       Running   0          5m
prometheus-168775884-ppfxr       1/1       Running   0          5m
... ...

# kubectl get svc -n istio-system
NAME            CLUSTER-IP       EXTERNAL-IP   PORT(S)            AGE
grafana         10.105.21.25     <none>        3000/TCP                     16m
prometheus      10.103.160.37    <none>        9090/TCP                16m
... ...

浏览器中输入prometheus的服务地址http://10.103.160.37:9090,访问prometheus:

img{512x368}

点击菜单项:status -> targets,查看各个target的状态是否正常:

img{512x368}

如果像上图所示那样,各个target都是up状态,那就说明istio运行时ok的。否则请参考istio troubleshooting中的内容对istio逐一进行排查,尤其是istio-mesh这个Target在istio-0.3.0+kubernetes 1.7.3的环境中就是Down的状态。

浏览器输入grafana的服务地址:http://10.105.21.25:3000/,打开grafana面板:

img{512x368}

切换到Istio Dashboard,并向istio service mesh注入流量,我们会看到仪表盘变化如下:

img{512x368}

img{512x368}

2、servicegraph

servicegraph插件是用来查看服务调用关系的,我们来创建一下该组件:

# kubectl apply -f servicegraph.yaml
deployment "servicegraph" created
service "servicegraph" created

# kubectl get svc -n istio-system
NAME            CLUSTER-IP       EXTERNAL-IP   PORT(S)                 AGE
servicegraph    10.108.245.21    <none>        8088/TCP                     52s
... ...

创建成功后,向service mesh网络注入流量,然后访问servicegraph:http://{servicegraph_ip}:8088/dotviz,在我的环境里,我看到的图示如下:

img{512x368}

调用关系似乎有些乱,难道是我在程序使用的调用方法不够标准?:(

3、zipkin

istio集成了zipkin,利用zipkin我们可以做分布式服务调用的追踪。之前自己曾经搭建过基于jaegeropentracing的分布式调用服务,十分繁琐。并且要想使用tracing,对应用代码的侵入必不可少。

我们安装一下zipkin addon:

# kubectl apply -f zipkin.yaml
deployment "zipkin" created
service "zipkin" created

# kubectl get svc -n istio-system
NAME            CLUSTER-IP       EXTERNAL-IP   PORT(S)                  AGE
zipkin          10.105.7.219     <none>        9411/TCP                             1h

我们访问以下zikpin的UI,通过浏览器打开http://{zipkin_service_ip}:9411。

img{512x368}

接下来,我们向service mesh注入一些流量,然后再zipkin首页的“服务名”下拉框中选择”svcb”,查找跟踪情况:

img{512x368}

我们看到:在没有对svca, svcb做任何修改的情况下,我们依然可以在zipkin中找到svcb相关的调用。点击其中一个trace,可以查看细节:

img{512x368}

当然如果你想做内容更为丰富的、更为强大的跟踪,可能需要在应用代码中做些配合,具体可以参见:istio的分布式跟踪

六、小结

istio项目诞生不到一年,目前离成熟还远。快速积极开发可能会导致istio的接口和实现机制都会发生很大的变化,因此本文不能保证内容将适用于后续所有istio的发布版本

本文涉及到的源码在这里可以下载到,demo service的镜像可以在我的docker hub上pull

更多内容可以通过我在慕课网开设的实战课程《Kubernetes实战 高可用集群搭建、配置、运维与应用》学习。


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

微信赞赏:
img{512x368}

追求极简:Docker镜像构建演化史

本文首发于CSDN《程序员》杂志2017.12期,这里是原文地址

本文为《程序员》杂志授权转载,谢绝其他转载。全文如下:

自从2013年dotCloud公司(现已改名为Docker Inc)发布Docker容器技术以来,到目前为止已经有四年多的时间了。这期间Docker技术飞速发展,并催生出一个生机勃勃的、以轻量级容器技术为基础的庞大的容器平台生态圈。作为Docker三大核心技术之一的镜像技术在Docker的快速发展之路上可谓功不可没:镜像让容器真正插上了翅膀,实现了容器自身的重用和标准化传播,使得开发、交付、运维流水线上的各个角色真正围绕同一交付物,“test what you write, ship what you test”成为现实。

对于已经接纳和使用Docker技术在日常开发工作中的开发者而言,构建Docker镜像已经是家常便饭。但如何更高效地构建以及构建出Size更小的镜像却是很多Docker技术初学者心中常见的疑问,甚至是一些老手都未曾细致考量过的问题。本文将从一个Docker用户角度来阐述Docker镜像构建的演化史,希望能起到一定的解惑作用。

一、镜像:继承中的创新

谈镜像构建之前,我们先来简要说下镜像

Docker技术本质上并不是新技术,而是将已有技术进行了更好地整合和包装。内核容器技术以一种完整形态最早出现在Sun公司Solaris操作系统上,Solaris是当时最先进的服务器操作系统。2005年Sun发布了Solaris Container技术,从此开启了内核容器之门。

2008年,以Google公司开发人员为主导实现的Linux Container(即LXC)功能在被merge到Linux内核中。LXC是一种内核级虚拟化技术,主要基于NamespacesCgroups技术,实现共享一个操作系统内核前提下的进程资源隔离,为进程提供独立的虚拟执行环境,这样的一个虚拟的执行环境就是一个容器。本质上说,LXC容器与现在的Docker所提供容器是一样的。Docker也是基于Namespaces和Cgroups技术之上实现的,Docker的创新之处在于其基于Union File System技术定义了一套容器打包规范,真正将容器中的应用及其运行的所有依赖都封装到一种特定格式的文件中去,而这种文件就被称为镜像(即image),原理见下图(引自Docker官网):

img{512x368}
图1:Docker镜像原理

镜像是容器的“序列化”标准,这一创新为容器的存储、重用和传输奠定了基础。并且“坐上了巨轮”的容器镜像可以传播到世界每一个角落,这无疑助力了容器技术的飞速发展。

Solaris Container、LXC等早期内核容器技术不同,Docker为开发者提供了开发者体验良好的工具集,这其中就包括了用于镜像构建的Dockerfile以及一种用于编写Dockerfile领域特定语言。采用Dockerfile方式构建成为镜像构建的标准方法,其可重复、可自动化、可维护以及分层精确控制等特点是采用传统采用docker commit命令提交的镜像所不能比拟的。

二、“镜像是个筐”:初学者的认知

“镜像是个筐,什么都往里面装” – 这句俏皮话可能是大部分Docker初学者对镜像最初认知的真实写照。这里我们用一个例子来生动地展示一下。我们将httpserver.go这个源文件编译为httpd程序并通过镜像发布,考虑到被编译的源码并非本文重点,这里使用了一个极简的demo代码:

//httpserver.go

package main

import (
        "fmt"
        "net/http"
)

func main() {
        fmt.Println("http daemon start")
        fmt.Println("  -> listen on port:8080")
        http.ListenAndServe(":8080", nil)
}

接下来,我们来编写一个用于构建目标image的Dockerfile:

From ubuntu:14.04

RUN apt-get update \
      && apt-get install -y software-properties-common \
      && add-apt-repository ppa:gophers/archive \
      && apt-get update \
      && apt-get install -y golang-1.9-go \
                            git \
      && rm -rf /var/lib/apt/lists/*

ENV GOPATH /root/go
ENV GOROOT /usr/lib/go-1.9
ENV PATH="/usr/lib/go-1.9/bin:${PATH}"

COPY ./httpserver.go /root/httpserver.go
RUN go build -o /root/httpd /root/httpserver.go \
      && chmod +x /root/httpd

WORKDIR /root
ENTRYPOINT ["/root/httpd"]

构建这个Image:

# docker build -t repodemo/httpd:latest .
//...构建输出这里省略...

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd                   latest              183dbef8eba6        2 minutes ago       550MB
ubuntu                           14.04               dea1945146b9        2 months ago        188MB

整个镜像的构建过程因环境而定。如果您的网络速度一般,这个构建过程可能会花费你10多分钟甚至更多。最终如我们所愿,基于repodemo/httpd:latest这个镜像的容器可以正常运行:

# docker run repodemo/httpd
http daemon start
  -> listen on port:8080

一个Dockerfile最终生产出一个镜像。Dockerfile由若干Command组成,每个Command执行结果都会单独形成一个layer。我们来探索一下构建出来的镜像:

# docker history 183dbef8eba6
IMAGE               CREATED             CREATED BY                                      SIZE                COMMENT
183dbef8eba6        21 minutes ago      /bin/sh -c #(nop)  ENTRYPOINT ["/root/httpd"]   0B
27aa721c6f6b        21 minutes ago      /bin/sh -c #(nop) WORKDIR /root                 0B
a9d968c704f7        21 minutes ago      /bin/sh -c go build -o /root/httpd /root/h...   6.14MB
... ...
aef7700a9036        30 minutes ago      /bin/sh -c apt-get update       && apt-get...   356MB
.... ...
<missing>           2 months ago        /bin/sh -c #(nop) ADD file:8f997234193c2f5...   188MB

我们去除掉那些Size为0或很小的layer,我们看到三个size占比较大的layer,见下图:

img{512x368}
图2:Docker镜像分层探索

虽然Docker引擎利用r缓存机制可以让同主机下非首次的镜像构建执行得很快,但是在Docker技术热情催化下的这种构建思路让docker镜像在存储和传输方面的优势荡然无存,要知道一个ubuntu-server 16.04的虚拟机ISO文件的大小也就不过600多MB而已。

三、”理性的回归”:builder模式的崛起

Docker使用者在新技术接触初期的热情“冷却”之后迎来了“理性的回归”。根据上面分层镜像的图示,我们发现最终镜像中包含构建环境是多余的,我们只需要在最终镜像中包含足够支撑httpd运行的运行环境即可,而base image自身就可以满足。于是我们应该去除不必要的中间层:

img{512x368}
图3:去除不必要的分层

现在问题来了!如果不在同一镜像中完成应用构建,那么在哪里、由谁来构建应用呢?至少有两种方法:

  1. 在本地构建并COPY到镜像中;
  2. 借助构建者镜像(builder image)构建。

不过方法1本地构建有很多局限性,比如:本地环境无法复用、无法很好融入持续集成/持续交付流水线等。借助builder image进行构建已经成为Docker社区的一个最佳实践,Docker官方为此也推出了各种主流编程语言的官方base image,比如:gojava、node、python以及ruby等。借助builder image进行镜像构建的流程原理如下图:

img{512x368}
图4:借助builder image进行镜像构建的流程图

通过原理图,我们可以看到整个目标镜像的构建被分为了两个阶段:

  1. 第一阶段:构建负责编译源码的构建者镜像;
  2. 第二阶段:将第一阶段的输出作为输入,构建出最终的目标镜像。

我们选择golang:1.9.2作为builder base image,构建者镜像的Dockerfile.build如下:

// Dockerfile.build

FROM golang:1.9.2

WORKDIR /go/src
COPY ./httpserver.go .

RUN go build -o httpd ./httpserver.go

执行构建:

# docker build -t repodemo/httpd-builder:latest -f Dockerfile.build .

构建好的应用程序httpd放在了镜像repodemo/httpd-builder中的/go/src目录下,我们需要一些“胶水”命令来连接两个构建阶段,这些命令将httpd从构建者镜像中取出并作为下一阶段构建的输入:

# docker create --name extract-httpserver repodemo/httpd-builder
# docker cp extract-httpserver:/go/src/httpd ./httpd
# docker rm -f extract-httpserver
# docker rmi repodemo/httpd-builder

通过上面的命令,我们将编译好的httpd程序拷贝到了本地。下面是目标镜像的Dockerfile:

//Dockerfile.target
From ubuntu:14.04

COPY ./httpd /root/httpd
RUN chmod +x /root/httpd

WORKDIR /root
ENTRYPOINT ["/root/httpd"]

接下来我们来构建目标镜像:

# docker build -t repodemo/httpd:latest -f Dockerfile.target .

我们来看看这个镜像的“体格”:

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd                   latest              e3d009d6e919        12 seconds ago      200MB

200MB!目标镜像的Size降为原来的 1/2 还多。

四、“像赛车那样减去所有不必要的东西”:追求最小镜像

前面我们构建出的镜像的Size已经缩小到200MB,但这还不够。200MB的“体格”在我们的网络环境下缓存和传输仍然很难令人满意。我们要为镜像进一步减重,减到尽可能的小,就像赛车那样,为了能减轻重量将所有不必要的东西都拆除掉:我们仅保留能支撑我们的应用运行的必要库、命令,其余的一律不纳入目标镜像。当然不仅仅是Size上的原因,小镜像还有额外的好处,比如:内存占用小,启动速度快,更加高效;不会因其他不必要的工具、库的漏洞而被攻击,减少了“攻击面”,更加安全。

img{512x368}
图5:目标镜像还能更小些吗?

一般应用开发者不会从scratch镜像从头构建自己的base image以及目标镜像的,开发者会挑选适合的base image。一些“蝇量级”甚至是“草量级”的官方base image的出现为这种情况提供了条件。

img{512x368}
图6:一些base image的Size比较(来自imagelayers.io截图)

从图中看,我们有两个选择:busyboxalpine

单从image的size上来说,busybox更小。不过busybox默认的libc实现是uClibc,而我们通常运行环境使用的libc实现都是glibc,因此我们要么选择静态编译程序,要么使用busybox:glibc镜像作为base image。

而 alpine image 是另外一种蝇量级 base image,它使用了比 glibc 更小更安全的 musl libc 库。 不过和 busybox image 相比,alpine image 体积还是略大。除了因为 musl比uClibc 大一些之外,alpine还在镜像中添加了自己的包管理系统apk,开发者可以使用apk在基于alpine的镜像中添 加需要的包或工具。因此,对于普通开发者而言,alpine image显然是更佳的选择。不过alpine使用的libc实现为musl,与基于glibc上编译出来的应用程序不兼容。如果直接将前面构建出的httpd应用塞入alpine,在容器启动时会遇到下面错误,因为加载器找不到glibc这个动态共享库文件:

standard_init_linux.go:185: exec user process caused "no such file or directory"

对于Go应用来说,我们可以采用静态编译的程序,但一旦采用静态编译,也就意味着我们将失去一些libc提供的原生能力,比如:在linux上,你无法使用系统提供的DNS解析能力,只能使用Go自实现的DNS解析器。

我们还可以采用基于alpine的builder image,golang base image就提供了alpine 版本。 我们就用这种方式构建出一个基于alpine base image的极小目标镜像。

img{512x368}
图7:借助 alpine builder image 进行镜像构建的流程图

我们新建两个用于 alpine 版本目标镜像构建的 Dockerfile:Dockerfile.build.alpine 和Dockerfile.target.alpine:

//Dockerfile.build.alpine
FROM golang:alpine

WORKDIR /go/src
COPY ./httpserver.go .

RUN go build -o httpd ./httpserver.go

// Dockerfile.target.alpine
From alpine

COPY ./httpd /root/httpd
RUN chmod +x /root/httpd

WORKDIR /root
ENTRYPOINT ["/root/httpd"]

构建builder镜像:

#  docker build -t repodemo/httpd-alpine-builder:latest -f Dockerfile.build.alpine .

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED              SIZE
repodemo/httpd-alpine-builder    latest              d5b5f8813d77        About a minute ago   275MB

执行“胶水”命令:

# docker create --name extract-httpserver repodemo/httpd-alpine-builder
# docker cp extract-httpserver:/go/src/httpd ./httpd
# docker rm -f extract-httpserver
# docker rmi repodemo/httpd-alpine-builder

构建目标镜像:

# docker build -t repodemo/httpd-alpine -f Dockerfile.target.alpine .

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd-alpine            latest              895de7f785dd        13 seconds ago      16.2MB

16.2MB!目标镜像的Size降为不到原来的十分之一。我们得到了预期的结果。

五、“要有光,于是便有了光”:对多阶段构建的支持

至此,虽然我们实现了目标Image的最小化,但是整个构建过程却是十分繁琐,我们需要准备两个Dockerfile、需要准备“胶水”命令、需要清理中间产物等。作为Docker用户,我们希望用一个Dockerfile就能解决所有问题,于是就有了Docker引擎对多阶段构建(multi-stage build)的支持。注意:这个特性非常新,只有Docker 17.05.0-ce及以后的版本才能支持。

现在我们就按照“多阶段构建”的语法将上面的Dockerfile.build.alpine和Dockerfile.target.alpine合并到一个Dockerfile中:

//Dockerfile

FROM golang:alpine as builder

WORKDIR /go/src
COPY httpserver.go .

RUN go build -o httpd ./httpserver.go

From alpine:latest

WORKDIR /root/
COPY --from=builder /go/src/httpd .
RUN chmod +x /root/httpd

ENTRYPOINT ["/root/httpd"]

Dockerfile的语法还是很简明和易理解的。即使是你第一次看到这个语法也能大致猜出六成含义。与之前Dockefile最大的不同在于在支持多阶段构建的Dockerfile中我们可以写多个“From baseimage”的语句了,每个From语句开启一个构建阶段,并且可以通过“as”语法为此阶段构建命名(比如这里的builder)。我们还可以通过COPY命令在两个阶段构建产物之间传递数据,比如这里传递的httpd应用,这个工作之前我们是使用“胶水”代码完成的。

构建目标镜像:

# docker build -t repodemo/httpd-multi-stage .

# docker images
REPOSITORY                       TAG                 IMAGE ID            CREATED             SIZE
repodemo/httpd-multi-stage       latest              35e494aa5c6f        2 minutes ago       16.2MB

我们看到通过多阶段构建特性构建的Docker Image与我们之前通过builder模式构建的镜像在效果上是等价的。

六、来到现实

沿着时间的轨迹,Docker 镜像构建走到了今天。追求又快又小的镜像已成为了 Docker 社区 的共识。社区在自创 builder 镜像构建的最佳实践后终于迎来了多阶段构建这柄利器,从此构建 出极简的镜像将不再困难。


微博:@tonybai_cn
微信公众号:iamtonybai
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats