标签 单元测试 下的文章

Go语言项目的安全评估技术

在今年夏天我们对Kubernetes的评估成功之后,我们收到了大量Go项目的安全评估需求。为此,我们将在其他编译语言中使用过的安全评估技术和策略调整适配到多个Go项目中。

我们从了解语言的设计开始,识别出开发人员可能无法完全理解语言语义特性的地方。多数这些被误解的语义来自我们向客户报告的调查结果以及对语言本身的独立研究。尽管不是详尽无遗,但其中一些问题领域包括作用域、协程、错误处理和依赖管理。值得注意的是,其中许多与运行时没有直接关系。默认情况下,Go运行时本身的设计是安全的,避免了很多类似C语言的漏洞。

对根本原因有了更好地理解后,我们搜索了现有的能帮助我们快速有效检测客户端代码库的工具。结果我们找到一些静态和动态开源工具,其中包括了一些与Go无关的工具。为了配合这些工具使用,我们还确定了几种有助于检测的编译器配置。

一. 静态分析

由于Go是一种编译型语言,因此编译器在生成二进制可执行文件之前就检测并杜绝了许多潜在的错误模式。虽然对于新的Go开发人员来说,这些编译器的输出比较烦,但是这些警告对于防止意外行为以及保持代码的清洁和可读性非常重要。

静态分析趋向于捕获很多未包括在编译器错误和警告中的悬而未决的问题。在Go语言生态系统中,有许多不同的工具,例如go-vetstaticcheckanalysis包中的工具。这些工具通常会识别出诸如变量遮蔽、不安全的指针使用以及未使用的函数返回值之类的问题。调查这些工具显示警告的项目区域通常会发现可被利用(进行安全攻击)的功能特性。

这些工具绝不是完美的。例如,go-vet可能会错过非常常见的问题,例如下面例子中这种。

package main

import "fmt"

func A() (bool, error) { return false, fmt.Errorf("I get overridden!") }

func B() (bool, error) { return true, nil }

func main() {
    aSuccess, err := A()
    bSuccess, err := B()
    if err != nil {
        fmt.Println(err)
    }
    fmt.Println(aSuccess, ":", bSuccess)
}

这个例子未使用A函数的err返回值,并在表达式左侧为bSuccess赋值期间立即重新对err做了赋值。编译器针对这种情况不会提供警告,而go-vet也不会检测到该问题;errcheck也不会。实际上,能成功识别这种情况的工具是前面提到的staticcheck和ineffassign,它们将A的错误返回值标识为未使用或无效。

示例程序的输出以及errcheck,go-vet,staticcheck和ineffassign的检查结果如下:

$ go run .
false : true
$ errcheck .
$ go vet .
$ staticcheck .
main.go:5:50: error strings should not be capitalized (ST1005)
main.go:5:50: error strings should not end with punctuation or a newline (ST1005)
main.go:10:12: this value of err is never used (SA4006)
$ ineffassign .
main.go:10:12: ineffectual assignment to err

当您深入研究此示例时,您可能会想知道为什么编译器没有针对此问题发出警告。当程序中有未使用的变量时,Go编译器将出错,但此示例成功通过编译。这是由“短变量声明”的语义引起的。下面是短变量声明的语法规范:

ShortVarDecl = IdentifierList ":=" ExpressionList .

根据规范,短变量声明具有重新声明变量的特殊功能,只要:

  • 重新声明在多变量短声明中。
  • 重新声明的变量在同一代码块或函数的参数列表中声明较早。
  • 重新声明的变量与先前的声明具有相同的类型。
  • 声明中至少有一个非空白变量(“_”)是新变量。

所有这些约束在上一个示例中均得到满足,从而防止了编译器针对此问题产生编译错误。

许多工具都具有类似这样的极端情况,即它们在识别相关问题或识别问题但以不同的方式描述时均未成功。使问题复杂化的是,这些工具通常需要先构建Go源代码,然后才能执行分析。如果分析人员无法轻松构建代码库或其依赖项,这将使第三方安全评估变得复杂。

尽管存在这些困难,但只要付出一点点努力,这些工具就可以很好地提示我们在项目中从何处查找问题。我们建议至少使用gosecgo-vetstaticcheck。对大多数代码库而言,这些工具具有良好的文档和人机工效。他们还提供了针对常见问题的多种检查(例如ineffassign或errcheck)。但是,要对特定类型的问题进行更深入的分析,可能必须使用更具体的分析器,直接针对SSA开发定制的工具或使用semmle

二. 动态分析

一旦执行了静态分析并检查了结果,动态分析技术通常是获得更深层结果的下一步。由于Go的内存安全性,动态分析通常发现的问题是导致硬崩溃(hard crash)或程序状态无效的问题。Go社区已经建立了各种工具和方法来帮助识别Go生态系统中这些类型的问题。此外,可以改造现有的与语言无关的工具以满足Go动态分析的需求,我们将在下面展示。

1. 模糊测试

Go语言领域中最著名的动态测试工具可能是Dimitry Vyukovgo-fuzz了。该工具使您可以快速有效地实施模糊测试,并且它已经有了不错的战利品。更高级的用户在猎错过程中可能还会发现分布式的模糊测试libFuzzer的支持非常有用。

Google还发布了一个更原生的模糊器(fuzzer),它拥有一个与上面的go-fuzz相似的名字:gofuzz。它通过初始化具有随机值的结构来帮助用户。与Dimitry的go-fuzz不同,Google的gofuzz不会生成夹具(harness)或协助提供存储崩溃时的输出信息、模糊输入或任何其他类型的信息。尽管这对于测试某些目标可能是不利的,但它使轻量级且可扩展的框架成为可能。

为了简洁起见,我们请您参考各自自述文件中这两个工具的示例。

2. 属性测试(property test)

译注:属性测试指编写对你的代码来说为真的逻辑语句(即“属性”),然后使用自动化工具来生成测试输入(一般来说,是指某种特定类型的随机生成输入数据),并观察程序接受该输入时属性是否保持不变。如果某个输入违反了某一条属性,则证明用户程序存在错误 – 摘自网络。

与传统的模糊测试方法不同,Go的testing包(通常用于单元测试和集成测试)为Go函数的“黑盒测试” 提供了testing/quick子包。换句话说,它提供了属性测试的基本原语。给定一个函数和生成器,该包可用于构建夹具,以测试在给定输入生成器范围的情况下潜在的属性违规。以下示例是直接摘自官方文档。

func TestOddMultipleOfThree(t *testing.T) {
    f := func(x int) bool {
        y := OddMultipleOfThree(x)
        return y%2 == 1 && y%3 == 0
    }
    if err := quick.Check(f, nil); err != nil {
        t.Error(err)
    }
}

上面示例正在测试OddMultipleOfThree函数,其返回值应始终为3的奇数倍。如果不是,则f函数将返回false并将违反该属性。这是由quick.Check功能检测到的。

虽然此包提供的功能对于属性测试的简单应用是可以接受的,但重要的属性通常不能很好地适合这种基本界面。为了解决这些缺点,诞生了leanovate/gopter框架。Gopter为常见的Go类型提供了各种各样的生成器,并且支持您创建与Gopter兼容的自定义生成器。通过gopter/commands子包还支持状态测试,这对于测试跨操作序列的属性是否有用很有有帮助。除此之外,当违反属性时,Gopter会缩小生成的输入。请参阅下面的输出中输入收缩的属性测试的简要示例。

Compute结构的测试夹具:

package main_test
import (
  "github.com/leanovate/gopter"
  "github.com/leanovate/gopter/gen"
  "github.com/leanovate/gopter/prop"
  "math"
  "testing"
)

type Compute struct {
  A uint32
  B uint32
}

func (c *Compute) CoerceInt () { c.A = c.A % 10; c.B = c.B % 10; }
func (c Compute) Add () uint32 { return c.A + c.B }
func (c Compute) Subtract () uint32 { return c.A - c.B }
func (c Compute) Divide () uint32 { return c.A / c.B }
func (c Compute) Multiply () uint32 { return c.A * c.B }

func TestCompute(t *testing.T) {
  parameters := gopter.DefaultTestParameters()
  parameters.Rng.Seed(1234) // Just for this example to generate reproducible results

  properties := gopter.NewProperties(parameters)

  properties.Property("Add should never fail.", prop.ForAll(
    func(a uint32, b uint32) bool {
      inpCompute := Compute{A: a, B: b}
      inpCompute.CoerceInt()
      inpCompute.Add()
      return true
    },
    gen.UInt32Range(0, math.MaxUint32),
    gen.UInt32Range(0, math.MaxUint32),
  ))

  properties.Property("Subtract should never fail.", prop.ForAll(
    func(a uint32, b uint32) bool {
      inpCompute := Compute{A: a, B: b}
      inpCompute.CoerceInt()
      inpCompute.Subtract()
      return true
    },
    gen.UInt32Range(0, math.MaxUint32),
    gen.UInt32Range(0, math.MaxUint32),
  ))

  properties.Property("Multiply should never fail.", prop.ForAll(
    func(a uint32, b uint32) bool {
      inpCompute := Compute{A: a, B: b}
      inpCompute.CoerceInt()
      inpCompute.Multiply()
      return true
    },
    gen.UInt32Range(0, math.MaxUint32),
    gen.UInt32Range(0, math.MaxUint32),
  ))

  properties.Property("Divide should never fail.", prop.ForAll(
    func(a uint32, b uint32) bool {
      inpCompute := Compute{A: a, B: b}
      inpCompute.CoerceInt()
      inpCompute.Divide()
      return true
    },
    gen.UInt32Range(0, math.MaxUint32),
    gen.UInt32Range(0, math.MaxUint32),
  ))

  properties.TestingRun(t)
}

执行测试夹具并观察属性测试的输出(除法失败):

user@host:~/Desktop/gopter_math$ go test
+ Add should never fail.: OK, passed 100 tests.
Elapsed time: 253.291µs
+ Subtract should never fail.: OK, passed 100 tests.
Elapsed time: 203.55µs
+ Multiply should never fail.: OK, passed 100 tests.
Elapsed time: 203.464µs
! Divide should never fail.: Error on property evaluation after 1 passed
   tests: Check paniced: runtime error: integer divide by zero
goroutine 5 [running]:
runtime/debug.Stack(0x5583a0, 0xc0000ccd80, 0xc00009d580)
    /usr/lib/go-1.12/src/runtime/debug/stack.go:24 +0x9d
github.com/leanovate/gopter/prop.checkConditionFunc.func2.1(0xc00009d9c0)
    /home/user/go/src/github.com/leanovate/gopter/prop/check_condition_func.g
  o:43 +0xeb
panic(0x554480, 0x6aa440)
    /usr/lib/go-1.12/src/runtime/panic.go:522 +0x1b5
_/home/user/Desktop/gopter_math_test.Compute.Divide(...)
    /home/user/Desktop/gopter_math/main_test.go:18
_/home/user/Desktop/gopter_math_test.TestCompute.func4(0x0, 0x0)
    /home/user/Desktop/gopter_math/main_test.go:63 +0x3d
# snip for brevity;

ARG_0: 0
ARG_0_ORIGINAL (1 shrinks): 117380812
ARG_1: 0
ARG_1_ORIGINAL (1 shrinks): 3287875120
Elapsed time: 183.113µs
--- FAIL: TestCompute (0.00s)
    properties.go:57: failed with initial seed: 1568637945819043624
FAIL
exit status 1
FAIL    _/home/user/Desktop/gopter_math 0.004s

3. 故障注入

在攻击Go系统时,故障注入令人惊讶地有效。我们使用此方法发现的最常见错误包括对error类型的处理。因为error在Go中只是一种类型,所以当它返回时,它不会像panic语句那样自行改变程序的执行流程。我们通过强制生成来自最低级别(内核)的错误来识别此类错误。由于Go会生成静态二进制文件,因此必须在不使用LD_PRELOAD的情况下注入故障。我们的工具之一KRF使我们能够做到这一点。

在我们最近的Kubernetes代码库评估中,我们使用KRF找到了一个vendored依赖深处的问题,只需通过随机为进程和其子进程发起的read和write系统调用制造故障。该技术对通常与底层系统交互的Kubelet十分有效。该错误是在ionice命令出现错误时触发的,未向STDOUT输出信息并向STDERR发送错误。记录错误后,将继续执行而不是将STDERR的错误返回给调用方。这导致STDOUT后续被索引,从而导致索引超出范围导致运行时panic。

下面是导致kubelet panic的调用栈信息:

E0320 19:31:54.493854    6450 fs.go:591] Failed to read from stdout for cmd [ionice -c3 nice -n 19 du -s /var/lib/docker/overlay2/bbfc9596c0b12fb31c70db5ffdb78f47af303247bea7b93eee2cbf9062e307d8/diff] - read |0: bad file descriptor
panic: runtime error: index out of range

goroutine 289 [running]:
k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs.GetDirDiskUsage(0xc001192c60, 0x5e, 0x1bf08eb000, 0x1, 0x0, 0xc0011a7188)
    /workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/go/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs/fs.go:600 +0xa86
k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs.(*RealFsInfo).GetDirDiskUsage(0xc000bdbb60, 0xc001192c60, 0x5e, 0x1bf08eb000, 0x0, 0x0, 0x0)
    /workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/go/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs/fs.go:565 +0x89
k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common.(*realFsHandler).update(0xc000ee7560, 0x0, 0x0)
    /workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/go/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:82 +0x36a
k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common.(*realFsHandler).trackUsage(0xc000ee7560)
    /workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/go/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:120 +0x13b
created by
k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common.(*realFsHandler).Start
    /workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/go/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:142 +0x3f

下面例子:记录了STDERR日志但未将error返回调用方。

stdoutb, souterr := ioutil.ReadAll(stdoutp)
if souterr != nil {
    klog.Errorf("Failed to read from stdout for cmd %v - %v", cmd.Args, souterr)
}

当stdout为空,也尝试使用索引,这是运行时出现panic的原因:

usageInKb, err := strconv.ParseUint(strings.Fields(stdout)[0], 10, 64)

更完整的包含重现上述问题的步骤,可参见我们的Kubernetes最终报告附录G(第109页),那里详细介绍了针对Kubelet使用KRF的方法。

Go的编译器还允许将测量工具包含在二进制文件中,从而可以在运行时检测race状况,这对于将潜在的race识别为攻击者非常有用,但也可以用来识别对defer、panic和recover的不正确处理。我们构建了Trailofbits/on-edge来做到这一点:识别函数入口点和函数panic点之间的全局状态变化,并通过Go race检测器”泄露”此信息。有关OnEdge的更多详细信息,请参见我们以前的博客文章“在Go中选择正确panic的方式”

实践中,我们建议使用:

  • dvyukov/go-fuzz为组件解析输入建立夹具
  • google/gofuzz用于测试结构验证
  • leanovate/gopter用于增强现有的单元和集成测试以及测试规范的正确性
  • Trailofbits/krf和Trailofbits/on-edge用于测试错误处理。

除KRF外,所有这些工具在实践中都需要付出一些努力。

三. 利用编译器的优势

Go编译器具有许多内置功能和指令(directive),可帮助我们查找错误。这些功能隐藏在各种开关中中,并且需要一些配置才能达到我们的目的。

1. 颠覆类型系统

有时在尝试测试系统功能时,导出函数不是我们要测试的。要获得对所需的函数的测试访问权,可能需要重命名许多函数,以便可以将其导出,这可能会很麻烦。要解决此问题,可以使用编译器的build指令(directive)进行名称链接(name linking)以及导出系统的访问控制。作为此功能的示例,下面的程序(从Stack Overflow答案中提取)访问未导出的reflect.typelinks函数,并随后迭代类型链接表以识别已编译程序中存在的类型。

下面是使用linkname build directive的Stack Overflow答案的通用版本:

package main

import (
    "fmt"
    "reflect"
    "unsafe"
)

func Typelinks() (sections []unsafe.Pointer, offset [][]int32) {
    return typelinks()
}

//go:linkname typelinks reflect.typelinks
func typelinks() (sections []unsafe.Pointer, offset [][]int32)

func Add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
    return add(p, x, whySafe)
}

//go:linkname add reflect.add
func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer

func main() {
    sections, offsets := Typelinks()
    for i, base := range sections {
        for _, offset := range offsets[i] {
            typeAddr := Add(base, uintptr(offset), "")
            typ := reflect.TypeOf(*(*interface{})(unsafe.Pointer(&typeAddr)))
            fmt.Println(typ)
        }
    }
}

下面是typelinks表的输出:

$ go run main.go
**reflect.rtype
**runtime._defer
**runtime._type
**runtime.funcval
**runtime.g
**runtime.hchan
**runtime.heapArena
**runtime.itab
**runtime.mcache
**runtime.moduledata
**runtime.mspan
**runtime.notInHeap
**runtime.p
**runtime.special
**runtime.sudog
**runtime.treapNode
**sync.entry
**sync.poolChainElt
**syscall.Dirent
**uint8

如果需要在运行时进行更精细的控制(即,不仅仅是linkname指令),则可以编写Go的中间汇编码,并在编译过程中包括它。尽管在某些地方它可能不完整且有些过时,但是teh-cmc/go-internals提供了有关Go如何组装函数的很好的介绍。

2. 编译器生成的覆盖图

为了帮助进行测试,Go编译器可以执行预处理以生成coverage信息。这旨在标识单元测试和集成测试的测试覆盖范围信息,但是我们也可以使用它来标识由模糊测试和属性测试生成的测试覆盖范围。Filippo Valsorda在博客文章中提供了一个简单的示例。

3. 类型宽度安全

Go支持根据目标平台自动确定整数和浮点数的大小。但是,它也允许使用固定宽度的定义,例如int32和int64。当混合使用自动宽度和固定宽度大小时,对于跨多个目标平台的行为,可能会出现错误的假设。

针对目标的32位和64位平台构建进行测试将有助于识别特定于平台的问题。这些问题通常在执行验证、解码或类型转换的时候发现,原因在于对源和目标类型属性做出了不正确的假设。在Kubernetes安全评估中就有一些这样的示例,特别是TOB-K8S-015:使用strconv.Atoi并将结果向下转换时的溢出(Kubernetes最终报告中的第42页),下面是这个示例。

// updatePodContainers updates PodSpec.Containers.Ports with passed parameters.
func updatePodPorts(params map[string]string, podSpec *v1.PodSpec) (err error) {
    port := -1
    hostPort := -1
    if len(params["port"]) > 0 {
        port, err = strconv.Atoi(params["port"]) // <-- this should parse port as strconv.ParseUint(params["port"], 10, 16)
        if err != nil {
            return err
        }
    }
       // (...)
    // Don't include the port if it was not specified.
    if len(params["port"]) > 0 {
        podSpec.Containers[0].Ports = []v1.ContainerPort{
            {
                ContainerPort: int32(port), // <-- this should later just be uint16(port)
            },
        }

错误的类型宽度假设导致的溢出:

root@k8s-1:/home/vagrant# kubectl expose deployment nginx-deployment --port 4294967377 --target-port 4294967376
E0402 09:25:31.888983    3625 intstr.go:61] value: 4294967376 overflows int32
goroutine 1 [running]:
runtime/debug.Stack(0xc000e54eb8, 0xc4f1e9b8, 0xa3ce32e2a3d43b34)
    /usr/local/go/src/runtime/debug/stack.go:24 +0xa7
k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/util/intstr.FromInt(0x100000050, 0xa, 0x100000050, 0x0, 0x0)
...
service/nginx-deployment exposed

实际上,很少需要颠覆类型系统。最需要的测试目标已经是导出了的,可以通过import获得。我们建议仅在需要助手和测试类似的未导出函数时才使用此功能。至于测试类型宽度安全性,我们建议您尽可能对所有目标进行编译,即使没有直接支持也是如此,因为不同目标上的问题可能更明显。最后,我们建议至少生成包含单元测试和集成测试的项目的覆盖率报告。它有助于确定未经直接测试的区域,这些区域可以优先进行审查。

四. 有关依赖的说明

在诸如JavaScript和Rust的语言中,依赖项管理器内置了对依赖项审核的支持-扫描项目依赖项以查找已知存在漏洞的版本。在Go中,不存在这样的工具,至少没有处于公开可用且非实验状态的。

这种缺乏可能是由于存在多种不同的依赖关系管理方法:go-modgo-getvendored等。这些不同的方法使用根本不同的实现方案,导致无法直接识别依赖关系及其版本。此外,在某些情况下,开发人员通常会随后修改其vendor的依赖的源代码。

在Go的开发过程中,依赖管理问题的解决已经取得了进展,大多数开发人员都在朝使用go mod的方向发展。这样就可以通过项目中的go.mod跟踪和依赖项并进行版本控制,从而为以后的依赖项扫描工作打开了大门。我们可以在OWASP DependencyCheck工具中看到此类工作的示例,该工具是具有实验性质的go mod插件。

五. 结论

最终,Go生态系统中有许多可以使用的工具。尽管大多数情况是完全不同的,但是各种静态分析工具可帮助识别给定项目中的“悬而未决的问题”。当寻求更深层次的关注时,可以使用模糊测试,属性测试和故障注入工具。编译器配置随后增强了动态技术,使构建测试夹具和评估其有效性变得更加容易。

本文翻译自“Security assessment techniques for Go projects”


我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网上线了,感谢小伙伴们学习支持!

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/
smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

微博:https://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

写Go代码时遇到的那些问题[第2期]

第1期的“写Go代码时遇到的那些问题”一经发布后得到了很多Gopher的支持和赞赏,这也是我继续写下去的动力!不过这里依然要强调的是这一系列文章反映的是笔者在实践中对代码编写的认知以及代码的演化过程。这里的代码也许只是“中间阶段”,并不是什么最优的结果,我记录的只是对问题、对代码的一个思考历程。不过,十分欢迎交流与批评指正。

一、dep的日常操作

虽然dep在国内使用依然有init失败率较高(因为一些qiang外的第三方package)的坎儿,但我和主流Gopher社区和项目一样,义无反顾地选择在代码库中使用dep。本周dep刚刚发布了0.4.1版本,与之前版本最大的不同在于dep发布了其官网以及相对完整的文档(以替代原先在github项目主页上的简陋的、格式较low的FAQ),这也是dep继续走向成熟的一个标志。不过关于dep何时能merge到go tools链当中,目前还是未知数。不过dep会在相当长的一段时期继续以独立工具的形式存在,直到merge到Go tools中并被广泛接受。

包依赖管理工具在日常开发中并不需要太多的存在感,我们需要的这类工具特征是功能强大但接口“小”,对开发者体验好,不太需要太关心其运行原理,dep基本符合。dep日常操作最主要的三个命令:dep init、dep ensure和dep status。在《初窥dep》一文中,我曾重点说过dep init原理,这里就不重点说了,我们用一个例子来说说使用dep的日常workflow。

1、dep init empty project

我们可以对一个empty project或一个初具框架雏形的project进行init,这里init一个empty project,作为后续的示例基础:

➜  $GOPATH/src/depdemo $dep init -v
Getting direct dependencies...
Checked 1 directories for packages.
Found 0 direct dependencies.
Root project is "depdemo"
 0 transitively valid internal packages
 0 external packages imported from 0 projects
(0)   ✓ select (root)
  ✓ found solution with 0 packages from 0 projects

Solver wall times by segment:
  select-root: 68.406µs
        other:  9.806µs

  TOTAL: 78.212µs

➜  $GOPATH/src/depdemo $ls
Gopkg.lock    Gopkg.toml    vendor/

➜  $GOPATH/src/depdemo $dep status
PROJECT  CONSTRAINT  VERSION  REVISION  LATEST  PKGS USED

dep init有三个输出:Gopkg.lock、Gopkg.toml和vendor目录,其中Gopkg.toml(包含example,但注释掉了)和vendor都是空的,Gopkg.lock中仅包含了一些给gps使用的metadata:

➜  $GOPATH/src/depdemo git:(a337d5b) $cat Gopkg.lock
# This file is autogenerated, do not edit; changes may be undone by the next 'dep ensure'.

[solve-meta]
  analyzer-name = "dep"
  analyzer-version = 1
  inputs-digest = "ab4fef131ee828e96ba67d31a7d690bd5f2f42040c6766b1b12fe856f87e0ff7"
  solver-name = "gps-cdcl"
  solver-version = 1

2、常规操作循环:for { 填代码 -> dep ensure }

接下来的常规操作就是我们要为project添加代码了。我们先来为工程添加一个main.go文件,源码如下:

// main.go
package main

import "fmt"

func main() {
    fmt.Println("depdemo")
}

这份代码的依赖只是std库的fmt,并没有使用第三方的依赖,因此当我们通过dep status查看当前状态、使用ensure去做同步时,发现dep并没有什么要做的:

➜  $GOPATH/src/depdemo $dep status
PROJECT  CONSTRAINT  VERSION  REVISION  LATEST  PKGS USED
➜  $GOPATH/src/depdemo $dep ensure -v
Gopkg.lock was already in sync with imports and Gopkg.toml

好吧。我们再来为main.go添点“有用”的内容:一段读取toml配置文件的代码。

//data.toml
id = "12345678abcdefgh"
name = "tonybai"
city = "shenyang"

// main.go
package main

import (
    "fmt"
    "log"

    "github.com/BurntSushi/toml"
)

type Person struct {
    ID   string
    Name string
    City string
}

func main() {
    p := Person{}
    if _, err := toml.DecodeFile("./data.toml", &p); err != nil {
        log.Fatal(err)
    }

    fmt.Println(p)
}

之后,再来执行dep status:

➜  $GOPATH/src/depdemo $dep status
Lock inputs-digest mismatch due to the following packages missing from the lock:

PROJECT                     MISSING PACKAGES
github.com/BurntSushi/toml  [github.com/BurntSushi/toml]

This happens when a new import is added. Run `dep ensure` to install the missing packages.
input-digest mismatch

我们看到dep status检测到项目出现”不同步”的情况(代码中引用的toml包在Gopkg.lock中没有),并建议使用dep ensure命令去做一次sync。

img{512x368}

我们来ensure一下(ensure的输入输出见上图):

$GOPATH/src/depdemo git:(master) $dep ensure -v
Root project is "depdemo"
 1 transitively valid internal packages
 1 external packages imported from 1 projects
(0)   ✓ select (root)

(1)    ? attempt github.com/BurntSushi/toml with 1 pkgs; 7 versions to try
(1)        try github.com/BurntSushi/toml@v0.3.0
(1)    ✓ select github.com/BurntSushi/toml@v0.3.0 w/1 pkgs
  ✓ found solution with 1 packages from 1 projects

Solver wall times by segment:
     b-source-exists: 15.821158205s
... ...
  b-deduce-proj-root:       5.453µs

  TOTAL: 16.176846089s

(1/1) Wrote github.com/BurntSushi/toml@v0.3.0

我们来看看项目中的文件都发生了哪些变化:

$git status
On branch master
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

    modified:   Gopkg.lock

Untracked files:
  (use "git add <file>..." to include in what will be committed)

    vendor/

可以看到Gopkg.lock文件和vendor目录下发生了变化:

$git diff

diff --git a/Gopkg.lock b/Gopkg.lock
index bef2d00..c5ae854 100644
--- a/Gopkg.lock
+++ b/Gopkg.lock
@@ -1,9 +1,15 @@
 # This file is autogenerated, do not edit; changes may be undone by the next 'dep ensure'.

+[[projects]]
+  name = "github.com/BurntSushi/toml"
+  packages = ["."]
+  revision = "b26d9c308763d68093482582cea63d69be07a0f0"
+  version = "v0.3.0"
+
 [solve-meta]
   analyzer-name = "dep"
   analyzer-version = 1
-  inputs-digest = "ab4fef131ee828e96ba67d31a7d690bd5f2f42040c6766b1b12fe856f87e0ff7"
+  inputs-digest = "25c744eb70aefb94032db749509fd34b2fb6e7c6041e8b8c405f7e97d10bdb8d"
   solver-name = "gps-cdcl"
   solver-version = 1

$tree -L 2 vendor
vendor
└── github.com
    └── BurntSushi

可以看到Gopkg.lock中增加了toml包的依赖条目(版本v0.3.0),input-digest这个元数据字段的值也发生了变更;并且vendor目录下多了toml包的源码,至此项目又到达了“同步”状态。

3、添加约束

大多数情况下,我们到这里就算完成了dep work flow的一次cycle,但如果你需要为第三方包的版本加上一些约束条件,那么dep ensure -add就会派上用场,比如说:我们要使用toml包的v0.2.x版本,而不是v0.3.0版本,我们需要为github.com/BurntSushi/toml添加一条约束:

$dep ensure -v -add github.com/BurntSushi/toml@v0.2.0
Fetching sources...
(1/1) github.com/BurntSushi/toml@v0.2.0

Root project is "depdemo"
 1 transitively valid internal packages
 1 external packages imported from 1 projects
(0)   ✓ select (root)
(1)    ? attempt github.com/BurntSushi/toml with 1 pkgs; at least 1 versions to try
(1)        try github.com/BurntSushi/toml@v0.3.0
(2)    ✗   github.com/BurntSushi/toml@v0.3.0 not allowed by constraint ^0.2.0:
(2)        ^0.2.0 from (root)
(1)        try github.com/BurntSushi/toml@v0.2.0
(1)    ✓ select github.com/BurntSushi/toml@v0.2.0 w/1 pkgs
  ✓ found solution with 1 packages from 1 projects

Solver wall times by segment:
... ...

  TOTAL: 599.252392ms

(1/1) Wrote github.com/BurntSushi/toml@v0.2.0

add约束后,Gopkg.toml中增加了一条记录:

// Gopkg.toml
[[constraint]]
  name = "github.com/BurntSushi/toml"
  version = "0.2.0"

Gopkg.lock中的toml条目的版本回退为v0.2.0:

diff --git a/Gopkg.lock b/Gopkg.lock
index c5ae854..a557251 100644
--- a/Gopkg.lock
+++ b/Gopkg.lock
@@ -4,12 +4,12 @@
 [[projects]]
   name = "github.com/BurntSushi/toml"
   packages = ["."]
-  revision = "b26d9c308763d68093482582cea63d69be07a0f0"
-  version = "v0.3.0"
+  revision = "bbd5bb678321a0d6e58f1099321dfa73391c1b6f"
+  version = "v0.2.0"

 [solve-meta]
   analyzer-name = "dep"
   analyzer-version = 1
-  inputs-digest = "25c744eb70aefb94032db749509fd34b2fb6e7c6041e8b8c405f7e97d10bdb8d"
+  inputs-digest = "9fd144de0cc448be93418c927b5ce2a70e03ec7f260fa7e0867f970ff121c7d7"
   solver-name = "gps-cdcl"
   solver-version = 1

$dep status
PROJECT                     CONSTRAINT  VERSION  REVISION  LATEST  PKGS USED
github.com/BurntSushi/toml  ^0.2.0      v0.2.0   bbd5bb6   v0.2.0  1

vendor目录下的toml包源码也回退到v0.2.0的源码。关于约束规则的构成语法,可以参考dep文档

4、revendor/update vendor

使用vendor机制后,由于第三方依赖包修正bug或引入你需要的功能,revendor第三方依赖包版本或者叫update vendor会成为一个周期性的工作。比如:toml包做了一些bugfix,并发布了v0.2.1版本。在我的depdemo中,为了一并fix掉这些bug,我需要重新vendor toml包。之前我们加的constraint是满足升级到v0.2.1版本的,因此我们不需要重新设置constraints,我们只需要单独revendor toml即可,可以使用dep ensure -update 命令:

$dep ensure -v -update github.com/BurntSushi/toml
Root project is "depdemo"
 1 transitively valid internal packages
 1 external packages imported from 1 projects
(0)   ✓ select (root)
(1)    ? attempt github.com/BurntSushi/toml with 1 pkgs; 7 versions to try
(1)        try github.com/BurntSushi/toml@v0.3.0
(2)    ✗   github.com/BurntSushi/toml@v0.3.0 not allowed by constraint ^0.2.0:
(2)        ^0.2.0 from (root)
(1)        try github.com/BurntSushi/toml@v0.2.0
(1)    ✓ select github.com/BurntSushi/toml@v0.2.0 w/1 pkgs
  ✓ found solution with 1 packages from 1 projects

Solver wall times by segment:
  b-list-versions: 1m18.267880815s
  .... ...
  TOTAL: 1m57.118656393s

由于真实的toml并没有v0.2.1版本且没有v0.2.x版本,因此我们的dep ensure -update并没有真正获取到数据。vendor和Gopkg.lock都没有变化。

5、dep日常操作小结

下面这幅图包含了上述三个dep日常操作,可以直观地看出不同操作后,对项目带来的改变:

img{512x368}

“工欲善其事,必先利其器”,熟练的掌握dep的日常操作流程对提升开发效率大有裨益。

二、“超时等待退出”框架的一种实现

很多时候,我们在程序中都要启动多个goroutine协作完成应用的业务逻辑,比如:

func main() {
    go producer.Start()
    go consumer.Start()
    go watcher.Start()
    ... ...
}

启动容易停止难!当程序要退出时,最粗暴的方法就是不管三七二十一,main goroutine直接退出;优雅些的方式,也是*nix系统通常的作法是:通知一下各个Goroutine要退出了,然后等待一段时间后再真正退出。粗暴地直接退出的方式可能会导致业务数据的损坏、不完整或丢失。等待超时的方式虽然不能完全避免“损失”,但是它给了各个goroutine一个“挽救数据”的机会,可以尽可能地减少损失的程度。

但这些goroutine形态很可能不同,有些是server,有些可能是client worker或其manager,因此似乎很难用一种统一的框架全面管理他们的启动、运行和退出,于是我们缩窄“交互面”,我们只做“超时等待退出”。我们定义一个interface:

type GracefullyShutdowner interface {
    Shutdown(waitTimeout time.Duration) error
}

这样,凡是实现了该interface的类型均可在程序退出时得到退出的通知,并有机会做退出前的最后清理工作。这里还提供了一个类似http.HandlerFunc的类型ShutdownerFunc ,用于将普通function转化为实现了GracefullyShutdowner interface的类型实例:

type ShutdownerFunc func(time.Duration) error

func (f ShutdownerFunc) Shutdown(waitTimeout time.Duration) error {
    return f(waitTimeout)
}

1、并发退出

退出也至少有两种类型,一种是并发退出,这种退出方式下各个goroutine的退出先后次序对数据处理无影响;另外一种则是顺序退出,即各个goroutine之间的退出是必须按照一定次序进行的。我们先来说并发退出。上代码!

// shutdown.go
func ConcurrencyShutdown(waitTimeout time.Duration, shutdowners ...GracefullyShutdowner) error {
    c := make(chan struct{})

    go func() {
        var wg sync.WaitGroup
        for _, g := range shutdowners {
            wg.Add(1)
            go func(shutdowner GracefullyShutdowner) {
                shutdowner.Shutdown(waitTimeout)
                wg.Done()
            }(g)
        }
        wg.Wait()
        c <- struct{}{}
    }()

    select {
    case <-c:
        return nil
    case <-time.After(waitTimeout):
        return errors.New("wait timeout")
    }
}

我们将各个GracefullyShutdowner接口的实现以一个变长参数的形式传入ConcurrencyShutdown函数。ConcurrencyShutdown函数实现也很简单,通过:

  • 为每个shutdowner启动一个goroutine实现并发退出,并将timeout参数传入shutdowner的Shutdown方法中;
  • sync.WaitGroup在外层等待每个goroutine的退出;
  • 通过select一个退出指示channel和time.After返回的timer channel来决定到底是正常退出还是超时退出。

该函数的具体使用方法可以参考:shutdown_test.go。

//shutdown_test.go
func shutdownMaker(processTm int) func(time.Duration) error {
    return func(time.Duration) error {
        time.Sleep(time.Second * time.Duration(processTm))
        return nil
    }
}

func TestConcurrencyShutdown(t *testing.T) {
    f1 := shutdownMaker(2)
    f2 := shutdownMaker(6)

    err := ConcurrencyShutdown(time.Duration(10)*time.Second, ShutdownerFunc(f1), ShutdownerFunc(f2))
    if err != nil {
        t.Errorf("want nil, actual: %s", err)
        return
    }

    err = ConcurrencyShutdown(time.Duration(4)*time.Second, ShutdownerFunc(f1), ShutdownerFunc(f2))
    if err == nil {
        t.Error("want timeout, actual nil")
        return
    }
}

2、串行退出

有了并发退出作为基础,串行退出也很简单了!

//shutdown.go
func SequentialShutdown(waitTimeout time.Duration, shutdowners ...GracefullyShutdowner) error {
    start := time.Now()
    var left time.Duration

    for _, g := range shutdowners {
        elapsed := time.Since(start)
        left = waitTimeout - elapsed

        c := make(chan struct{})
        go func(shutdowner GracefullyShutdowner) {
            shutdowner.Shutdown(left)
            c <- struct{}{}
        }(g)

        select {
        case <-c:
            //continue
        case <-time.After(left):
            return errors.New("wait timeout")
        }
    }

    return nil
}

串行退出的一个问题是waitTimeout的确定,因为这个超时时间是所有goroutine的退出时间之和。在上述代码里,我把每次的lefttime传入下一个要执行的goroutine的Shutdown方法中,外部select也同样使用这个left作为timeout的值。对照ConcurrencyShutdown,SequentialShutdown更简单,这里就不详细说了。

3、小结

这是一个可用的、抛砖引玉式的实现,但还有很多改进空间,比如:可以考虑一下获取每个shutdowner.Shutdown后的返回值(error),留给大家自行考量吧。

三、Testcase的setUp和tearDown

Go语言自带testing框架,事实证明这是Go语言的一个巨大优势之一,Gopher们也非常喜欢这个testing包。但Testing这个事情比较复杂,有些场景还需要我们自己动脑筋在标准testing框架下实现需要的功能,比如:当测试代码需要访问外部数据库、Redis或连接远端server时。遇到这种情况,很多人想到了Mock,没错。Mock技术在一定程度上可以解决这些问题,但如果使用mock技术,业务代码就得为了test而去做一层抽象,提升了代码理解的难度,在有些时候这还真不如直接访问真实的外部环境。

这里先不讨论这两种方式的好坏优劣,这里仅讨论如果在testing中访问真实环境我们该如何测试。在经典单元测试框架中,我们经常能看到setUp和tearDown两个方法,它们分别用于在testcase执行之前初始化testcase的执行环境以及在testcase执行后清理执行环境,以保证每两个testcase之间都是独立的、互不干扰的。在真实环境下进行测试,我们也可以利用setUp和tearDown来为每个testcase初始化和清理case依赖的真实环境。

setUp和tearDown也是有级别的,有全局级、testsuite级以及testcase级。在Go中,在标准testing框架下,我们接触到的是全局级和testcase级别。Go中对全局级的setUp和tearDown的支持还要追溯到Go 1.4Go 1.4引入了TestMain方法,支持在诸多testcase执行之前为测试代码添加自定义setUp,以及在testing执行之后进行tearDown操作,例如:

func TestMain(m *testing.M) {
    err := setup()
    if err != nil {
        fmt.Println(err)
        os.Exit(-1)
    }

    r := m.Run()
    teardown()

    os.Exit(r)
}

但在testcase级别,Go testing包并没有提供方法上的支持。在2017年的GopherCon大会上,Hashicorp的创始人Mitchell Hashimoto做了题为:“Advanced Testing in Go”的主题演讲,这份资料里提出了一种较为优雅的为testcase进行setUp和teawDown的方法:

//setup-teardown-demo/foo_test.go
package foo_test

import (
    "fmt"
    "testing"
)

func setUp(t *testing.T, args ...interface{}) func() {
    fmt.Println("testcase setUp")
    // use t and args

    return func() {
        // use t
        // use args
        fmt.Println("testcase tearDown")
    }
}

func TestXXX(t *testing.T) {
    defer setUp(t)()
    fmt.Println("invoke testXXX")
}

这个方案充分利用了函数这个first-class type以及闭包的作用,每个Testcase可以定制自己的setUp和tearDown,也可以使用通用的setUp和tearDown,执行的效果如下:

$go test -v .
=== RUN   TestXXX
testcase setUp
invoke testXXX
testcase tearDown
--- PASS: TestXXX (0.00s)
PASS
ok      github.com/bigwhite/experiments/writing-go-code-issues/2nd-issue/setup-teardown-demo    0.010s

四、错误处理

本来想码一些关于Go错误处理的文字,但发现自己在2015年就写过一篇旧文《Go语言错误处理》,对Go错误处理的方方面面总结的很全面了。即便到今天也不过时,这当然也得益于Go1兼容规范的存在。因此有兴趣于此的朋友们,请移步到《Go语言错误处理》这篇文章吧。

注:本文所涉及的示例代码,请到这里下载。


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

微信赞赏:
img{512x368}

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats