标签 单元测试 下的文章

Go语言随机测试工具go-fuzz

Go 1.5发布时,前Intel Black Belt级工程师,现Google工程师Dmitry Vyukov同时发布了Go语言随机测试工具go-fuzz。在 GopherCon2015大会上,Dmitry Vyukov在其名为“[Go Dynamic Tools]”的presentation中着重介绍了go-fuzz

go-fuzz是一款随机测试(Random testing)工具。对于随机测试想必很多人都比较陌生,我也不例外。至少在接触go-fuzz之前,我从未在golang或其他编程语言中使用过类似的测试工具(c/c++开发者可以使用afl-fuzz)。按照维基百科的说法:随机测试就是指半自动或自动地为程序提供非法的、非预期、随机的数据,并监控程序在这些输入数据 下的crash、内置断言、内存泄露等情况。随机测试的研究始于1988年的Barton Miller,到目前为止已经有许多理论支撑,不过这里不会涉及,有兴趣的、想深入的朋友可以跟随维基百科中的链接自行学习。

在开始go-fuzz之前,我们需要认识到随机测试的位置和意义:
* 首先它是软件测试技术的一个重要分支,与单元测试等互为补充;
* 其次随机测试不是什么银弹,它有其适用的范围。随机测试最适合那些处理复杂输入数据的程序,比如文件格式解析、网络协议解析、人机交互界面入口等。
* 最后,并非所有编程语言都有类似的工具支撑,gopher很幸运,Dmitry Vyukov为我们带来了go-fuzz。

接下来就让我们回到go-fuzz这个正题上来。

一、Why go-fuzz

go-fuzz之所以吸引眼球,源于Dmitry Vyukov在使用go-fuzz对go标准库以及其他第三方开源库进行测试后的“惊人的战果”。Dmitry在其slide中展示了这些战果:

60 tests
137 bugs in std lib (70 fixed)
165 elsewhere (47 in gccgo, 30 in golang.org/x, 42 in freetype-go, protobuf, http2, bson)

Dmitry Vyukov的go-fuzz实际上也是基于前面提到的afl-fuzz的逻辑 的基础上设计和实现的。不同的是在使用的时候,afl-fuzz对于每个input case都会fork一个process,而go-fuzz则是通过将input case中的data传给一个Fuzz函数:

func Fuzz(data []byte) int

这样就无需反复重启程序。

go-fuzz进一步完善了go开发测试工具集,很多一线公司(比如cloudflare)已经开始使用go-fuzz来测试自己的产品,提高产品质量了。

二、原理

Dmitry在其slide中将go-fuzz的工作流程归纳如下:

 -> 生成随机数据
 -> 输入给程序
 -> 观察是否有crash
 -> 如果发现crash,则获益
  之后开发者根据crash的结果,尝试fix bug,并
  添加针对这个bug的单元测试case。

go-fuzz一旦运行起来,将会是一个infinite loop(一种遗传算法),该loop的伪代码在slide也有给出:

Instrument program for code coverage
Collect initial corpus of inputs  //收集初始输入数据语料(位于workdir的corpus目录下)
for {
    //从corpus中读取语料并随机变化
    Randomly mutate an input from the corpus

    //执行Fuzz,收集覆盖范围
    Execute and collect coverage

    //如果输入数据提供了新的coverage,则将该数据存入语料库(corpus)
    If the input gives new coverage, add it to corpus
}

go-fuzz内部实现了多种对初始语料库中输入数据的mutation策略:

* Insert/remove/duplicate/copy a random range of random bytes.
* Bit flip.
* Swap 2 bytes.
* Set a byte to a random value.
* Add/subtract from a byte/uint16/uint32/uint64 (le/be).
* Replace a byte/uint16/uint32 with an interesting value (le/be).
* Replace an ascii digit/number with another digit/number.
* Splice another input.
* Insert a part of another input.
* Insert a string/int literal.
* Replace with string/int literal.

三、使用方法

1、安装go-fuzz

使用go-fuzz需要安装两个重要工具:go-fuzz-build和go-fuzz,通过标准go get就可以安装它们:

$ go get github.com/dvyukov/go-fuzz/go-fuzz
$ go get github.com/dvyukov/go-fuzz/go-fuzz-build

对于国内用户而言,由于go-fuzz并未使用go 1.5引入的vendor机制, 而其依赖的一些包却在墙外,因此可能会遇到些麻烦。

go get自动安装两个工具到$GOROOT/bin或$GOPATH/bin,因此你需要确保你的Path环境变量下包含了这两个路径。

2、带有fuzz test的项目组织

假设我们的待测试的go包名为foo,路径为$GOPATH/src/github.com/bigwhite/fuzzexamples/foo。为了应用go- fuzz,我们一般会在foo下创建fuzz.go源文件,其内容模板如下:

// +build gofuzz

package foo

func Fuzz(data []byte) int {
    ... ...
}

go-fuzz在构建用于执行fuzz test的驱动binary文件时,会搜索带有”+build gofuzz” directive的源文件以及其中的Fuzz函数。如果foo包下没有该文件,你在执行go-fuzz-build时,会得到类似如下的错误日志:

$go-fuzz-build github.com/bigwhite/fuzzexamples/foo
failed to execute go build: exit status 2
# go-fuzz-main
/var/folders/2h/xr2tmnxx6qxc4w4w13m01fsh0000gn/T/go-fuzz-build641745751/src/go-fuzz-main/main.go:10: undefined: foo.Fuzz

有些时候待测试包内功能很多,一个Fuzz函数不够,我们可以参考go-fuzz中example中的目录组织形式来应对:

github.com/bigwhite/fuzzexamples/foo/fuzztest]$tree
.
├── fuzz1
│   ├── corpus
│   ├── fuzz.go
│   └── gen
│       └── main.go
└── fuzz2
    ├── corpus
    ├── fuzz.go
    └── gen
        └── main.go
 ... ...

这其中的fuzz1、fuzz2…. fuzzN各自为一个go-fuzz单元,如果要应用go-fuzz,则可像下面这样执行:

$ cd fuzz1
$ go-fuzz-build github.com/bigwhite/fuzzexamples/foo/fuzztest/fuzz1
$ go-fuzz -bin=./foo-fuzz.zip -workdir=./

.. ...

$ cd fuzz2
$ go-fuzz-build github.com/bigwhite/fuzzexamples/foo/fuzztest/fuzz2
$ go-fuzz -bin=./foo-fuzz.zip -workdir=./

每个go-fuzz单元下有一套”固定”目录组合:

├── fuzz1
│   ├── corpus
│   ├── fuzz.go
│   └── gen
│       └── main.go

corpus为存放输入数据语料的目录,在go-fuzz执行之前,可放入初始语料;
fuzz.go为包含Fuzz函数的源码文件;
gen目录中包含手工生成初始语料的main.go代码。

在后续的示例中,我们会展示细节。

3、go-fuzz-build

go-fuzz-build会根据Fuzz函数构建一个用于go-fuzz执行的zip包(PACKAGENAME-fuzz.zip),包里包含了用途不同的三 个文件:

-rw-r--r--   1 tony  staff  3902136 12 31  1979 cover.exe
-rw-r--r--   1 tony  staff  3211816 12 31  1979 metadata
-rw-r--r--   1 tony  staff  5031496 12 31  1979 sonar.exe

按照作者slide中的说法,各个二进制程序的功能如下:
cover.exe – coverage instrumented binary
sonar.exe – sonar instrumented binary
metadata – coverage and sonar metadata, int and string literals

不过对于使用者来说,我们不必过于关心它们,点到为止。

4、执行go-fuzz

一旦生成了foo-fuzz.zip,我们就可以执行针对fuzz1的fuzz test。

$ cd fuzz1
$ go-fuzz -bin=./foo-fuzz.zip -workdir=./
2015/12/08 17:51:48 slaves: 4, corpus: 8 (1s ago), crashers: 0, restarts: 1/0, execs: 0 (0/sec), cover: 0, uptime: 3s
2015/12/08 17:51:51 slaves: 4, corpus: 9 (2s ago), crashers: 0, restarts: 1/3851, execs: 11553 (1924/sec), cover: 143, uptime: 6s
2015/12/08 17:51:54 slaves: 4, corpus: 9 (5s ago), crashers: 0, restarts: 1/3979, execs: 47756 (5305/sec), cover: 143, uptime: 9s
... ...

如果corpus中没有初始语料数据,那么go-fuzz也会自行生成相关数据传递给Fuzz函数,并且采用遗传算法,不断基于corpus中的语料生成新的输入语料。go-fuzz作者建议corpus初始时放入的语料越多越好,而且要有足够的多样性,这样基于这些初始语料施展遗传算法,效果才会更加。go-fuzz会将一些语料持久化成文件放在corpus中,以供下次restart使用。

前面说过,go-fuzz是一个infinite loop,上面的测试需要手工停下来。go-fuzz会在workdir中创建另外两个目录:crashers和suppressions。顾名思义,crashers中存放的是代码crash时的相关数据,包括引起crash的case的输入二进制数据、输入的数据的字符串形式(xxx.quoted)以及基于这个数据的输出数据(xxx.output)。suppressions中保存着crash时的stack trace信息。

四、一个简单示例

gocmpp是一个cmpp协议库的go实现,这里打算用其中的unpack做一个最简单的fuzz test demo。

gocmpp中的每种协议包都实现了Packer接口,其中的Unpack尤其适合fuzz test。由于协议包众多,我们在gocmpp下专门建立fuzztest目录,用于存放fuzz test的代码,将各个协议包的fuzz test分到各个子目录中:

github.com/bigwhite/gocmpp/fuzztest]$tree
.
├── fwd
│   ├── corpus
│   │   └── 0
│   ├── fuzz.go
│   └── gen
│       └── main.go
└── submit
       ├── corpus
       │   ├── 0
       ├── fuzz.go
       └── gen
           └── main.go

先说说每个fuzz test单元(比如fwd或submit)下的gen/main.go,这是一个用于生成初始语料的可执行程序,我们以submit/gen/main.go为例:

package main

import (
    "github.com/dvyukov/go-fuzz/gen"
)

func main() {
    data := []byte{
        0x00, 0x00, 0x00, 0x17, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x74, 0x65, 0x73, 0x74, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x02, 0x31, 0x33, 0x35, 0x30, 0x30, 0x30, 0x30, 0x32, 0x36, 0x39, 0x36, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x39, 0x30, 0x30, 0x30, 0x30,
        0x31, 0x30, 0x32, 0x31, 0x30, 0x00, 0x00, 0x00, 0x00, 0x31, 0x35, 0x31, 0x31, 0x30, 0x35, 0x31,
        0x33, 0x31, 0x35, 0x35, 0x35, 0x31, 0x30, 0x31, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x39, 0x30, 0x30, 0x30, 0x30,
        0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x01, 0x31, 0x33, 0x35, 0x30, 0x30, 0x30, 0x30, 0x32, 0x36, 0x39, 0x36, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0x6d, 0x4b, 0x8b, 0xd5, 0x00, 0x67, 0x00, 0x6f, 0x00,
        0x63, 0x00, 0x6d, 0x00, 0x70, 0x00, 0x70, 0x00, 0x20, 0x00, 0x73, 0x00, 0x75, 0x00, 0x62, 0x00,
        0x6d, 0x00, 0x69, 0x00, 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    }

    gen.Emit(data, nil, true)
}

在这个main.go中,我们借用submit包的单元测试中的数据作为fuzz test的初始语料数据,通过go-fuzz提供的gen包将数据输出到文件中:

$cd submit/gen
$go run main.go -out ../corpus/
$ll ../corpus/
total 8
drwxr-xr-x  3 tony  staff  102 12  7 22:00 ./
drwxr-xr-x  5 tony  staff  170 12  7 21:42 ../
-rw-r--r--  1 tony  staff  181 12  7 22:00 0

该程序在corpus下生成了一个文件“0”,作为submit fuzz test的初始语料。

接下来我们看看submit/fuzz.go:

// +build gofuzz

package cmppfuzz

import (
    "github.com/bigwhite/gocmpp"
)

func Fuzz(data []byte) int {
    p := &cmpp.Cmpp2SubmitReqPkt{}
    if err := p.Unpack(data); err != nil {
        return 0
    }
    return 1
}

这是一个“最简单”的Fuzz函数实现了,根据作者对Fuzz的规约,Fuzz的返回值是有重要含义的:

如果此次输入的数据在某种程度上是很有意义的,go-fuzz会给予这类输入更多的优先级,Fuzz应该返回1;
如果明确这些输入绝对不能放入corpus,那让Fuzz返回-1;
至于其他情况,返回0。

接下来就是go-fuzz-build和go-fuzz登场了,这与前面的介绍差不多:

$cd submit
$go-fuzz-build github.com/bigwhite/gocmpp/fuzztest/submit
$ls
cmppfuzz-fuzz.zip    corpus/            fuzz.go            gen/

在submit目录下执行go-fuzz:

$go-fuzz -bin=./cmppfuzz-fuzz.zip -workdir=./
2015/12/07 22:05:02 slaves: 4, corpus: 1 (3s ago), crashers: 0, restarts: 1/0, execs: 0 (0/sec), cover: 0, uptime: 3s
2015/12/07 22:05:05 slaves: 4, corpus: 3 (0s ago), crashers: 0, restarts: 1/0, execs: 0 (0/sec), cover: 32, uptime: 6s
2015/12/07 22:05:08 slaves: 4, corpus: 7 (1s ago), crashers: 0, restarts: 1/5424, execs: 65098 (7231/sec), cover: 131, uptime: 9s
2015/12/07 22:05:11 slaves: 4, corpus: 9 (0s ago), crashers: 0, restarts: 1/5424, execs: 65098 (5424/sec), cover: 146, uptime: 12s
... ...
2015/12/07 22:09:11 slaves: 4, corpus: 9 (4m0s ago), crashers: 0, restarts: 1/9860, execs: 4033002 (16002/sec), cover: 146, uptime: 4m12s
^C2015/12/07 22:09:13 shutting down...

这个测试非常耗cpu啊!一小会儿功夫,我的Mac Air的风扇就开始呼呼转起来了。不过我的Unpack函数并未在fuzz test中发现问题,crashers后面的数值一直是0。

go-fuzz目前似乎还不支持vendor机制,因此如果你的包像gocmpp一样使用了vendor,那需要在go-fuzz-build和go-fuzz前面加上一个GO15VENDOREXPERIMENT=”0″(如果你之前开启了GO15VENDOREXPERIMENT),就像这样:

$ GO15VENDOREXPERIMENT="0" go-fuzz-build github.com/bigwhite/gocmpp/fuzztest/submit

如果不关闭vendor,你可能会得到类似如下的错误

can't find imported package golang.org/x/text/transform

Golang测试技术

本篇文章内容来源于Golang核心开发组成员Andrew Gerrand在Google I/O 2014的一次主题分享“Testing Techniques”,即介绍使用Golang开发 时会使用到的测试技术(主要针对单元测试),包括基本技术、高级技术(并发测试、mock/fake、竞争条件测试、并发测试、内/外部测 试、vet工具等)等,感觉总结的很全面,这里整理记录下来,希望能给大家带来帮助。原Slide访问需要自己搭梯子。另外这里也要吐槽一 下:Golang官方站的slide都是以一种特有的golang artical的格式放出的(用这个工具http://go-talks.appspot.com/可以在线观看),没法像pdf那样下载,在国内使用和传播极其不便。

一、基础测试技术

1、测试Go代码

Go语言内置测试框架。

内置的测试框架通过testing包以及go test命令来提供测试功能。

下面是一个完整的测试strings.Index函数的完整测试文件:

//strings_test.go (这里样例代码放入strings_test.go文件中)
package strings_test

import (
    "strings"
    "testing"
)

func TestIndex(t *testing.T) {
    const s, sep, want = "chicken", "ken", 4
    got := strings.Index(s, sep)
    if got != want {
        t.Errorf("Index(%q,%q) = %v; want %v", s, sep, got, want)//注意原slide中的got和want写反了
    }
}

$go test -v strings_test.go
=== RUN TestIndex
— PASS: TestIndex (0.00 seconds)
PASS
ok      command-line-arguments    0.007s

go test的-v选项是表示输出详细的执行信息。

将代码中的want常量值修改为3,我们制造一个无法通过的测试:

$go test -v strings_test.go
=== RUN TestIndex
— FAIL: TestIndex (0.00 seconds)
    strings_test.go:12: Index("chicken","ken") = 4; want 3
FAIL
exit status 1
FAIL    command-line-arguments    0.008s

2、表驱动测试

Golang的struct字面值(struct literals)语法让我们可以轻松写出表驱动测试。

package strings_test

import (
        "strings"
        "testing"
)

func TestIndex(t *testing.T) {
        var tests = []struct {
                s   string
                sep string
                out int
        }{
                {"", "", 0},
                {"", "a", -1},
                {"fo", "foo", -1},
                {"foo", "foo", 0},
                {"oofofoofooo", "f", 2},
                // etc
        }
        for _, test := range tests {
                actual := strings.Index(test.s, test.sep)
                if actual != test.out {
                        t.Errorf("Index(%q,%q) = %v; want %v",
                             test.s, test.sep, actual, test.out)
                }
        }
}

$go test -v strings_test.go
=== RUN TestIndex
— PASS: TestIndex (0.00 seconds)
PASS
ok      command-line-arguments    0.007s

3、T结构

*testing.T参数用于错误报告:

t.Errorf("got bar = %v, want %v", got, want)
t.Fatalf("Frobnicate(%v) returned error: %v", arg, err)
t.Logf("iteration %v", i)

也可以用于enable并行测试(parallet test):
t.Parallel()

控制一个测试是否运行:

if runtime.GOARCH == "arm" {
    t.Skip("this doesn't work on ARM")
}

4、运行测试

我们用go test命令来运行特定包的测试。

默认执行当前路径下包的测试代码。

$ go test
PASS

$ go test -v
=== RUN TestIndex
— PASS: TestIndex (0.00 seconds)
PASS

要运行工程下的所有测试,我们执行如下命令:

$ go test github.com/nf/…

标准库的测试:
$ go test std

注:假设strings_test.go的当前目录为testgo,在testgo目录下执行go test都是OK的。但如果我们切换到testgo的上一级目录执行go test,我们会得到什么结果呢?

$go test testgo
can't load package: package testgo: cannot find package "testgo" in any of:
    /usr/local/go/src/pkg/testgo (from $GOROOT)
    /Users/tony/Test/GoToolsProjects/src/testgo (from $GOPATH)

提示找不到testgo这个包,go test后面接着的应该是一个包名,go test会在GOROOT和GOPATH下查找这个包并执行包的测试。

5、测试覆盖率

go tool命令可以报告测试覆盖率统计。

我们在testgo下执行go test -cover,结果如下:

go build _/Users/tony/Test/Go/testgo: no buildable Go source files in /Users/tony/Test/Go/testgo
FAIL    _/Users/tony/Test/Go/testgo [build failed]

显然通过cover参数选项计算测试覆盖率不仅需要测试代码,还要有被测对象(一般是函数)的源码文件。

我们将目录切换到$GOROOT/src/pkg/strings下,执行go test -cover

$go test -v -cover
=== RUN TestReader
— PASS: TestReader (0.00 seconds)
… …
=== RUN: ExampleTrimPrefix
— PASS: ExampleTrimPrefix (1.75us)
PASS
coverage: 96.9% of statements
ok      strings    0.612s

go test可以生成覆盖率的profile文件,这个文件可以被go tool cover工具解析。

在$GOROOT/src/pkg/strings下面执行:

$ go test -coverprofile=cover.out

会再当前目录下生成cover.out文件。

查看cover.out文件,有两种方法:

a) cover -func=cover.out

$sudo go tool cover -func=cover.out
strings/reader.go:24:    Len                66.7%
strings/reader.go:31:    Read                100.0%
strings/reader.go:44:    ReadAt                100.0%
strings/reader.go:59:    ReadByte            100.0%
strings/reader.go:69:    UnreadByte            100.0%
… …
strings/strings.go:638:    Replace                100.0%
strings/strings.go:674:    EqualFold            100.0%
total:            (statements)            96.9%

b) 可视化查看

执行go tool cover -html=cover.out命令,会在/tmp目录下生成目录coverxxxxxxx,比如/tmp/cover404256298。目录下有一个 coverage.html文件。用浏览器打开coverage.html,即可以可视化的查看代码的测试覆盖情况。

 

关于go tool的cover命令,我的go version go1.3 darwin/amd64默认并不自带,需要通过go get下载。

$sudo GOPATH=/Users/tony/Test/GoToolsProjects go get code.google.com/p/go.tools/cmd/cover

下载后,cover安装在$GOROOT/pkg/tool/darwin_amd64下面。

二、高级测试技术

1、一个例子程序

outyet是一个web服务,用于宣告某个特定Go版本是否已经打标签发布了。其获取方法:

go get github.com/golang/example/outyet

注:
go get执行后,cd $GOPATH/src/github.com/golang/example/outyet下,执行go run main.go。然后用浏览器打开http://localhost:8080即可访问该Web服务了。

2、测试Http客户端和服务端

net/http/httptest包提供了许多帮助函数,用于测试那些发送或处理Http请求的代码。

3、httptest.Server

httptest.Server在本地回环网口的一个系统选择的端口上listen。它常用于端到端的HTTP测试。

type Server struct {
    URL      string // base URL of form http://ipaddr:port with no trailing slash
    Listener net.Listener

    // TLS is the optional TLS configuration, populated with a new config
    // after TLS is started. If set on an unstarted server before StartTLS
    // is called, existing fields are copied into the new config.
    TLS *tls.Config

    // Config may be changed after calling NewUnstartedServer and
    // before Start or StartTLS.
    Config *http.Server
}

func NewServer(handler http.Handler) *Server

func (*Server) Close() error

4、httptest.Server实战

下面代码创建了一个临时Http Server,返回简单的Hello应答:

    ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        fmt.Fprintln(w, "Hello, client")
    }))
    defer ts.Close()

    res, err := http.Get(ts.URL)
    if err != nil {
        log.Fatal(err)
    }

    greeting, err := ioutil.ReadAll(res.Body)
    res.Body.Close()
    if err != nil {
        log.Fatal(err)
    }

    fmt.Printf("%s", greeting)

5、httptest.ResponseRecorder

httptest.ResponseRecorder是http.ResponseWriter的一个实现,用来记录变化,用在测试的后续检视中。

type ResponseRecorder struct {
    Code      int           // the HTTP response code from WriteHeader
    HeaderMap http.Header   // the HTTP response headers
    Body      *bytes.Buffer // if non-nil, the bytes.Buffer to append written data to
    Flushed   bool
}

6、httptest.ResponseRecorder实战

向一个HTTP handler中传入一个ResponseRecorder,通过它我们可以来检视生成的应答。

    handler := func(w http.ResponseWriter, r *http.Request) {
        http.Error(w, "something failed", http.StatusInternalServerError)
    }

    req, err := http.NewRequest("GET", "http://example.com/foo", nil)
    if err != nil {
        log.Fatal(err)
    }

    w := httptest.NewRecorder()
    handler(w, req)

    fmt.Printf("%d – %s", w.Code, w.Body.String())

7、竞争检测(race detection)

当两个goroutine并发访问同一个变量,且至少一个goroutine对变量进行写操作时,就会发生数据竞争(data race)。

为了协助诊断这种bug,Go提供了一个内置的数据竞争检测工具。

通过传入-race选项,go tool就可以启动竞争检测。

$ go test -race mypkg    // to test the package
$ go run -race mysrc.go  // to run the source file
$ go build -race mycmd   // to build the command
$ go install -race mypkg // to install the package

注:一个数据竞争检测的例子

例子代码:

//testrace.go

package main

import "fmt"
import "time"

func main() {
        var i int = 0
        go func() {
                for {
                        i++
                        fmt.Println("subroutine: i = ", i)
                        time.Sleep(1 * time.Second)
                }
        }()

        for {
                i++
                fmt.Println("mainroutine: i = ", i)
                time.Sleep(1 * time.Second)
        }
}

$go run -race testrace.go
mainroutine: i =  1
==================
WARNING: DATA RACE
Read by goroutine 5:
  main.func·001()
      /Users/tony/Test/Go/testrace.go:10 +0×49

Previous write by main goroutine:
  main.main()
      /Users/tony/Test/Go/testrace.go:17 +0xd5

Goroutine 5 (running) created at:
  main.main()
      /Users/tony/Test/Go/testrace.go:14 +0xaf
==================
subroutine: i =  2
mainroutine: i =  3
subroutine: i =  4
mainroutine: i =  5
subroutine: i =  6
mainroutine: i =  7
subroutine: i =  8

8、测试并发(testing with concurrency)

当测试并发代码时,总会有一种使用sleep的冲动。大多时间里,使用sleep既简单又有效。

但大多数时间不是”总是“。

我们可以使用Go的并发原语让那些奇怪不靠谱的sleep驱动的测试更加值得信赖。

9、使用静态分析工具vet查找错误

vet工具用于检测代码中程序员犯的常见错误:
    – 错误的printf格式
    – 错误的构建tag
    – 在闭包中使用错误的range循环变量
    – 无用的赋值操作
    – 无法到达的代码
    – 错误使用mutex
    等等。

使用方法:
    go vet [package]

10、从内部测试

golang中大多数测试代码都是被测试包的源码的一部分。这意味着测试代码可以访问包种未导出的符号以及内部逻辑。就像我们之前看到的那样。

注:比如$GOROOT/src/pkg/path/path_test.go与path.go都在path这个包下。

11、从外部测试

有些时候,你需要从被测包的外部对被测包进行测试,比如测试代码在package foo_test下,而不是在package foo下。

这样可以打破依赖循环,比如:

    – testing包使用fmt
    – fmt包的测试代码还必须导入testing包
    – 于是,fmt包的测试代码放在fmt_test包下,这样既可以导入testing包,也可以同时导入fmt包。

12、Mocks和fakes

通过在代码中使用interface,Go可以避免使用mock和fake测试机制。

例如,如果你正在编写一个文件格式解析器,不要这样设计函数:

func Parser(f *os.File) error

作为替代,你可以编写一个接受interface类型的函数:

func Parser(r io.Reader) error

bytes.Buffer、strings.Reader一样,*os.File也实现了io.Reader接口。

13、子进程测试

有些时候,你需要测试的是一个进程的行为,而不仅仅是一个函数。例如:

func Crasher() {
    fmt.Println("Going down in flames!")
    os.Exit(1)
}

为了测试上面的代码,我们将测试程序本身作为一个子进程进行测试:

func TestCrasher(t *testing.T) {
    if os.Getenv("BE_CRASHER") == "1" {
        Crasher()
        return
    }
    cmd := exec.Command(os.Args[0], "-test.run=TestCrasher")
    cmd.Env = append(os.Environ(), "BE_CRASHER=1")
    err := cmd.Run()
    if e, ok := err.(*exec.ExitError); ok && !e.Success() {
        return
    }
    t.Fatalf("process ran with err %v, want exit status 1", err)
}

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats