标签 链接器 下的文章

Go 1.23新特性前瞻

本文永久链接 – https://tonybai.com/2024/05/30/go-1-23-foresight

2024年5月22日,Go 1.23版本功能特性正式冻结,后续将只改bug,不增加新feature。

对Go团队来说,这意味着开始了Go 1.23rc1的冲刺,对我们普通Gopher而言,这意味着是时候对Go 1.23新增的功能做一些前瞻了

在Go没有发布Go 1.23rc1之前,我们至少可以通过以下两种渠道体验Go 1.23的最新特性:

  • 通过go install安装tip版本;
  • 使用Go playground在线体验。

注:关于Go tip的安装方法以及Go playground在线体验的详细说明,这里就不赘述了,《Go语言第一课》专栏的“03|配好环境:选择一种最适合你的Go安装方法”有系统全面的讲解,欢迎订阅阅读。

按照Go Release cycle,Go 1.23将于2024年8月发布!因此目前为时尚早,下面列出的有些变化最终不一定能进入到Go 1.23的最终版本中,有小概率被revert的可能或者推迟到下一个版本(Go 1.24),所以切记一切变更点要以最终Go 1.23版本发布时为准。

1. 语言变化

Go 1.23语言变化较少,除了range over func试验特性转正,再有就是几个悬而未决的spec变更。

1.1 range over func试验特性转正(61405)

Go 1.22版本引入了range over func试验特性,通过GOEXPERIMENT=rangefunc,可以实现函数迭代器。这一特性在Go 1.23版本正式转正,下面代码可以直接使用Go 1.23编译运行:

// go1.23-foresight/lang/range-over-function-iterator/main.go

package main

import "fmt"

func Backward[E any](s []E) func(func(int, E) bool) {
    return func(yield func(int, E) bool) {
        for i := len(s) - 1; i >= 0; i-- {
            if !yield(i, s[i]) {
                return
            }
        }
        return
    }
}

func main() {
    sl := []string{"hello", "world", "golang"}
    for i, s := range Backward(sl) {
        fmt.Printf("%d : %s\n", i, s)
    }
}

使用Go 1.23运行上述示例:

$go run main.go
2 : golang
1 : world
0 : hello

range over func可以提供一种统一、高效的迭代方式, 为泛型后的自定义容器类提供统一的迭代接口,同时也可以替代部分现有API返回切片的做法, 改为通过迭代器的形式改进性能(通过编译器的优化),甚至还可以为函数式编程风格提供标准迭代机制。

rang over func机制的实现是通过编译器在源码层面的转换,其转换形式大致如下:

// 单循环变量
for x := range f1 {
    ...
}

将被转换为:

f1(func(x T) bool {
    ...
})

而另外一种常见的双循环变量形式的for range:

for expr1, expr2 = range f2 {
    ...
}

将被转换为:

f2(func(#p1 T1, #p2 T2) bool {
    expr1, expr2 = #p1, #p2
    ...
})

前提是:f1和f2分别要满足标准库中iter包中的下面函数原型形式:

// $GOROOT/src/iter/iter.go
type Seq[V any] func(yield func(V) bool) bool
type Seq2[K, V any] func(yield func(K, V) bool) bool

此外,for range循环体中如果有break,将被转换为f1/f2中的return false,而如果有continue,则会被转换为return true。当然这只是大致的形式,实际的转换远比这个要复杂很多,要考虑的情况也是十分复杂。更为具体、复杂的转换可以参考Go编译器的实现源码rewrite.go

函数迭代器虽然转正,但肯定尚未成熟,后续还会有诸多问题(比如一些corner case)需要解决,比如Russ Cox新开的issue 65236就在讨论是否允许忽略迭代变量;issue 65237将跟踪spec中与range over func相关内容的变更。

1.2 spec:几个悬而未决的issue

这个issue来自我提出的《Go 1.22引入的包级变量初始化次序问题》,Go 1.23已经修正了该问题,并保持与Go 1.22之前的版本一致,但go spec中尚未就此给出明确的说明。

一些issue已经“跳票”多次,不能确定以上issue都能最终在Go 1.23得以解决!

2. 编译器与运行时

2.1 优化了PGO(Profile Guided Optimization)带来的处理开销 (issue 58102)

Go社区发现启用PGO后,每个cmd/compile调用都会解析完整的PGO pprof配置文件,构建完整的权重图,然后确定与该包相关的内容。这类工作项有很多,并且随着Profile文件的大小和构建包的数量的扩展,构建开销也会增大。尤其是对于那些特别大的项目,PGO Profile很大,这可能会导致构建时间增加100%以上。

Go 1.23对这个问题进行了优化,PGO开销被降到了个位数百分比。

2.2 限制将来对linkname的使用(67401)

在Go语言中,//go:linkname指令可以用来链接到标准库或其他包中的未导出符号。比如我们想访问runtime包中的一个未导出函数,例如runtime.nanotime。这个函数返回当前时间的纳秒数。我们可以通过//go:linkname指令链接到这个符号。下面我用一个示例来演示一下这点:

// go1.23-foresight/compiler/golinkname/main.go
package main

import (
    "fmt"
    _ "unsafe" // 必须导入 unsafe 包以使用 //go:linkname
)

// 声明符号链接
//
//go:linkname nanotime runtime.nanotime
func nanotime() int64

func main() {
    // 调用未导出的 runtime.nanotime 函数
    fmt.Println("Current time in nanoseconds:", nanotime())
}

运行该示例:

$go run main.go
Current time in nanoseconds: 374424337532051

这种做法一般不推荐,因为它可能导致程序不稳定,并且未来版本的Go可能会改变内部实现(比如nanotime被改名或被删除),破坏你的代码。

Go团队已经意识到这一点,并发现现存开源代码中有很多代码都通过//go:linkname依赖Go项目的internal下的包或Go标准库的未导出符号。这显然不是Go团队想看到的事儿,于是Russ Cox发起issue 67401,旨在考虑限制对//go:linkname的使用。

该issue虽然在Go 1.23 milestone中,但最终是否能落在Go 1.23中还不确定,毕竟这样的调整会导致一些现存代码无法正常编译运行。

2.3 其他一些优化

  • 优化内存分配器的行为,减少了大内存(带有指针)分配时的长暂停 (issue 31222)
  • 修复Windows下time.Sleep的精度问题(issue 44343)
  • 增加了设置崩溃输出的API runtime/debug.SetCrashOutput(issue 42888)
  • 对内联器继续进行大修:重构优化 (issue 61502),这是一个长期任务,估计后续版本还会继续。

3. 工具链

3.1 新增go telemetry子命令,改进go工具链的遥测能力 (issue 67111)

Russ Cox去年初就在个人博客上发布了四篇有关Go Telemetry的文章,在2023 GopherCon大会上,Russ Cox也谈到了Go Telemetry对基于数据驱动进行Go演进决策的重要性。Russ Cox亲自创建的“all: add opt-in transparent telemetry to Go toolchain”提案也被Go项目接受。

Go工具链中的telemetry是数据驱动的重要一环,最初golang.org/x/telemetry实验项目被建立。在Go 1.23中,go工具链新增了go telemetry子命令,该子命令就是基于golang.org/x/telemetry实验项目,这也是Go团队实现某一个特性的一贯套路。

go telemetry子命令用法大致如下(以最终版本的doc为准):

go telemetry - 打印telemetry mode: on, off or local;
go telemetry on - 设置mode为on;即开启telemetry且上传遥测数据。
go telemetry local - 设置mode为local;即telemetry数据仅存储在本地,但不上传。
go telemetry off - 设置mode为off。即关闭telemetry
go clean -telemetry - 清理本地的遥测数据目录。

3.2 其他一些改变

  • go build(-json)支持以json形式输出构建结果(issue 62067),让构建结果更结构化
  • 移除了对GOROOT_FINAL的支持 (issue 62047),估计很多人不知道或完全没用过GOROOT_FINAL,我也是如此。

4. 标准库

4.1 Timer/Ticker变化

timer/ticker的stop/reset问题一直困扰Go团队,Go 1.23的两个重要fix期望能从根本上解决这个问题:

程序不再引用的Timer和Ticker将立即有资格进行垃圾回收,即使它们的Stop方法尚未被调用。Go的早期版本直到触发后才会收集未停止的Timer,并且从未收集未停止的Ticker。

  • Timer/Ticker的Stop/Reset后不再接收旧值(issue 37196)

与Timer或Ticker关联的计时器channel现在改为无缓冲的了,即容量为0 。此更改的主要效果是Go现在保证任何对Reset或Stop方法的调用,调用之前不会发送或接收任何陈旧值。 Go的早期版本使用带有缓冲区的channel,因此很难正确使用Reset和Stop。此更改的一个明显效果是计时器channel的len和cap现在返回0而不是1,这可能会影响轮询长度以确定是否在计时器channel上接收的程序。通过GODEBUG设置asynctimerchan=1可恢复异步通道行为。

4.2 新增unique包(issue 62483)

unique包的灵感来自于第三方包go4.org/intern,也是为了弥补Go语言缺乏对interning内置支持的空缺。

根据wikipedia的描述,interning是按需重复使用具有同等值对象的技术,减少创建新对象的动作。这种创建模式经常用于不同编程语言中的数和字符串,可以避免不必要的对象重复分配的开销。

Go unique包即是Go的interning机制的实现,unique包提供了一种高效的值去重和快速比较的机制,可以用于优化某些特定场景下的程序性能。

unique包提供给开发人员的API接口非常简单:Make用来创建Handle实例,Handle的方法Value用于获取值的拷贝。下面是一个使用unique包的典型示例:

// go1.23-foresight/lib/unique/main.go
package main

import (
    "fmt"
    "unique"
)

func main() {
    // 创建唯一Handle
    s1 := unique.Make("hello")
    s2 := unique.Make("world")
    s3 := unique.Make("hello")

    // s1和s3是相等的,因为它们是同一个字符串值
    fmt.Println(s1 == s3) // true
    fmt.Println(s1 == s2) // false

    // 从Handle获取原始值
    fmt.Println(s1.Value()) // hello
    fmt.Println(s2.Value()) // world
}

代码和输出结果都不难理解,这类就不赘述了。

4.3 函数迭代器相关

前面说过,函数迭代器转正了。标准库中有一些包立即就提供了一些便利的、可以与函数迭代器一起使用的函数,以slices、maps两个后加入Go标准库的泛型容器包为主。

其中slices包增加了:All、Values、Backward、Collect、AppendSeq、Sortted、SortedFunc、SortedStableFunc和Chunk。maps包增加了All、Keys、Values、Insert和Collect。

我们以slices包的All和Backward来构建一个示例,直观感受一下:

// go1.23-foresight/lib/slices/main.go

package main

import (
    "fmt"
    "slices"
)

func main() {
    sl := []string{"hello", "world", "golang"}

    for i, s := range slices.All(sl) {
        fmt.Printf("%d : %s\n", i, s)
    }

    for i, s := range slices.Backward(sl) {
        fmt.Printf("%d : %s\n", i, s)
    }
}

运行该示例:

$go run main.go
0 : hello
1 : world
2 : golang
2 : golang
1 : world
0 : hello

和以往一样,Go标准库是变化最多的一块儿,但篇幅有限,这里不便枚举,大家可以自行查看Go 1.23里程碑,选择自己关注的标准库变化,并深入研究。

5. 小结

本文主要预览了Go 1.23版本即将带来的新特性和变化。

首先在语言层面,range over func试验特性正式转正,提供统一高效的迭代方式;同时也会修复之前一些悬而未决的规范问题。

其次,在编译器和运行时方面,Go 1.23将优化PGO带来的开销,限制对linkname的使用,优化内存分配器和内联器等。工具链方面,新增telemetry子命令改进遥测能力。

标准库也有不少变化,比如Timer/Ticker的相关修复,新增unique包实现interning机制,以及为函数迭代器新增一些辅助函数。

Go 1.23的Release Notes的编写方式也做了调整,详细内容可参考我的公号文章《Go 1.23 Release Notes编写方式改进!》

总的来说,Go 1.23包含了语法、编译器、运行时、工具链和标准库等多方面的改进,其中最主要集中在编译器性能优化、PGO特性增强、新编译器功能实现以及标准库增强等方面。

不过由于Go 1.23尚未发布,文中部分变化还可能被修改或推迟到下个版本。最终还是以正式发布版为准。文末也列出了一些相关资源链接,方便读者深入了解。

截至发文时,Go 1.23 milestone已经完成59%(https://github.com/golang/go/milestone/212),还有188个open的issue待解决。究竟Go 1.23最终会做出哪些改变,让我们拭目以待!

最后,感谢Go团队以及所有Go 1.23贡献者做出的伟大工作!

文本涉及的源码可以在这里下载。

6. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go未用代码消除与可执行文件瘦身

本文永久链接 – https://tonybai.com/2024/05/05/dead-code-elimination-and-executable-file-slimming-in-go

在日常编写Go代码时,我们会编写很多包,也会在编写的包中引入了各种依赖包。在大型Go工程中,这些直接依赖和间接依赖的包数目可能会有几十个甚至上百个。依赖包有大有小,但通常我们不会使用到依赖包中的所有导出函数或类型方法。

这时Go初学者就会有一个疑问:这些直接依赖包和间接依赖包中的所有代码是否会进入到最终的可执行文件中呢?即便我们只是使用了某个依赖包中的一个导出函数。

这里先给出结论:不会!在这篇文章中,我们就来探索一下这个话题,了解一下其背后的支撑机制以及对Go可执行文件Size的影响。

1. 实验:哪些函数进入到最终的可执行文件中了?

我们先来做个实验,验证一下究竟哪些函数进入到最终的可执行文件中了!我们建立demo1,其目录结构和部分代码如下:

// dead-code-elimination/demo1
$tree -F .
.
├── go.mod
├── main.go
└── pkga/
    └── pkga.go

// main.go
package main

import (
    "fmt"

    "demo/pkga"
)

func main() {
    result := pkga.Foo()
    fmt.Println(result)
}

// pkga/pkga.go

package pkga

import (
    "fmt"
)

func Foo() string {
    return "Hello from Foo!"
}

func Bar() {
    fmt.Println("This is Bar.")
}

这个示例十分简单!main函数中调用了pkga包的导出函数Foo,而pkga包中除了Foo函数,还有Bar函数(但并没有被任何其他函数调用)。现在我们来编译一下这个module,然后查看一下编译出的可执行文件中都包含pkga包的哪些函数!(本文实验中使用的Go为1.22.0版本)

$go build
$go tool nm demo|grep demo

在输出的可执行文件中,居然没有查到关于pkga的任何符号信息,这可能是Go的优化在“作祟”。我们关闭掉Go编译器的优化后,再来试试:

$go build -gcflags '-l -N'
$go tool nm demo|grep demo
 108ca80 T demo/pkga.Foo

关掉内联优化后,我们看到pkga.Foo出现在最终的可执行文件demo中,但并未被调用的Bar函数并没有进入可执行文件demo中。

我们再来看一下有间接依赖的例子:

// dead-code-elimination/demo2
$tree .
.
├── go.mod
├── main.go
├── pkga
│   └── pkga.go
└── pkgb
    └── pkgb.go

// pkga/pkga.go
package pkga

import (
    "demo/pkgb"
    "fmt"
)

func Foo() string {
    pkgb.Zoo()
    return "Hello from Foo!"
}

func Bar() {
    fmt.Println("This is Bar.")
}

在这个示例中,我们在pkga.Foo函数中又调用了一个新包pkgb的Zoo函数,我们来编译一下该新示例并查看一下哪些函数进入到最终的可执行文件中:

$go build -gcflags='-l -N'
$go tool nm demo|grep demo
 1093b40 T demo/pkga.Foo
 1093aa0 T demo/pkgb.Zoo

我们看到:只有程序执行路径上能够触达(被调用)的函数才会进入到最终的可执行文件中!

在复杂的示例中,我们也可以通过带有-ldflags=’-dumpdep’的go build命令来查看这种调用依赖关系(这里以demo2为例):

$go build -ldflags='-dumpdep' -gcflags='-l -N' > deps.txt 2>&1

$grep demo deps.txt
# demo
main.main -> demo/pkga.Foo
demo/pkga.Foo -> demo/pkgb.Zoo
demo/pkga.Foo -> go:string."Hello from Foo!"
demo/pkgb.Zoo -> math/rand.Int31n
demo/pkgb.Zoo -> demo/pkgb..stmp_0
demo/pkgb..stmp_0 -> go:string."Zoo in pkgb"

到这里,我们知道了Go通过某种机制保证了只有真正使用到的代码才会最终进入到可执行文件中,即便某些代码(比如pkga.Bar)和那些被真正使用的代码(比如pkga.Foo)在同一个包内。这同时保证了最终可执行文件大小在可控范围内。

接下来,我们就来看看Go的这种机制。

2. 未用代码消除(dead code elimination)

我们先来复习一下go build的构建过程,以下是 go build 命令的步骤概述:

  1. 读取go.mod和go.sum:如果当前目录包含go.mod文件,go build会读取该文件以确定项目的依赖项。它还会根据go.sum文件中的校验和验证依赖项的完整性。

  2. 计算包依赖图:go build 分析正在构建的包及其依赖项中的导入语句,以构建依赖图。该图表示包之间的关系,使编译器能够确定包的构建顺序。

  3. 决定要构建的包:基于构建缓存和依赖图,go build 确定需要构建的包。它检查构建缓存,以查看已编译的包是否是最新的。如果自上次构建以来某个包或其依赖项发生了更改,go build将重新构建这些包。

  4. 调用编译器(go tool compile):对于每个需要构建的包,go build调用Go编译器(go tool compile)。编译器将Go源代码转换为特定目标平台的机器码,并生成目标文件(.o 文件)。

  5. 调用链接器(go tool link):在编译所有必要的包之后,go build 调用 Go 链接器(go tool link)。链接器将编译器生成的目标文件合并为可执行二进制文件或包归档文件。它解析包之间的符号和引用,执行必要的重定位,并生成最终的输出。

上述的整个构建过程可以由下图表示:

在构建过程中,go build 命令还执行各种优化,例如未用代码消除和内联,以提高生成二进制文件的性能和降低二进制文件的大小。其中的未用代码消除就是保证Go生成的二进制文件大小可控的重要机制。

未用检测算法的实现位于$GOROOT/src/cmd/link/internal/ld/deadcode.go文件中。该算法通过图遍历的方式进行,具体过程如下:

  1. 从系统的入口点开始,标记所有可通过重定位到达的符号。重定位是两个符号之间的依赖关系。
  2. 通过遍历重定位关系,算法标记所有可以从入口点访问到的符号。例如,在主函数main.main中调用了pkga.Foo函数,那么main.main会有对这个函数的重定位信息。
  3. 标记完成后,算法会将所有未被标记的符号标记为不可达的未用。这些未被标记的符号表示不会被入口点或其他可达符号访问到的代码。

不过,这里有一个特殊的语法元素要注意,那就是带有方法的类型。类型的方法是否进入到最终的可执行文件中,需要考虑不同情况。在deadcode.go,用于标记可达符号的函数实现将可达类型的方法的调用方式分为三种:

  1. 直接调用
  2. 通过可到达的接口类型调用
  3. 通过反射调用:reflect.Value.Method(或 MethodByName)或 reflect.Type.Method(或 MethodByName)

第一种情况,可以直接将调用的方法被标记为可到达。第二种情况通过将所有可到达的接口类型分解为方法签名来处理。遇到的每个方法都与接口方法签名进行比较,如果匹配,则将其标记为可到达。这种方法非常保守,但简单且正确。

第三种情况通过寻找编译器标记为REFLECTMETHOD的函数来处理。函数F上的REFLECTMETHOD意味着F使用反射进行方法查找,但编译器无法在静态分析阶段确定方法名。因此所有调用reflect.Value.Method 或reflect.Type.Method的函数都是REFLECTMETHOD。调用reflect.Value.MethodByName或reflect.Type.MethodByName且参数为非常量的函数也是REFLECTMETHOD。如果我们找到了REFLECTMETHOD,就会放弃静态分析,并将所有可到达类型的导出方法标记为可达。

下面是一个来自参考资料中的示例:

// dead-code-elimination/demo3/main.go

type X struct{}
type Y struct{}

func (*X) One()   { fmt.Println("hello 1") }
func (*X) Two()   { fmt.Println("hello 2") }
func (*X) Three() { fmt.Println("hello 3") }
func (*Y) Four()  { fmt.Println("hello 4") }
func (*Y) Five()  { fmt.Println("hello 5") }

func main() {
    var name string
    fmt.Scanf("%s", &name)
    reflect.ValueOf(&X{}).MethodByName(name).Call(nil)
    var y Y
    y.Five()
}

在这个示例中,类型*X有三个方法,类型*Y有两个方法,在main函数中,我们通过反射调用X实例的方法,通过Y实例直接调用Y的方法,我们看看最终X和Y都有哪些方法进入到最后的可执行文件中了:

$go build -gcflags='-l -N'

$go tool nm ./demo|grep main
 11d59c0 D go:main.inittasks
 10d4500 T main.(*X).One
 10d4640 T main.(*X).Three
 10d45a0 T main.(*X).Two
 10d46e0 T main.(*Y).Five
 10d4780 T main.main
... ...

我们看到通过直接调用的可达类型Y只有代码中直接调用的方法Five进入到最终可执行文件中,而通过反射调用的X的所有方法都可以在最终可执行文件找到!这与前面提到的第三种情况一致。

3. 小结

本文介绍了Go语言中的未用代码消除和可执行文件瘦身机制。通过实验验证,只有在程序执行路径上被调用的函数才会进入最终的可执行文件,未被调用的函数会被消除。

本文解释了Go编译过程,包括包依赖图计算、编译和链接等步骤,并指出未用代码消除是其中的重要优化策略。具体的未用代码消除算法是通过图遍历实现的,标记可达的符号并将未被标记的符号视为未用。文章还提到了对类型方法的处理方式。

通过这种未用代码消除机制,Go语言能够控制最终可执行文件的大小,实现可执行文件瘦身。

本文涉及的源码可以在这里下载。

4. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats