标签 runtime 下的文章

Go 1.6中值得关注的几个变化

北京时间2016年2月18日凌晨,在Go 1.5发布 半年后,Go 1.6正式Release 了。与Go 1.5的“惊天巨变”(主要指Go自举)相比,Go 1.6的Change 算是很小的了,当然这也与Go 1.6的dev cycle过于短暂有关。但Go社区对此次发布却甚是重视,其热烈程度甚至超出了Go 1.5。在Dave Cheney的倡导 下,Gophers们在全球各地举行了Go 1.6 Release Party。 Go Core Team也在Reddit上开了一个AMA – Ask Me Anything,RobPike、Russ Cox(Rsc)、Bradfitz等Go大神齐上阵,对广大Gophers们在24hour内的问题有问必答。

言归正传,我们来看看Go 1.6中哪些变化值得我们关注。不过在说变化之前,我们先提一嘴Go 1.6没变的,那就是Go语言的language specification,依旧保持Go 1兼容不变。预计在未来的几个stable release版本中,我们也不会看到Go language specification有任何改动。

一、cgo

cgo的变化在于:
1、定义了在Go code和C code间传递Pointer,即C code与Go garbage collector共存的rules和restriction;
2、在runtime加入了对违规传递的检查,检查的开关和力度由GODEBUG=cgocheck=1[0,2]控制。1是默认;0是关闭检 查;2是更全面彻底但代价更高的检查。

这个Proposal是由Ian Lance Taylor提出的。大致分为两种情况:

(一) Go调用C Code时

Go调用C Code时,Go传递给C Code的Go Pointer所指的Go Memory中不能包含任何指向Go Memory的Pointer。我们分为几种情况来探讨一下:

1、传递一个指向Struct的指针

//cgo1_struct.go
package main

/*
#include <stdio.h>
struct Foo{
    int a;
    int *p;
};

void plusOne(struct Foo *f) {
    (f->a)++;
    *(f->p)++;
}
*/
import "C"
import "unsafe"
import "fmt"

func main() {
    f := &C.struct_Foo{}
    f.a = 5
    f.p = (*C.int)((unsafe.Pointer)(new(int)))
    //f.p = &f.a

    C.plusOne(f)
    fmt.Println(int(f.a))
}

从cgo1_struct.go代码中可以看到,Go code向C code传递了一个指向Go Memory(Go分配的)指针f,但f指向的Go Memory中有一个指针p指向了另外一处Go Memory: new(int),我们来run一下这段代码:

$go run cgo1_struct.go
# command-line-arguments
./cgo1_struct.go:12:2: warning: expression result unused [-Wunused-value]
panic: runtime error: cgo argument has Go pointer to Go pointer

goroutine 1 [running]:
panic(0x4068400, 0xc82000a110)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main.main()
    /Users/tony/test/go/go16/cgo/cgo1_struct.go:24 +0xb9
exit status 2

代码出现了Panic,并提示:“cgo argument has Go pointer to Go pointer”。我们的代码违背了Cgo Pointer传递规则,即便让f.p指向struct自身内存也是不行的,比如f.p = &f.a。

2、传递一个指向struct field的指针

按照rules中的说明,如果传递的是一个指向struct field的指针,那么”Go Memory”专指这个field所占用的内存,即便struct中有其他field指向其他Go memory也不打紧:

//cgo1_structfield.go
package main

/*
#include <stdio.h>
struct Foo{
    int a;
    int *p;
};

void plusOne(int *i) {
    (*i)++;
}
*/
import "C"
import (
    "fmt"
    "unsafe"
)

func main() {
    f := &C.struct_Foo{}
    f.a = 5
    f.p = (*C.int)((unsafe.Pointer)(new(int)))

    C.plusOne(&f.a)
    fmt.Println(int(f.a))
}

上述程序的运行结果:

$go run cgo1_structfield.go
6

3、传递一个指向slice or array中的element的指针

和传递struct field不同,传递一个指向slice or array中的element的指针时,需要考虑的Go Memory的范围不仅仅是这个element,而是整个Array或整个slice背后的underlying array所占用的内存区域,要保证这个区域内不包含指向任意Go Memory的指针。我们来看代码示例:

//cgo1_sliceelem.go
package main

/*
#include <stdio.h>
void plusOne(int **i) {
    (**i)++;
}
*/
import "C"
import (
    "fmt"
    "unsafe"
)

func main() {
    sl := make([]*int, 5)
    var a int = 5
    sl[1] = &a
    C.plusOne((**C.int)((unsafe.Pointer)(&sl[0])))
    fmt.Println(sl[0])
}

从这个代码中,我们看到我们传递的是slice的第一个element的地址,即&sl[0]。我们并未给sl[0]赋值,但sl[1] 被赋值为另外一块go memory的address(&a),当我们将&sl[0]传递给plusOne时,执行结果如下:

$go run cgo1_sliceelem.go
panic: runtime error: cgo argument has Go pointer to Go pointer

goroutine 1 [running]:
panic(0x40dbac0, 0xc8200621d0)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main.main()
    /Users/tony/test/go/go16/cgo/cgo1_sliceelem.go:19 +0xe4
exit status 2

由于违背规则,因此runtime panic了。

(二) C调用Go Code时

1、C调用的Go函数不能返回指向Go分配的内存的指针

我们看下面例子:

//cgo2_1.go

package main

// extern int* goAdd(int, int);
//
// static int cAdd(int a, int b) {
//     int *i = goAdd(a, b);
//     return *i;
// }
import "C"
import "fmt"

//export goAdd
func goAdd(a, b C.int) *C.int {
    c := a + b
    return &c
}

func main() {
    var a, b int = 5, 6
    i := C.cAdd(C.int(a), C.int(b))
    fmt.Println(int(i))
}

可以看到:goAdd这个Go函数返回了一个指向Go分配的内存(&c)的指针。运行上述代码,结果如下:

$go run cgo2_1.go
panic: runtime error: cgo result has Go pointer

goroutine 1 [running]:
panic(0x40dba40, 0xc82006e1c0)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main._cgoexpwrap_872b2f2e7532_goAdd.func1(0xc820049d98)
    command-line-arguments/_obj/_cgo_gotypes.go:64 +0x3a
main._cgoexpwrap_872b2f2e7532_goAdd(0x600000005, 0xc82006e19c)
    command-line-arguments/_obj/_cgo_gotypes.go:66 +0x89
main._Cfunc_cAdd(0x600000005, 0x0)
    command-line-arguments/_obj/_cgo_gotypes.go:45 +0x41
main.main()
    /Users/tony/test/go/go16/cgo/cgo2_1.go:20 +0x35
exit status 2

2、Go code不能在C分配的内存中存储指向Go分配的内存的指针

下面的例子模拟了这一情况:

//cgo2_2.go
package main

// #include <stdlib.h>
// extern void goFoo(int**);
//
// static void cFoo() {
//     int **p = malloc(sizeof(int*));
//     goFoo(p);
// }
import "C"

//export goFoo
func goFoo(p **C.int) {
    *p = new(C.int)
}

func main() {
    C.cFoo()
}

不过针对此例,默认的GODEBUG=cgocheck=1偏是无法check出问题。我们将GODEBUG=cgocheck改为=2试试:

$GODEBUG=cgocheck=2 go run cgo2_2.go
write of Go pointer 0xc82000a0f8 to non-Go memory 0x4300000
fatal error: Go pointer stored into non-Go memory

runtime stack:
runtime.throw(0x4089800, 0x24)
    /Users/tony/.bin/go16/src/runtime/panic.go:530 +0x90
runtime.cgoCheckWriteBarrier.func1()
    /Users/tony/.bin/go16/src/runtime/cgocheck.go:44 +0xae
runtime.systemstack(0x7fff5fbff8c0)
    /Users/tony/.bin/go16/src/runtime/asm_amd64.s:291 +0x79
runtime.mstart()
    /Users/tony/.bin/go16/src/runtime/proc.go:1048
... ...
goroutine 17 [syscall, locked to thread]:
runtime.goexit()
    /Users/tony/.bin/go16/src/runtime/asm_amd64.s:1998 +0x1
exit status 2

果真runtime panic: write of Go pointer 0xc82000a0f8 to non-Go memory 0×4300000

二、HTTP/2

HTTP/2原本是bradfitz维护的x项目,之前位于golang.org/x/net/http2包中,Go 1.6无缝合入Go标准库net/http包中。并且当你你使用https时,client和server端将自动默认使用HTTP/2协议。

HTTP/2与HTTP1.x协议不同在于其为二进制协议,而非文本协议,性能自是大幅提升。HTTP/2标准已经发布,想必未来若干年将大行其道。

HTTP/2较为复杂,这里不赘述,后续maybe会单独写一篇GO和http2的文章说明。

三、Templates

由于不开发web,templates我日常用的很少。这里粗浅说说templates增加的两个Feature

trim空白字符

Go templates的空白字符包括:空格、水平tab、回车和换行符。在日常编辑模板时,这些空白尤其难于处理,由于是对beatiful format和code readabliity有“强迫症”的同学,更是在这方面话费了不少时间。

Go 1.6提供了{{-和-}}来帮助大家去除action前后的空白字符。下面的例子很好的说明了这一点:

//trimwhitespace.go
package main

import (
    "log"
    "os"
    "text/template"
)

var items = []string{"one", "two", "three"}

func tmplbefore15() {
    var t = template.Must(template.New("tmpl").Parse(`
    <ul>
    {{range . }}
        <li>{{.}}</li>
    {{end }}
    </ul>
    `))

    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func tmplaftergo16() {
    var t = template.Must(template.New("tmpl").Parse(`
    <ul>
    {{range . -}}
        <li>{{.}}</li>
    {{end -}}
    </ul>
    `))

    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func main() {
    tmplbefore15()
    tmplaftergo16()
}

这个例子的运行结果:

$go run trimwhitespace.go

    <ul>

        <li>one</li>

        <li>two</li>

        <li>three</li>

    </ul>

    <ul>
    <li>one</li>
    <li>two</li>
    <li>three</li>
    </ul>

block action

block action提供了一种在运行时override已有模板形式的能力。

package main

import (
    "log"
    "os"
    "text/template"
)

var items = []string{"one", "two", "three"}

var overrideItemList = `
{{define "list" -}}
    <ul>
    {{range . -}}
        <li>{{.}}</li>
    {{end -}}
    </ul>
{{end}}
`

var tmpl = `
    Items:
    {{block "list" . -}}
    <ul>
    {{range . }}
        <li>{{.}}</li>
    {{end }}
    </ul>
    {{end}}
`

var t *template.Template

func init() {
    t = template.Must(template.New("tmpl").Parse(tmpl))
}

func tmplBeforeOverride() {
    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func tmplafterOverride() {
    t = template.Must(t.Parse(overrideItemList))
    err := t.Execute(os.Stdout, items)
    if err != nil {
        log.Println("executing template:", err)
    }
}

func main() {
    fmt.Println("before override:")
    tmplBeforeOverride()
    fmt.Println("after override:")
    tmplafterOverride()
}

原模板tmpl中通过block action定义了一处名为list的内嵌模板锚点以及初始定义。后期运行时通过re-parse overrideItemList达到修改模板展示形式的目的。

上述代码输出结果:

$go run blockaction.go
before override:

    Items:
    <ul>

        <li>one</li>

        <li>two</li>

        <li>three</li>

    </ul>

after override:

    Items:
    <ul>
    <li>one</li>
    <li>two</li>
    <li>three</li>
    </ul>

四、Runtime

降低大内存使用时的GC latency

Go 1.5.x用降低一些吞吐量的代价换取了10ms以下的GC latency。不过针对Go 1.5,官方给出的benchmark图中,内存heap size最多20G左右。一旦超过20G,latency将超过10ms,也许会线性增长。
在Go 1.6中,官方给出的benchmark图中当内存heap size在200G时,GC latency依旧可以稳定在10ms;在heap size在20G以下时,latency降到了6ms甚至更小。

panic info

Go 1.6之前版本,一旦程序以panic方式退出,runtime便会将所有goroutine的stack信息打印出来:

$go version
go version go1.5.2 darwin/amd64
[ ~/test/go/go16/runtime]$go run panic.go
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xb code=0x1 addr=0x0 pc=0x20d5]

goroutine 1 [running]:
main.main()
    /Users/tony/test/go/go16/runtime/panic.go:19 +0x95

goroutine 4 [select (no cases)]:
main.main.func1(0x8200f40f0)
    /Users/tony/test/go/go16/runtime/panic.go:13 +0x26
created by main.main
    /Users/tony/test/go/go16/runtime/panic.go:14 +0x72
... ...

而Go 1.6后,Go只会打印正在running的goroutine的stack信息,因此它才是最有可能造成panic的真正元凶:

go 1.6:
$go run panic.go
panic: runtime error: invalid memory address or nil pointer dereference
[signal 0xb code=0x1 addr=0x0 pc=0x20d5]

goroutine 1 [running]:
panic(0x61e80, 0x8200ee0c0)
    /Users/tony/.bin/go16/src/runtime/panic.go:464 +0x3e6
main.main()
    /Users/tony/test/go/go16/runtime/panic.go:19 +0x95
exit status 2

map race detect

Go原生的map类型是goroutine-unsafe的,长久以来,这给很多Gophers带来了烦恼。这次Go 1.6中Runtime增加了对并发访问map的检测以降低gopher们使用map时的心智负担。

这里借用了Francesc Campoy在最近一期”The State of Go”中的示例程序:

package main

import "sync"

func main() {
    const workers = 100

    var wg sync.WaitGroup
    wg.Add(workers)
    m := map[int]int{}
    for i := 1; i <= workers; i++ {
        go func(i int) {
            for j := 0; j < i; j++ {
                m[i]++
            }
            wg.Done()
        }(i)
    }
    wg.Wait()
}

执行结果:

$ go run map.go
fatal error: concurrent map writes
fatal error: concurrent map writes
... ...

这里在双核i5 mac air下亲测时,发现当workers=2,3,4均不能检测出race。当workers >= 5时可以检测到。

五、其他

手写parser替代yacc生成的parser

这个变化对Gopher们是透明的,但对于Go compiler本身却是十分重要的。

Robert Riesemer在Go 1.6代码Freezing前commit了手写Parser,以替代yacc生成的parser。在AMA上RobPike给出了更换Parser的些许理由:
1、Go compiler可以少维护一个yacc工具,这样更加cleaner;
2、手写Parser在性能上可以快那么一点点。

Go 1.6中GO15VENDOREXPERIMENT将默认开启

根据当初在Go 1.5中引入vendor时的计划,Go 1.6中GO15VENDOREXPERIMENT将默认开启。这显然会导致一些不兼容的情况出现:即如果你的代码在之前并未使用vendor机制,但目录组织中有vendor目录。Go Core team给出的解决方法就是删除vendor目录或改名。

遗留问题是否解决

Go 1.5发布后,曾经发现两个问题,直到Go 1.5.3版本发布也未曾解决,那么Go 1.6是否解决了呢?我们来验证一下。

internal问题

该问题的具体细节可参看我在go github上提交的issue 12217,我在自己的experiments中提交了问题的验证环境代码,这次我们使用Go 1.6看看internal问题是否还存在:

$cd $GOPATH/src/github.com/bigwhite/experiments/go15-internal-issue-12217
$cd otherpkg/
$go build main.go
package main
    imports github.com/bigwhite/experiments/go15-internal-issue-12217/mypkg/internal/foo: use of internal package not allowed

这回go compiler给出了error,而不是像之前版本那样顺利编译通过。看来这个问题是fix掉了。

GOPATH之外vendor机制是否起作用的问题

我们先建立实验环境:

$tree
.
└── testvendor
    └── src
        └── proj1
            ├── main.go
            └── vendor
                └── github.com
                    └── bigwhite
                        └── foo
                            └── foolib.go

进入proj1,build main.go

go build main.go
main.go:3:8: cannot find package "github.com/bigwhite/foo" in any of:
    /Users/tony/.bin/go16/src/github.com/bigwhite/foo (from $GOROOT)
    /Users/tony/Test/GoToolsProjects/src/github.com/bigwhite/foo (from $GOPATH)

go 1.6编译器没有关注同路径下的vendor目录,build失败。

我们设置GOPATH=xxx/testvendor后,再来build:

$export GOPATH=~/Test/go/go16/others/testvendor
$go run main.go
Hello from temp vendor

这回编译运行ok。

由此看来,Go 1.6 vendor在GOPATH外依旧不生效。

六、小结

Go 1.6标准库细微变化还是有很多的,在Go 1.6 Release Notes中可细细品味。

Go 1.6的编译速度、编译出的程序的运行性能与Go 1.5.x也大致无二异。

另外本文实现环境如下:

go version go1.6 darwin/amd64
Darwin tonydeair-2.lan 13.1.0 Darwin Kernel Version 13.1.0: Thu Jan 16 19:40:37 PST 2014; root:xnu-2422.90.20~2/RELEASE_X86_64 x86_64

实验代码可在这里下载。

Go语言TCP Socket编程

Golang的主要 设计目标之一就是面向大规模后端服务程序,网络通信这块是服务端 程序必不可少也是至关重要的一部分。在日常应用中,我们也可以看到Go中的net以及其subdirectories下的包均是“高频+刚需”,而TCP socket则是网络编程的主流,即便您没有直接使用到net中有关TCP Socket方面的接口,但net/http总是用到了吧,http底层依旧是用tcp socket实现的。

网络编程方面,我们最常用的就是tcp socket编程了,在posix标准出来后,socket在各大主流OS平台上都得到了很好的支持。关于tcp programming,最好的资料莫过于W. Richard Stevens 的网络编程圣经《UNIX网络 编程 卷1:套接字联网API》 了,书中关于tcp socket接口的各种使用、行为模式、异常处理讲解的十分细致。Go是自带runtime的跨平台编程语言,Go中暴露给语言使用者的tcp socket api是建立OS原生tcp socket接口之上的。由于Go runtime调度的需要,golang tcp socket接口在行为特点与异常处理方面与OS原生接口有着一些差别。这篇博文的目标就是整理出关于Go tcp socket在各个场景下的使用方法、行为特点以及注意事项。

一、模型

从tcp socket诞生后,网络编程架构模型也几经演化,大致是:“每进程一个连接” –> “每线程一个连接” –> “Non-Block + I/O多路复用(linux epoll/windows iocp/freebsd darwin kqueue/solaris Event Port)”。伴随着模型的演化,服务程序愈加强大,可以支持更多的连接,获得更好的处理性能。

目前主流web server一般均采用的都是”Non-Block + I/O多路复用”(有的也结合了多线程、多进程)。不过I/O多路复用也给使用者带来了不小的复杂度,以至于后续出现了许多高性能的I/O多路复用框架, 比如libeventlibevlibuv等,以帮助开发者简化开发复杂性,降低心智负担。不过Go的设计者似乎认为I/O多路复用的这种通过回调机制割裂控制流 的方式依旧复杂,且有悖于“一般逻辑”设计,为此Go语言将该“复杂性”隐藏在Runtime中了:Go开发者无需关注socket是否是 non-block的,也无需亲自注册文件描述符的回调,只需在每个连接对应的goroutine中以“block I/O”的方式对待socket处理即可,这可以说大大降低了开发人员的心智负担。一个典型的Go server端程序大致如下:

//go-tcpsock/server.go
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        // ... ...
        // write to the connection
        //... ...
    }
}

func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        fmt.Println("listen error:", err)
        return
    }

    for {
        c, err := l.Accept()
        if err != nil {
            fmt.Println("accept error:", err)
            break
        }
        // start a new goroutine to handle
        // the new connection.
        go handleConn(c)
    }
}

用户层眼中看到的goroutine中的“block socket”,实际上是通过Go runtime中的netpoller通过Non-block socket + I/O多路复用机制“模拟”出来的,真实的underlying socket实际上是non-block的,只是runtime拦截了底层socket系统调用的错误码,并通过netpoller和goroutine 调度让goroutine“阻塞”在用户层得到的Socket fd上。比如:当用户层针对某个socket fd发起read操作时,如果该socket fd中尚无数据,那么runtime会将该socket fd加入到netpoller中监听,同时对应的goroutine被挂起,直到runtime收到socket fd 数据ready的通知,runtime才会重新唤醒等待在该socket fd上准备read的那个Goroutine。而这个过程从Goroutine的视角来看,就像是read操作一直block在那个socket fd上似的。具体实现细节在后续场景中会有补充描述。

二、TCP连接的建立

众所周知,TCP Socket的连接的建立需要经历客户端和服务端的三次握手的过程。连接建立过程中,服务端是一个标准的Listen + Accept的结构(可参考上面的代码),而在客户端Go语言使用net.Dial或DialTimeout进行连接建立:

阻塞Dial:

conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
    //handle error
}
// read or write on conn

或是带上超时机制的Dial:

conn, err := net.DialTimeout("tcp", ":8080", 2 * time.Second)
if err != nil {
    //handle error
}
// read or write on conn

对于客户端而言,连接的建立会遇到如下几种情形:


1、网络不可达或对方服务未启动

如果传给Dial的Addr是可以立即判断出网络不可达,或者Addr中端口对应的服务没有启动,端口未被监听,Dial会几乎立即返回错误,比如:

//go-tcpsock/conn_establish/client1.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")
}

如果本机8888端口未有服务程序监听,那么执行上面程序,Dial会很快返回错误:

$go run client1.go
2015/11/16 14:37:41 begin dial...
2015/11/16 14:37:41 dial error: dial tcp :8888: getsockopt: connection refused

2、对方服务的listen backlog满

还有一种场景就是对方服务器很忙,瞬间有大量client端连接尝试向server建立,server端的listen backlog队列满,server accept不及时((即便不accept,那么在backlog数量范畴里面,connect都会是成功的,因为new conn已经加入到server side的listen queue中了,accept只是从queue中取出一个conn而已),这将导致client端Dial阻塞。我们还是通过例子感受Dial的行为特点:

服务端代码:

//go-tcpsock/conn_establish/server2.go
... ...
func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        log.Println("error listen:", err)
        return
    }
    defer l.Close()
    log.Println("listen ok")

    var i int
    for {
        time.Sleep(time.Second * 10)
        if _, err := l.Accept(); err != nil {
            log.Println("accept error:", err)
            break
        }
        i++
        log.Printf("%d: accept a new connection\n", i)
    }
}

客户端代码:

//go-tcpsock/conn_establish/client2.go
... ...
func establishConn(i int) net.Conn {
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Printf("%d: dial error: %s", i, err)
        return nil
    }
    log.Println(i, ":connect to server ok")
    return conn
}

func main() {
    var sl []net.Conn
    for i := 1; i < 1000; i++ {
        conn := establishConn(i)
        if conn != nil {
            sl = append(sl, conn)
        }
    }

    time.Sleep(time.Second * 10000)
}

从程序可以看出,服务端在listen成功后,每隔10s钟accept一次。客户端则是串行的尝试建立连接。这两个程序在Darwin下的执行 结果:

$go run server2.go
2015/11/16 21:55:41 listen ok
2015/11/16 21:55:51 1: accept a new connection
2015/11/16 21:56:01 2: accept a new connection
... ...

$go run client2.go
2015/11/16 21:55:44 1 :connect to server ok
2015/11/16 21:55:44 2 :connect to server ok
2015/11/16 21:55:44 3 :connect to server ok
... ...

2015/11/16 21:55:44 126 :connect to server ok
2015/11/16 21:55:44 127 :connect to server ok
2015/11/16 21:55:44 128 :connect to server ok

2015/11/16 21:55:52 129 :connect to server ok
2015/11/16 21:56:03 130 :connect to server ok
2015/11/16 21:56:14 131 :connect to server ok
... ...

可以看出Client初始时成功地一次性建立了128个连接,然后后续每阻塞近10s才能成功建立一条连接。也就是说在server端 backlog满时(未及时accept),客户端将阻塞在Dial上,直到server端进行一次accept。至于为什么是128,这与darwin 下的默认设置有关:

$sysctl -a|grep kern.ipc.somaxconn
kern.ipc.somaxconn: 128

如果我在ubuntu 14.04上运行上述server程序,我们的client端初始可以成功建立499条连接。

如果server一直不accept,client端会一直阻塞么?我们去掉accept后的结果是:在Darwin下,client端会阻塞大 约1分多钟才会返回timeout:

2015/11/16 22:03:31 128 :connect to server ok
2015/11/16 22:04:48 129: dial error: dial tcp :8888: getsockopt: operation timed out

而如果server运行在ubuntu 14.04上,client似乎一直阻塞,我等了10多分钟依旧没有返回。 阻塞与否看来与server端的网络实现和设置有关。

3、网络延迟较大,Dial阻塞并超时

如果网络延迟较大,TCP握手过程将更加艰难坎坷(各种丢包),时间消耗的自然也会更长。Dial这时会阻塞,如果长时间依旧无法建立连接,则Dial也会返回“ getsockopt: operation timed out”错误。


在连接建立阶段,多数情况下,Dial是可以满足需求的,即便阻塞一小会儿。但对于某些程序而言,需要有严格的连接时间限定,如果一定时间内没能成功建立连接,程序可能会需要执行一段“异常”处理逻辑,为此我们就需要DialTimeout了。下面的例子将Dial的最长阻塞时间限制在2s内,超出这个时长,Dial将返回timeout error:

//go-tcpsock/conn_establish/client3.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.DialTimeout("tcp", "104.236.176.96:80", 2*time.Second)
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")
}

执行结果如下(需要模拟一个延迟较大的网络环境):

$go run client3.go
2015/11/17 09:28:34 begin dial...
2015/11/17 09:28:36 dial error: dial tcp 104.236.176.96:80: i/o timeout

三、Socket读写

连接建立起来后,我们就要在conn上进行读写,以完成业务逻辑。前面说过Go runtime隐藏了I/O多路复用的复杂性。语言使用者只需采用goroutine+Block I/O的模式即可满足大部分场景需求。Dial成功后,方法返回一个net.Conn接口类型变量值,这个接口变量的动态类型为一个*TCPConn:

//$GOROOT/src/net/tcpsock_posix.go
type TCPConn struct {
    conn
}

TCPConn内嵌了一个unexported类型:conn,因此TCPConn”继承”了conn的Read和Write方法,后续通过Dial返回值调用的Write和Read方法均是net.conn的方法:

//$GOROOT/src/net/net.go
type conn struct {
    fd *netFD
}

func (c *conn) ok() bool { return c != nil && c.fd != nil }

// Implementation of the Conn interface.

// Read implements the Conn Read method.
func (c *conn) Read(b []byte) (int, error) {
    if !c.ok() {
        return 0, syscall.EINVAL
    }
    n, err := c.fd.Read(b)
    if err != nil && err != io.EOF {
        err = &OpError{Op: "read", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
    }
    return n, err
}

// Write implements the Conn Write method.
func (c *conn) Write(b []byte) (int, error) {
    if !c.ok() {
        return 0, syscall.EINVAL
    }
    n, err := c.fd.Write(b)
    if err != nil {
        err = &OpError{Op: "write", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
    }
    return n, err
}

下面我们先来通过几个场景来总结一下conn.Read的行为特点。


1、Socket中无数据

连接建立后,如果对方未发送数据到socket,接收方(Server)会阻塞在Read操作上,这和前面提到的“模型”原理是一致的。执行该Read操作的goroutine也会被挂起。runtime会监视该socket,直到其有数据才会重新
调度该socket对应的Goroutine完成read。由于篇幅原因,这里就不列代码了,例子对应的代码文件:go-tcpsock/read_write下的client1.go和server1.go。

2、Socket中有部分数据

如果socket中有部分数据,且长度小于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回,而不是等待所有期望数据全部读取后再返回。

Client端:

//go-tcpsock/read_write/client2.go
... ...
func main() {
    if len(os.Args) <= 1 {
        fmt.Println("usage: go run client2.go YOUR_CONTENT")
        return
    }
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    time.Sleep(time.Second * 2)
    data := os.Args[1]
    conn.Write([]byte(data))

    time.Sleep(time.Second * 10000)
}

Server端:

//go-tcpsock/read_write/server2.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        var buf = make([]byte, 10)
        log.Println("start to read from conn")
        n, err := c.Read(buf)
        if err != nil {
            log.Println("conn read error:", err)
            return
        }
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

我们通过client2.go发送”hi”到Server端:
运行结果:

$go run client2.go hi
2015/11/17 13:30:53 begin dial...
2015/11/17 13:30:53 dial ok

$go run server2.go
2015/11/17 13:33:45 accept a new connection
2015/11/17 13:33:45 start to read from conn
2015/11/17 13:33:47 read 2 bytes, content is hi
...

Client向socket中写入两个字节数据(“hi”),Server端创建一个len = 10的slice,等待Read将读取的数据放入slice;Server随后读取到那两个字节:”hi”。Read成功返回,n =2 ,err = nil。

3、Socket中有足够数据

如果socket中有数据,且长度大于等于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回。这个情景是最符合我们对Read的期待的了:Read将用Socket中的数据将我们传入的slice填满后返回:n = 10, err = nil。

我们通过client2.go向Server2发送如下内容:abcdefghij12345,执行结果如下:

$go run client2.go abcdefghij12345
2015/11/17 13:38:00 begin dial...
2015/11/17 13:38:00 dial ok

$go run server2.go
2015/11/17 13:38:00 accept a new connection
2015/11/17 13:38:00 start to read from conn
2015/11/17 13:38:02 read 10 bytes, content is abcdefghij
2015/11/17 13:38:02 start to read from conn
2015/11/17 13:38:02 read 5 bytes, content is 12345

client端发送的内容长度为15个字节,Server端Read buffer的长度为10,因此Server Read第一次返回时只会读取10个字节;Socket中还剩余5个字节数据,Server再次Read时会把剩余数据读出(如:情形2)。

4、Socket关闭

如果client端主动关闭了socket,那么Server的Read将会读到什么呢?这里分为“有数据关闭”和“无数据关闭”。

“有数据关闭”是指在client关闭时,socket中还有server端未读取的数据,我们在go-tcpsock/read_write/client3.go和server3.go中模拟这种情况:

$go run client3.go hello
2015/11/17 13:50:57 begin dial...
2015/11/17 13:50:57 dial ok

$go run server3.go
2015/11/17 13:50:57 accept a new connection
2015/11/17 13:51:07 start to read from conn
2015/11/17 13:51:07 read 5 bytes, content is hello
2015/11/17 13:51:17 start to read from conn
2015/11/17 13:51:17 conn read error: EOF

从输出结果来看,当client端close socket退出后,server3依旧没有开始Read,10s后第一次Read成功读出了5个字节的数据,当第二次Read时,由于client端 socket关闭,Read返回EOF error。

通过上面这个例子,我们也可以猜测出“无数据关闭”情形下的结果,那就是Read直接返回EOF error。

5、读取操作超时

有些场合对Read的阻塞时间有严格限制,在这种情况下,Read的行为到底是什么样的呢?在返回超时错误时,是否也同时Read了一部分数据了呢?这个实验比较难于模拟,下面的测试结果也未必能反映出所有可能结果。我们编写了client4.go和server4.go来模拟这一情形。

//go-tcpsock/read_write/client4.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    data := make([]byte, 65536)
    conn.Write(data)

    time.Sleep(time.Second * 10000)
}

//go-tcpsock/read_write/server4.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        time.Sleep(10 * time.Second)
        var buf = make([]byte, 65536)
        log.Println("start to read from conn")
        c.SetReadDeadline(time.Now().Add(time.Microsecond * 10))
        n, err := c.Read(buf)
        if err != nil {
            log.Printf("conn read %d bytes,  error: %s", n, err)
            if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
                continue
            }
            return
        }
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}

在Server端我们通过Conn的SetReadDeadline方法设置了10微秒的读超时时间,Server的执行结果如下:

$go run server4.go

2015/11/17 14:21:17 accept a new connection
2015/11/17 14:21:27 start to read from conn
2015/11/17 14:21:27 conn read 0 bytes,  error: read tcp 127.0.0.1:8888->127.0.0.1:60970: i/o timeout
2015/11/17 14:21:37 start to read from conn
2015/11/17 14:21:37 read 65536 bytes, content is

虽然每次都是10微秒超时,但结果不同,第一次Read超时,读出数据长度为0;第二次读取所有数据成功,没有超时。反复执行了多次,没能出现“读出部分数据且返回超时错误”的情况。


和读相比,Write遇到的情形一样不少,我们也逐一看一下。


1、成功写

前面例子着重于Read,client端在Write时并未判断Write的返回值。所谓“成功写”指的就是Write调用返回的n与预期要写入的数据长度相等,且error = nil。这是我们在调用Write时遇到的最常见的情形,这里不再举例了。

2、写阻塞

TCP连接通信两端的OS都会为该连接保留数据缓冲,一端调用Write后,实际上数据是写入到OS的协议栈的数据缓冲的。TCP是全双工通信,因此每个方向都有独立的数据缓冲。当发送方将对方的接收缓冲区以及自身的发送缓冲区写满后,Write就会阻塞。我们来看一个例子:client5.go和server.go。

//go-tcpsock/read_write/client5.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    data := make([]byte, 65536)
    var total int
    for {
        n, err := conn.Write(data)
        if err != nil {
            total += n
            log.Printf("write %d bytes, error:%s\n", n, err)
            break
        }
        total += n
        log.Printf("write %d bytes this time, %d bytes in total\n", n, total)
    }

    log.Printf("write %d bytes in total\n", total)
    time.Sleep(time.Second * 10000)
}

//go-tcpsock/read_write/server5.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    time.Sleep(time.Second * 10)
    for {
        // read from the connection
        time.Sleep(5 * time.Second)
        var buf = make([]byte, 60000)
        log.Println("start to read from conn")
        n, err := c.Read(buf)
        if err != nil {
            log.Printf("conn read %d bytes,  error: %s", n, err)
            if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
                continue
            }
        }

        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

Server5在前10s中并不Read数据,因此当client5一直尝试写入时,写到一定量后就会发生阻塞:

$go run client5.go

2015/11/17 14:57:33 begin dial...
2015/11/17 14:57:33 dial ok
2015/11/17 14:57:33 write 65536 bytes this time, 65536 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 131072 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 196608 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 262144 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 327680 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 393216 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 458752 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 524288 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 589824 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 655360 bytes in total

在Darwin上,这个size大约在679468bytes。后续当server5每隔5s进行Read时,OS socket缓冲区腾出了空间,client5就又可以写入了:

$go run server5.go
2015/11/17 15:07:01 accept a new connection
2015/11/17 15:07:16 start to read from conn
2015/11/17 15:07:16 read 60000 bytes, content is
2015/11/17 15:07:21 start to read from conn
2015/11/17 15:07:21 read 60000 bytes, content is
2015/11/17 15:07:26 start to read from conn
2015/11/17 15:07:26 read 60000 bytes, content is
....

client端:

2015/11/17 15:07:01 write 65536 bytes this time, 720896 bytes in total
2015/11/17 15:07:06 write 65536 bytes this time, 786432 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 851968 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 917504 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 983040 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 1048576 bytes in total
.... ...

3、写入部分数据

Write操作存在写入部分数据的情况,比如上面例子中,当client端输出日志停留在“write 65536 bytes this time, 655360 bytes in total”时,我们杀掉server5,这时我们会看到client5输出以下日志:

...
2015/11/17 15:19:14 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:19:16 write 24108 bytes, error:write tcp 127.0.0.1:62245->127.0.0.1:8888: write: broken pipe
2015/11/17 15:19:16 write 679468 bytes in total

显然Write并非在655360这个地方阻塞的,而是后续又写入24108后发生了阻塞,server端socket关闭后,我们看到Wrote返回er != nil且n = 24108,程序需要对这部分写入的24108字节做特定处理。

4、写入超时

如果非要给Write增加一个期限,那我们可以调用SetWriteDeadline方法。我们copy一份client5.go,形成client6.go,在client6.go的Write之前增加一行timeout设置代码:

conn.SetWriteDeadline(time.Now().Add(time.Microsecond * 10))

启动server6.go,启动client6.go,我们可以看到写入超时的情况下,Write的返回结果:

$go run client6.go
2015/11/17 15:26:34 begin dial...
2015/11/17 15:26:34 dial ok
2015/11/17 15:26:34 write 65536 bytes this time, 65536 bytes in total
... ...
2015/11/17 15:26:34 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:26:34 write 24108 bytes, error:write tcp 127.0.0.1:62325->127.0.0.1:8888: i/o timeout
2015/11/17 15:26:34 write 679468 bytes in total

可以看到在写入超时时,依旧存在部分数据写入的情况。


综上例子,虽然Go给我们提供了阻塞I/O的便利,但在调用Read和Write时依旧要综合需要方法返回的n和err的结果,以做出正确处理。net.conn实现了io.Reader和io.Writer接口,因此可以试用一些wrapper包进行socket读写,比如bufio包下面的Writer和Reader、io/ioutil下的函数等。

Goroutine safe

基于goroutine的网络架构模型,存在在不同goroutine间共享conn的情况,那么conn的读写是否是goroutine safe的呢?在深入这个问题之前,我们先从应用意义上来看read操作和write操作的goroutine-safe必要性。

对于read操作而言,由于TCP是面向字节流,conn.Read无法正确区分数据的业务边界,因此多个goroutine对同一个conn进行read的意义不大,goroutine读到不完整的业务包反倒是增加了业务处理的难度。对与Write操作而言,倒是有多个goroutine并发写的情况。不过conn读写是否goroutine-safe的测试不是很好做,我们先深入一下runtime代码,先从理论上给这个问题定个性:

net.conn只是*netFD的wrapper结构,最终Write和Read都会落在其中的fd上:

type conn struct {
    fd *netFD
}

netFD在不同平台上有着不同的实现,我们以net/fd_unix.go中的netFD为例:

// Network file descriptor.
type netFD struct {
    // locking/lifetime of sysfd + serialize access to Read and Write methods
    fdmu fdMutex

    // immutable until Close
    sysfd       int
    family      int
    sotype      int
    isConnected bool
    net         string
    laddr       Addr
    raddr       Addr

    // wait server
    pd pollDesc
}

我们看到netFD中包含了一个runtime实现的fdMutex类型字段,从注释上来看,该fdMutex用来串行化对该netFD对应的sysfd的Write和Read操作。从这个注释上来看,所有对conn的Read和Write操作都是有fdMutex互斥的,从netFD的Read和Write方法的实现也证实了这一点:

func (fd *netFD) Read(p []byte) (n int, err error) {
    if err := fd.readLock(); err != nil {
        return 0, err
    }
    defer fd.readUnlock()
    if err := fd.pd.PrepareRead(); err != nil {
        return 0, err
    }
    for {
        n, err = syscall.Read(fd.sysfd, p)
        if err != nil {
            n = 0
            if err == syscall.EAGAIN {
                if err = fd.pd.WaitRead(); err == nil {
                    continue
                }
            }
        }
        err = fd.eofError(n, err)
        break
    }
    if _, ok := err.(syscall.Errno); ok {
        err = os.NewSyscallError("read", err)
    }
    return
}

func (fd *netFD) Write(p []byte) (nn int, err error) {
    if err := fd.writeLock(); err != nil {
        return 0, err
    }
    defer fd.writeUnlock()
    if err := fd.pd.PrepareWrite(); err != nil {
        return 0, err
    }
    for {
        var n int
        n, err = syscall.Write(fd.sysfd, p[nn:])
        if n > 0 {
            nn += n
        }
        if nn == len(p) {
            break
        }
        if err == syscall.EAGAIN {
            if err = fd.pd.WaitWrite(); err == nil {
                continue
            }
        }
        if err != nil {
            break
        }
        if n == 0 {
            err = io.ErrUnexpectedEOF
            break
        }
    }
    if _, ok := err.(syscall.Errno); ok {
        err = os.NewSyscallError("write", err)
    }
    return nn, err
}

每次Write操作都是受lock保护,直到此次数据全部write完。因此在应用层面,要想保证多个goroutine在一个conn上write操作的Safe,需要一次write完整写入一个“业务包”;一旦将业务包的写入拆分为多次write,那就无法保证某个Goroutine的某“业务包”数据在conn发送的连续性。

同时也可以看出即便是Read操作,也是lock保护的。多个Goroutine对同一conn的并发读不会出现读出内容重叠的情况,但内容断点是依 runtime调度来随机确定的。存在一个业务包数据,1/3内容被goroutine-1读走,另外2/3被另外一个goroutine-2读 走的情况。比如一个完整包:world,当goroutine的read slice size < 5时,存在可能:一个goroutine读到 “worl”,另外一个goroutine读出”d”。

四、Socket属性

原生Socket API提供了丰富的sockopt设置接口,但Golang有自己的网络架构模型,golang提供的socket options接口也是基于上述模型的必要的属性设置。包括

  • SetKeepAlive
  • SetKeepAlivePeriod
  • SetLinger
  • SetNoDelay (默认no delay)
  • SetWriteBuffer
  • SetReadBuffer

不过上面的Method是TCPConn的,而不是Conn的,要使用上面的Method的,需要type assertion:

tcpConn, ok := c.(*TCPConn)
if !ok {
    //error handle
}

tcpConn.SetNoDelay(true)

对于listener socket, golang默认采用了 SO_REUSEADDR,这样当你重启 listener程序时,不会因为address in use的错误而启动失败。而listen backlog的默认值是通过获取系统的设置值得到的。不同系统不同:mac 128, linux 512等。

五、关闭连接

和前面的方法相比,关闭连接算是最简单的操作了。由于socket是全双工的,client和server端在己方已关闭的socket和对方关闭的socket上操作的结果有不同。看下面例子:

//go-tcpsock/conn_close/client1.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    conn.Close()
    log.Println("close ok")

    var buf = make([]byte, 32)
    n, err := conn.Read(buf)
    if err != nil {
        log.Println("read error:", err)
    } else {
        log.Printf("read % bytes, content is %s\n", n, string(buf[:n]))
    }

    n, err = conn.Write(buf)
    if err != nil {
        log.Println("write error:", err)
    } else {
        log.Printf("write % bytes, content is %s\n", n, string(buf[:n]))
    }

    time.Sleep(time.Second * 1000)
}

//go-tcpsock/conn_close/server1.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()

    // read from the connection
    var buf = make([]byte, 10)
    log.Println("start to read from conn")
    n, err := c.Read(buf)
    if err != nil {
        log.Println("conn read error:", err)
    } else {
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }

    n, err = c.Write(buf)
    if err != nil {
        log.Println("conn write error:", err)
    } else {
        log.Printf("write %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

上述例子的执行结果如下:

$go run server1.go
2015/11/17 17:00:51 accept a new connection
2015/11/17 17:00:51 start to read from conn
2015/11/17 17:00:51 conn read error: EOF
2015/11/17 17:00:51 write 10 bytes, content is

$go run client1.go
2015/11/17 17:00:51 begin dial...
2015/11/17 17:00:51 close ok
2015/11/17 17:00:51 read error: read tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection
2015/11/17 17:00:51 write error: write tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection

从client1的结果来看,在己方已经关闭的socket上再进行read和write操作,会得到”use of closed network connection” error;
从server1的执行结果来看,在对方关闭的socket上执行read操作会得到EOF error,但write操作会成功,因为数据会成功写入己方的内核socket缓冲区中,即便最终发不到对方socket缓冲区了,因为己方socket并未关闭。因此当发现对方socket关闭后,己方应该正确合理处理自己的socket,再继续write已经无任何意义了。

六、小结

本文比较基础,但却很重要,毕竟golang是面向大规模服务后端的,对通信环节的细节的深入理解会大有裨益。另外Go的goroutine+阻塞通信的网络通信模型降低了开发者心智负担,简化了通信的复杂性,这点尤为重要。

本文代码实验环境:go 1.5.1 on Darwin amd64以及部分在ubuntu 14.04 amd64。

本文demo代码在这里可以找到。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats