标签 runtime 下的文章

搭建你自己的Go Runtime metrics环境

自从Go 1.5开始,每次Go release, Gopher Brian Hatfield都会将自己对新版Go的runtime的性能数据(与之前Go版本的比较)在twitter上晒出来。就连Go team staff在世界各地做speaking时也在slide中引用Brian的图片。后来,Brian Hatfield将其用于度量runtime性能数据的代码打包成library并放在github上开源了,我们也可以使用这个library来建立我们自己的Go Runtime metrics设施了。这里简要说一下搭建的步骤。

一、环境与原理

Brian Hatfield的go-runtime-metrics library实现的很简单,其runtime data来自于Go runtime package中的MemStats、NumGoroutine和NumCgoCall等。被测试目标程序只需要import该library即可输出runtime states数据:

import _ "github.com/bmhatfield/go-runtime-metrics"

go-runtime-metrics library将启动一个单独的goroutine,并定时上报runtime数据。目前该library仅支持向statsD输出数据,用户可以通过配置将statsD的数据导入graphite并使用graphite web查看,流程如下图:

img{512x368}

本次实验环境为ubuntu 16.04.1:

$ uname -rmn
tonybai-ThinkCentre-M6600s-N000 4.4.0-83-generic x86_64

二、搭建步骤

1、安装go-runtime-metrics library

我们直接go get就可以下载go-runtime-metrics library:

$ go get github.com/bmhatfield/go-runtime-metrics

我们编写一个目标程序:

//main.go
package main

import (
    "flag"
    "log"
    "net/http"
    "os"

    _ "github.com/bmhatfield/go-runtime-metrics"
)

func main() {
    flag.Parse()

    cwd, err := os.Getwd()
    if err != nil {
        log.Fatal(err)
    }

    srv := &http.Server{
        Addr:    ":8000", // Normally ":443"
        Handler: http.FileServer(http.Dir(cwd)),
    }
    log.Fatal(srv.ListenAndServe())
}

我的ubuntu主机上安装了四个go版本,它们分别是go 1.5.4、go 1.7.6、go 1.8.3和go1.9beta2,于是我们分别用这四个版本的server作为被测程序进行go runtime数据上报,以便对比。

$ GOROOT=~/.bin/go154 ~/.bin/go154/bin/go build -o server-go154 main.go
$ GOROOT=~/.bin/go174 ~/.bin/go174/bin/go build -o server-go174 main.go
$ GOROOT=~/.bin/go183 ~/.bin/go183/bin/go build -o server-go183 main.go
$ GOROOT=~/.bin/go19beta2 ~/.bin/go19beta2/bin/go build -o server-go19beta2 main.go

$ ls -l

-rwxr-xr-x 1 tonybai tonybai 6861176 7月   4 13:49 server-go154
-rwxrwxr-x 1 tonybai tonybai 5901876 7月   4 13:50 server-go174
-rwxrwxr-x 1 tonybai tonybai 6102879 7月   4 13:51 server-go183
-rwxrwxr-x 1 tonybai tonybai 6365648 7月   4 13:51 server-go19beta2

2、安装、配置和运行statsD

statsD这个工具用于收集统计信息,并将聚合后的信息发给后端服务(比如:graphite)。statsD是采用js实现的服务,因此需要安装nodejsnpm和相关modules:

$ sudo apt-get install nodejs
$ sudo apt-get install npm

接下来,我们将statsD项目clone到本地并根据exampleConfig.js模板配置一个我们自己用的goruntimemetricConfig.js(基本上就是保留默认配置):

// goruntimemetricConfig.js
{
  graphitePort: 2003
, graphiteHost: "127.0.0.1"
, port: 8125
, backends: [ "./backends/graphite" ]
}

启动statsD:

$ nodejs stats.js goruntimemetricConfig.js
3 Jul 11:14:20 - [7939] reading config file: goruntimemetricConfig.js
3 Jul 11:14:20 - server is up INFO

启动成功!

3、安装、配置和运行graphite

graphite是一种存储时序监控数据,并可以按用户需求以图形化形式展示数据的工具,它包括三个组件:

whisper是一种基于file的时序数据库格式,同时whisper也提供了相应的命令和API供其他组件调用以操作时序数据库;

carbon用于读取外部推送的metrics信息,进行聚合并写入db,它还支持缓存热点数据,提升访问效率。

graphite-web则是针对用户的图形化系统,用于定制展示监控数据的。

Graphite的安装和配置是略微繁琐的,我们一步一步慢慢来。

a) 安装graphite

$sudo apt-get install graphite-web graphite-carbon

whisper将作为依赖自动被安装。

b) local_settings.py

graphite的主配置文件在/etc/graphite/local_settings.py,文件里面有很多配置项,这里仅列出有关的,且本次生效的配置:

// /etc/graphite/local_settings.py

TIME_ZONE = 'Asia/Shanghai'

LOG_RENDERING_PERFORMANCE = True
LOG_CACHE_PERFORMANCE = True
LOG_METRIC_ACCESS = True

GRAPHITE_ROOT = '/usr/share/graphite-web'

CONF_DIR = '/etc/graphite'
STORAGE_DIR = '/var/lib/graphite/whisper'
CONTENT_DIR = '/usr/share/graphite-web/static'

WHISPER_DIR = '/var/lib/graphite/whisper'
LOG_DIR = '/var/log/graphite'
INDEX_FILE = '/var/lib/graphite/search_index'  # Search index file

DATABASES = {
    'default': {
        'NAME': '/var/lib/graphite/graphite.db',
        'ENGINE': 'django.db.backends.sqlite3',
        'USER': '',
        'PASSWORD': '',
        'HOST': '',
        'PORT': ''
    }
}

c) 同步数据库

接下来执行下面两个命令来做database sync(同步):

$ sudo graphite-manage migrate auth
.. ....
Operations to perform:
  Apply all migrations: auth
Running migrations:
  Rendering model states... DONE
  Applying contenttypes.0001_initial... OK
  Applying contenttypes.0002_remove_content_type_name... OK
  Applying auth.0001_initial... OK
  Applying auth.0002_alter_permission_name_max_length... OK
  Applying auth.0003_alter_user_email_max_length... OK
  Applying auth.0004_alter_user_username_opts... OK
  Applying auth.0005_alter_user_last_login_null... OK
  Applying auth.0006_require_contenttypes_0002... OK

$ sudo graphite-manage syncdb

Operations to perform:
  Synchronize unmigrated apps: account, cli, render, whitelist, metrics, url_shortener, dashboard, composer, events, browser
  Apply all migrations: admin, contenttypes, tagging, auth, sessions
Synchronizing apps without migrations:
  Creating tables...
    Creating table account_profile
    Creating table account_variable
    Creating table account_view
    Creating table account_window
    Creating table account_mygraph
    Creating table dashboard_dashboard
    Creating table events_event
    Creating table url_shortener_link
    Running deferred SQL...
  Installing custom SQL...
Running migrations:
  Rendering model states... DONE
  Applying admin.0001_initial... OK
  Applying sessions.0001_initial... OK
  Applying tagging.0001_initial... OK

You have installed Django's auth system, and don't have any superusers defined.
Would you like to create one now? (yes/no): yes
Username (leave blank to use 'root'):
Email address: xx@yy.com
Password:
Password (again):
Superuser created successfully.

这里我们创建一个superuser:root,用于登录graphite-web时使用。

d) 配置carbon

涉及carbon的配置文件如下,我们保持默认配置不动:

/etc/carbon/carbon.conf(内容太多,这里不列出来了)

/etc/carbon/storage-schemas.conf
[carbon]
pattern = ^carbon\.
retentions = 60:90d

[default_1min_for_1day]
pattern = .*
retentions = 60s:1d

[stats]
pattern = ^stats.*
retentions = 10s:6h,1min:6d,10min:1800d

carbon有一个cache功能,我们通过下面步骤可以将其打开:

打开carbon-cache使能开关:

$ vi /etc/default/graphite-carbon
CARBON_CACHE_ENABLED=true

启动carbon-cache:

$ sudo cp /usr/share/doc/graphite-carbon/examples/storage-aggregation.conf.example /etc/carbon/storage-aggregation.conf
$ systemctl start carbon-cache

e) 启动graphite-web

graphite-web支持多种主流web server,这里以apache2为例,graphite-web将mod-wsgi方式部署在apache2下面:

$sudo apt-get install apache2 libapache2-mod-wsgi

$ sudo service apache2 start

$ sudo a2dissite 000-default
Site 000-default disabled.

$ sudo service apache2 reload

$ sudo cp /usr/share/graphite-web/apache2-graphite.conf /etc/apache2/sites-available

$ sudo  a2ensite apache2-graphite
Enabling site apache2-graphite.
To activate the new configuration, you need to run:
  service apache2 reload

$ sudo systemctl reload apache2

由于apache2的Worker process默认以www-data:www-data用户权限运行,但数据库文件的访问权限却是:_graphite:_graphite:

$ ll /var/lib/graphite/graphite.db
-rw-r--r-- 1 _graphite _graphite 72704 7月   3 13:48 /var/lib/graphite/graphite.db

我们需要修改一下apache worker的user:

$ sudo vi /etc/apache2/envvars

export APACHE_RUN_USER=_graphite
export APACHE_RUN_GROUP=_graphite

重启apache2生效!使用Browser打开:http://127.0.0.1,如无意外,你将看到下面graphite-web的首页:

img{512x368}

三、执行benchmarking

这里我将使用wrk这个http benchmarking tool分别对前面的四个版本的目标程序(server-go154 server-go174 server-go183 server-go19beta2)进行benchmarking test,每个目标程序接收10分钟的请求:

$ ./server-go154
$ wrk -t12 -c400 -d10m http://127.0.0.1:8000

$ ./server-go174
$ wrk -t12 -c400 -d10m http://127.0.0.1:8000

$ ./server-go183
$ wrk -t12 -c400 -d10m http://127.0.0.1:8000

$ ./server-go19beta2
$ wrk -t12 -c400 -d10m http://127.0.0.1:8000

四、结果展示

用浏览器打开graphite-web,在左边的tree标签下以此打开树形结构:Metrics -> stats -> gauges -> go -> YOUR_HOST_NAME -> mem -> gc -> pause,如果顺利的话,你将会在Graphite Composer窗口看到折线图,我们也以GC pause为例,GC pause也是gopher们最为关心的:

img{512x368}

通过这幅图(左侧坐标轴的单位为nanoseconds),我们大致可以看出:

Go 1.5.4的GC pause约在600μs左右;
Go 1.7.4的GC pause约在300μs左右;
Go 1.8.3和Go 1.9beta2的GC pause基本都在100μs以下了。Go 1.9的GC改进似乎不大。不过这里我的程序也并不足够典型。

其他结果:

Go routines number:

img{512x368}

GC count:

img{512x368}

memory allocations:

img{512x368}

除了查看单个指标曲线,你也可以通过graphite-web提供的dashboard功能定制你要monitor的面板,这里就不赘述了。

五、参考资料


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

也谈Go的可移植性

Go有很多优点,比如:简单原生支持并发等,而不错的可移植性也是Go被广大程序员接纳的重要因素之一。但你知道为什么Go语言拥有很好的平台可移植性吗?本着“知其然,亦要知其所以然”的精神,本文我们就来探究一下Go良好可移植性背后的原理。

一、Go的可移植性

说到一门编程语言可移植性,我们一般从下面两个方面考量:

  • 语言自身被移植到不同平台的容易程度;
  • 通过这种语言编译出来的应用程序对平台的适应性。

Go 1.7及以后版本中,我们可以通过下面命令查看Go支持OS和平台列表:

$go tool dist list
android/386
android/amd64
android/arm
android/arm64
darwin/386
darwin/amd64
darwin/arm
darwin/arm64
dragonfly/amd64
freebsd/386
freebsd/amd64
freebsd/arm
linux/386
linux/amd64
linux/arm
linux/arm64
linux/mips
linux/mips64
linux/mips64le
linux/mipsle
linux/ppc64
linux/ppc64le
linux/s390x
nacl/386
nacl/amd64p32
nacl/arm
netbsd/386
netbsd/amd64
netbsd/arm
openbsd/386
openbsd/amd64
openbsd/arm
plan9/386
plan9/amd64
plan9/arm
solaris/amd64
windows/386
windows/amd64

从上述列表我们可以看出:从linux/arm64的嵌入式系统到linux/s390x的大型机系统,再到Windows、linux和darwin(mac)这样的主流操作系统、amd64、386这样的主流处理器体系,Go对各种平台和操作系统的支持不可谓不广泛。

Go官方似乎没有给出明确的porting guide,关于将Go语言porting到其他平台上的内容更多是在golang-dev这样的小圈子中讨论的事情。但就Go语言这么短的时间就能很好的支持这么多平台来看,Go的porting还是相对easy的。从个人对Go的了解来看,这一定程度上得益于Go独立实现了runtime。

img{512x368}

runtime是支撑程序运行的基础。我们最熟悉的莫过于libc(C运行时),它是目前主流操作系统上应用最普遍的运行时,通常以动态链接库的形式(比如:/lib/x86_64-linux-gnu/libc.so.6)随着系统一并发布,它的功能大致有如下几个:

  • 提供基础库函数调用,比如:strncpy
  • 封装syscall(注:syscall是操作系统提供的API口,当用户层进行系统调用时,代码会trap(陷入)到内核层面执行),并提供同语言的库函数调用,比如:malloc、fread等;
  • 提供程序启动入口函数,比如:linux下的__libc_start_main。

libc等c runtime lib是很早以前就已经实现的了,甚至有些老旧的libc还是单线程的。一些从事c/c++开发多年的程序员早年估计都有过这样的经历:那就是链接runtime库时甚至需要选择链接支持多线程的库还是只支持单线程的库。除此之外,c runtime的版本也参差不齐。这样的c runtime状况完全不能满足go语言自身的需求;另外Go的目标之一是原生支持并发,并使用goroutine模型,c runtime对此是无能为力的,因为c runtime本身是基于线程模型的。综合以上因素,Go自己实现了runtime,并封装了syscall,为不同平台上的go user level代码提供封装完成的、统一的go标准库;同时Go runtime实现了对goroutine模型的支持。

独立实现的go runtime层将Go user-level code与OS syscall解耦,把Go porting到一个新平台时,将runtime与新平台的syscall对接即可(当然porting工作不仅仅只有这些);同时,runtime层的实现基本摆脱了Go程序对libc的依赖,这样静态编译的Go程序具有很好的平台适应性。比如:一个compiled for linux amd64的Go程序可以很好的运行于不同linux发行版(centos、ubuntu)下。

以下测试试验环境为:darwin amd64 Go 1.8

二、默认”静态链接”的Go程序

我们先来写两个程序:hello.c和hello.go,它们完成的功能都差不多,在stdout上输出一行文字:

//hello.c
#include <stdio.h>

int main() {
        printf("%s\n", "hello, portable c!");
        return 0;
}

//hello.go
package main

import "fmt"

func main() {
    fmt.Println("hello, portable go!")
}

我们采用“默认”方式分别编译以下两个程序:

$cc -o helloc hello.c
$go build -o hellogo hello.go

$ls -l
-rwxr-xr-x    1 tony  staff     8496  6 27 14:18 helloc*
-rwxr-xr-x    1 tony  staff  1628192  6 27 14:18 hellogo*

从编译后的两个文件helloc和hellogo的size上我们可以看到hellogo相比于helloc简直就是“巨人”般的存在,其size近helloc的200倍。略微学过一些Go的人都知道,这是因为hellogo中包含了必需的go runtime。我们通过otool工具(linux上可以用ldd)查看一下两个文件的对外部动态库的依赖情况:

$otool -L helloc
helloc:
    /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1197.1.1)
$otool -L hellogo
hellogo:

通过otool输出,我们可以看到hellogo并不依赖任何外部库,我们将hellog这个二进制文件copy到任何一个mac amd64的平台上,均可以运行起来。而helloc则依赖外部的动态库:/usr/lib/libSystem.B.dylib,而libSystem.B.dylib这个动态库还有其他依赖。我们通过nm工具可以查看到helloc具体是哪个函数符号需要由外部动态库提供:

$nm helloc
0000000100000000 T __mh_execute_header
0000000100000f30 T _main
                 U _printf
                 U dyld_stub_binder

可以看到:_printf和dyld_stub_binder两个符号是未定义的(对应的前缀符号是U)。如果对hellog使用nm,你会看到大量符号输出,但没有未定义的符号。

$nm hellogo
00000000010bb278 s $f64.3eb0000000000000
00000000010bb280 s $f64.3fd0000000000000
00000000010bb288 s $f64.3fe0000000000000
00000000010bb290 s $f64.3fee666666666666
00000000010bb298 s $f64.3ff0000000000000
00000000010bb2a0 s $f64.4014000000000000
00000000010bb2a8 s $f64.4024000000000000
00000000010bb2b0 s $f64.403a000000000000
00000000010bb2b8 s $f64.4059000000000000
00000000010bb2c0 s $f64.43e0000000000000
00000000010bb2c8 s $f64.8000000000000000
00000000010bb2d0 s $f64.bfe62e42fefa39ef
000000000110af40 b __cgo_init
000000000110af48 b __cgo_notify_runtime_init_done
000000000110af50 b __cgo_thread_start
000000000104d1e0 t __rt0_amd64_darwin
000000000104a0f0 t _callRet
000000000104b580 t _gosave
000000000104d200 T _main
00000000010bbb20 s _masks
000000000104d370 t _nanotime
000000000104b7a0 t _setg_gcc
00000000010bbc20 s _shifts
0000000001051840 t errors.(*errorString).Error
00000000010517a0 t errors.New
.... ...
0000000001065160 t type..hash.time.Time
0000000001064f70 t type..hash.time.zone
00000000010650a0 t type..hash.time.zoneTrans
0000000001051860 t unicode/utf8.DecodeRuneInString
0000000001051a80 t unicode/utf8.EncodeRune
0000000001051bd0 t unicode/utf8.RuneCount
0000000001051d10 t unicode/utf8.RuneCountInString
0000000001107080 s unicode/utf8.acceptRanges
00000000011079e0 s unicode/utf8.first

$nm hellogo|grep " U "

Go将所有运行需要的函数代码都放到了hellogo中,这就是所谓的“静态链接”。是不是所有情况下,Go都不会依赖外部动态共享库呢?我们来看看下面这段代码:

//server.go
package main

import (
    "log"
    "net/http"
    "os"
)

func main() {
    cwd, err := os.Getwd()
    if err != nil {
        log.Fatal(err)
    }

    srv := &http.Server{
        Addr:    ":8000", // Normally ":443"
        Handler: http.FileServer(http.Dir(cwd)),
    }
    log.Fatal(srv.ListenAndServe())
}

我们利用Go标准库的net/http包写了一个fileserver,我们build一下该server,并查看它是否有外部依赖以及未定义的符号:

$go build server.go
-rwxr-xr-x    1 tony  staff  5943828  6 27 14:47 server*

$otool -L server
server:
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/Security.framework/Versions/A/Security (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)

$nm server |grep " U "
                 U _CFArrayGetCount
                 U _CFArrayGetValueAtIndex
                 U _CFDataAppendBytes
                 U _CFDataCreateMutable
                 U _CFDataGetBytePtr
                 U _CFDataGetLength
                 U _CFDictionaryGetValueIfPresent
                 U _CFEqual
                 U _CFNumberGetValue
                 U _CFRelease
                 U _CFStringCreateWithCString
                 U _SecCertificateCopyNormalizedIssuerContent
                 U _SecCertificateCopyNormalizedSubjectContent
                 U _SecKeychainItemExport
                 U _SecTrustCopyAnchorCertificates
                 U _SecTrustSettingsCopyCertificates
                 U _SecTrustSettingsCopyTrustSettings
                 U ___error
                 U ___stack_chk_fail
                 U ___stack_chk_guard
                 U ___stderrp
                 U _abort
                 U _fprintf
                 U _fputc
                 U _free
                 U _freeaddrinfo
                 U _fwrite
                 U _gai_strerror
                 U _getaddrinfo
                 U _getnameinfo
                 U _kCFAllocatorDefault
                 U _malloc
                 U _memcmp
                 U _nanosleep
                 U _pthread_attr_destroy
                 U _pthread_attr_getstacksize
                 U _pthread_attr_init
                 U _pthread_cond_broadcast
                 U _pthread_cond_wait
                 U _pthread_create
                 U _pthread_key_create
                 U _pthread_key_delete
                 U _pthread_mutex_lock
                 U _pthread_mutex_unlock
                 U _pthread_setspecific
                 U _pthread_sigmask
                 U _setenv
                 U _strerror
                 U _sysctlbyname
                 U _unsetenv

通过otool和nm的输出结果我们惊讶的看到:默认采用“静态链接”的Go程序怎么也要依赖外部的动态链接库,并且也包含了许多“未定义”的符号了呢?问题在于cgo。

三、cgo对可移植性的影响

默认情况下,Go的runtime环境变量CGO_ENABLED=1,即默认开始cgo,允许你在Go代码中调用C代码,Go的pre-compiled标准库的.a文件也是在这种情况下编译出来的。在$GOROOT/pkg/darwin_amd64中,我们遍历所有预编译好的标准库.a文件,并用nm输出每个.a的未定义符号,我们看到下面一些包是对外部有依赖的(动态链接):

=> crypto/x509.a
                 U _CFArrayGetCount
                 U _CFArrayGetValueAtIndex
                 U _CFDataAppendBytes
                 ... ...
                 U _SecCertificateCopyNormalizedIssuerContent
                 U _SecCertificateCopyNormalizedSubjectContent
                 ... ...
                 U ___stack_chk_fail
                 U ___stack_chk_guard
                 U __cgo_topofstack
                 U _kCFAllocatorDefault
                 U _memcmp
                 U _sysctlbyname

=> net.a
                 U ___error
                 U __cgo_topofstack
                 U _free
                 U _freeaddrinfo
                 U _gai_strerror
                 U _getaddrinfo
                 U _getnameinfo
                 U _malloc

=> os/user.a
                 U __cgo_topofstack
                 U _free
                 U _getgrgid_r
                 U _getgrnam_r
                 U _getgrouplist
                 U _getpwnam_r
                 U _getpwuid_r
                 U _malloc
                 U _realloc
                 U _sysconf

=> plugin.a
                 U __cgo_topofstack
                 U _dlerror
                 U _dlopen
                 U _dlsym
                 U _free
                 U _malloc
                 U _realpath$DARWIN_EXTSN

=> runtime/cgo.a
                 ... ...
                 U _abort
                 U _fprintf
                 U _fputc
                 U _free
                 U _fwrite
                 U _malloc
                 U _nanosleep
                 U _pthread_attr_destroy
                 U _pthread_attr_getstacksize
                 ... ...
                 U _setenv
                 U _strerror
                 U _unsetenv

=> runtime/race.a
                 U _OSSpinLockLock
                 U _OSSpinLockUnlock
                 U __NSGetArgv
                 U __NSGetEnviron
                 U __NSGetExecutablePath
                 U ___error
                 U ___fork
                 U ___mmap
                 U ___munmap
                 U ___stack_chk_fail
                 U ___stack_chk_guard
                 U __dyld_get_image_header
                .... ...

我们以os/user为例,在CGO_ENABLED=1,即cgo开启的情况下,os/user包中的lookupUserxxx系列函数采用了c版本的实现,我们看到在$GOROOT/src/os/user/lookup_unix.go中的build tag中包含了+build cgo。这样一来,在CGO_ENABLED=1,该文件将被编译,该文件中的c版本实现的lookupUser将被使用:

// +build darwin dragonfly freebsd !android,linux netbsd openbsd solaris
// +build cgo

package user
... ...
func lookupUser(username string) (*User, error) {
    var pwd C.struct_passwd
    var result *C.struct_passwd
    nameC := C.CString(username)
    defer C.free(unsafe.Pointer(nameC))
    ... ...
}

这样来看,凡是依赖上述包的Go代码最终编译的可执行文件都是要有外部依赖的。不过我们依然可以通过disable CGO_ENABLED来编译出纯静态的Go程序:

$CGO_ENABLED=0 go build -o server_cgo_disabled server.go

$otool -L server_cgo_disabled
server_cgo_disabled:
$nm server_cgo_disabled |grep " U "

如果你使用build的 “-x -v”选项,你将看到go compiler会重新编译依赖的包的静态版本,包括net、mime/multipart、crypto/tls等,并将编译后的.a(以包为单位)放入临时编译器工作目录($WORK)下,然后再静态连接这些版本。

四、internal linking和external linking

问题来了:在CGO_ENABLED=1这个默认值的情况下,是否可以实现纯静态连接呢?答案是可以。在$GOROOT/cmd/cgo/doc.go中,文档介绍了cmd/link的两种工作模式:internal linking和external linking。

1、internal linking

internal linking的大致意思是若用户代码中仅仅使用了net、os/user等几个标准库中的依赖cgo的包时,cmd/link默认使用internal linking,而无需启动外部external linker(如:gcc、clang等),不过由于cmd/link功能有限,仅仅是将.o和pre-compiled的标准库的.a写到最终二进制文件中。因此如果标准库中是在CGO_ENABLED=1情况下编译的,那么编译出来的最终二进制文件依旧是动态链接的,即便在go build时传入-ldflags ‘extldflags “-static”‘亦无用,因为根本没有使用external linker:

$go build -o server-fake-static-link  -ldflags '-extldflags "-static"' server.go
$otool -L server-fake-static-link
server-fake-static-link:
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 0.0.0, current version 0.0.0)
    /System/Library/Frameworks/Security.framework/Versions/A/Security (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)
    /usr/lib/libSystem.B.dylib (compatibility version 0.0.0, current version 0.0.0)

2、external linking

而external linking机制则是cmd/link将所有生成的.o都打到一个.o文件中,再将其交给外部的链接器,比如gcc或clang去做最终链接处理。如果此时,我们在cmd/link的参数中传入-ldflags ‘extldflags “-static”‘,那么gcc/clang将会去做静态链接,将.o中undefined的符号都替换为真正的代码。我们可以通过-linkmode=external来强制cmd/link采用external linker,还是以server.go的编译为例:

$go build -o server-static-link  -ldflags '-linkmode "external" -extldflags "-static"' server.go
# command-line-arguments
/Users/tony/.bin/go18/pkg/tool/darwin_amd64/link: running clang failed: exit status 1
ld: library not found for -lcrt0.o
clang: error: linker command failed with exit code 1 (use -v to see invocation)

可以看到,cmd/link调用的clang尝试去静态连接libc的.a文件,但由于我的mac上仅仅有libc的dylib,而没有.a,因此静态连接失败。我找到一个ubuntu 16.04环境:重新执行上述构建命令:

# go build -o server-static-link  -ldflags '-linkmode "external" -extldflags "-static"' server.go
# ldd server-static-link
    not a dynamic executable
# nm server-static-link|grep " U "

该环境下libc.a和libpthread.a分别在下面两个位置:

/usr/lib/x86_64-linux-gnu/libc.a
/usr/lib/x86_64-linux-gnu/libpthread.a

就这样,我们在CGO_ENABLED=1的情况下,也编译构建出了一个纯静态链接的Go程序。

如果你的代码中使用了C代码,并依赖cgo在go中调用这些c代码,那么cmd/link将会自动选择external linking的机制:

//testcgo.go
package main

//#include <stdio.h>
// void foo(char *s) {
//    printf("%s\n", s);
// }
// void bar(void *p) {
//    int *q = (int*)p;
//    printf("%d\n", *q);
// }
import "C"
import (
    "fmt"
    "unsafe"
)

func main() {
    var s = "hello"
    C.foo(C.CString(s))

    var i int = 5
    C.bar(unsafe.Pointer(&i))

    var i32 int32 = 7
    var p *uint32 = (*uint32)(unsafe.Pointer(&i32))
    fmt.Println(*p)
}

编译testcgo.go:

# go build -o testcgo-static-link  -ldflags '-extldflags "-static"' testcgo.go
# ldd testcgo-static-link
    not a dynamic executable

vs.
# go build -o testcgo testcgo.go
# ldd ./testcgo
    linux-vdso.so.1 =>  (0x00007ffe7fb8d000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fc361000000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fc360c36000)
    /lib64/ld-linux-x86-64.so.2 (0x000055bd26d4d000)

五、小结

本文探讨了Go的可移植性以及哪些因素对Go编译出的程序的移植性有影响:

  • 你的程序用了哪些标准库包?如果仅仅是非net、os/user等的普通包,那么你的程序默认将是纯静态的,不依赖任何c lib等外部动态链接库;
  • 如果使用了net这样的包含cgo代码的标准库包,那么CGO_ENABLED的值将影响你的程序编译后的属性:是静态的还是动态链接的;
  • CGO_ENABLED=0的情况下,Go采用纯静态编译;
  • 如果CGO_ENABLED=1,但依然要强制静态编译,需传递-linkmode=external给cmd/link。

微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats