标签 GOROOT 下的文章

Go 1.15中值得关注的几个变化

img{512x368}

Go 1.15版本在8月12日就正式发布了,给我的感觉就是发布的挺痛快^_^。这种感觉来自与之前版本发布时间的对比:Go 1.13版本发布于当年的9月4日,更早的Go 1.11版本发布于当年的8月25日。

不过这个时间恰与我家二宝出生和老婆月子时期有重叠,每天照顾孩子团团转的我实在抽不出时间研究Go 1.15的变化:(。如今,我逐渐从照顾二宝的工作中脱离出来^_^,于是“Go x.xx版本值得关注的几个变化”系列将继续下去。关注Go语言的演变对掌握和精通Go语言大有裨益,凡是致力于成为一名高级Gopher的读者都应该密切关注Go的演进。
截至写稿时,Go 1.15最新版是Go 1.15.2。Go 1.15一如既往的遵循Go1兼容性承诺语言规范方面没有任何变化。可以说这是一个“面子”上变化较小的一个版本,但“里子”的变化还是不少的,在本文中我就和各位读者一起就重要变化逐一了解一下。

一. 平台移植性

Go 1.15版本不再对darwin/386和darwin/arm两个32位平台提供支持了。Go 1.15及以后版本仅对darwin/amd64和darwin/arm64版本提供支持。并且不再对macOS 10.12版本之前的版本提供支持。

Go 1.14版本中,Go编译器在被传入-race和-msan的情况下,默认会执行-d=checkptr,即对unsafe.Pointer的使用进行合法性检查-d=checkptr主要检查两项内容:

  • 当将unsafe.Pointer转型为*T时,T的内存对齐系数不能高于原地址的;

  • 做完指针算术后,转换后的unsafe.Pointer仍应指向原先Go堆对象

但在Go 1.14中,这个检查并不适用于Windows操作系统。Go 1.15中增加了对windows系统的支持。

对于RISC-V架构,Go社区展现出十分积极的姿态,早在Go 1.11版本,Go就为RISC-V cpu架构预留了GOARCH值:riscv和riscv64。Go 1.14版本则为64bit RISC-V提供了在linux上的实验性支持(GOOS=linux, GOARCH=riscv64)。在Go 1.15版本中,Go在GOOS=linux, GOARCH=riscv64的环境下的稳定性和性能得到持续提升,并且已经可以支持goroutine异步抢占式调度了。

二. 工具链

1. GOPROXY新增以管道符为分隔符的代理列表值

Go 1.13版本中,GOPROXY支持设置为多个proxy的列表,多个proxy之间采用逗号分隔。Go工具链会按顺序尝试列表中的proxy以获取依赖包数据,但是当有proxy server服务不可达或者是返回的http状态码不是404也不是410时,go会终止数据获取。但是当列表中的proxy server返回其他错误时,Go命令不会向GOPROXY列表中的下一个值所代表的的proxy server发起请求,这种行为模式没能让所有gopher满意,很多Gopher认为Go工具链应该向后面的proxy server请求,直到所有proxy server都返回失败。Go 1.15版本满足了Go社区的需求,新增以管道符“|”为分隔符的代理列表值。如果GOPROXY配置的proxy server列表值以管道符分隔,则无论某个proxy server返回什么错误码,Go命令都会向列表中的下一个proxy server发起新的尝试请求。

注:Go 1.15版本中GOPROXY环境变量的默认值依旧为https://proxy.golang.org,direct

2. module cache的存储路径可设置

Go module机制自打在Go 1.11版本中以试验特性的方式引入时就将module的本地缓存默认放在了\$GOPATH/pkg/mod下(如果没有显式设置GOPATH,那么默认值将是~/go;如果GOPATH下面配置了多个路径,那么选择第一个路径),一直到Go 1.14版本,这个位置都是无法配置的。

Go module的引入为去除GOPATH提供了前提,于是module cache的位置也要尽量与GOPATH“脱钩”:Go 1.15提供了GOMODCACHE环境变量用于自定义module cache的存放位置。如果没有显式设置GOMODCACHE,那么module cache的默认存储路径依然是\$GOPATH/pkg/mod

三. 运行时、编译器和链接器

1. panic展现形式变化

在Go 1.15之前,如果传给panic的值是bool, complex64, complex128, float32, float64, int, int8, int16, int32, int64, string, uint, uint8, uint16, uint32, uint64, uintptr等原生类型的值,那么panic在触发时会输出具体的值,比如:

// go1.15-examples/runtime/panic.go

package main

func foo() {
    var i uint32 = 17
    panic(i)
}

func main() {
    foo()
}

使用Go 1.14运行上述代码,得到如下结果:

$go run panic.go
panic: 17

goroutine 1 [running]:
main.foo(...)
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.15-examples/runtime/panic.go:5
main.main()
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.15-examples/runtime/panic.go:9 +0x39
exit status 2

Go 1.15版本亦是如此。但是对于派生于上述原生类型的自定义类型而言,Go 1.14只是输出变量地址:

// go1.15-examples/runtime/panic.go

package main

type myint uint32

func bar() {
    var i myint = 27
    panic(i)
}

func main() {
    bar()
}

使用Go 1.14运行上述代码:

$go run panic.go
panic: (main.myint) (0x105fca0,0xc00008e000)

goroutine 1 [running]:
main.bar(...)
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.15-examples/runtime/panic.go:12
main.main()
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.15-examples/runtime/panic.go:17 +0x39
exit status 2

Go 1.15针对此情况作了展示优化,即便是派生于这些原生类型的自定义类型变量,panic也可以输出其值。使用Go 1.15运行上述代码的结果如下:

$go run panic.go
panic: main.myint(27)

goroutine 1 [running]:
main.bar(...)
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.15-examples/runtime/panic.go:12
main.main()
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.15-examples/runtime/panic.go:17 +0x39
exit status 2

2. 将小整数([0,255])转换为interface类型值时将不会额外分配内存

Go 1.15在runtime/iface.go中做了一些优化改动:增加一个名为staticuint64s的数组,预先为[0,255]这256个数分配了内存。然后在convT16、convT32等运行时转换函数中判断要转换的整型值是否小于256(len(staticuint64s)),如果小于,则返回staticuint64s数组中对应的值的地址;否则调用mallocgc分配新内存。

$GOROOT/src/runtime/iface.go

// staticuint64s is used to avoid allocating in convTx for small integer values.
var staticuint64s = [...]uint64{
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
        0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
        0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
        0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
        0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,

        ... ...

        0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
        0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,

}

func convT16(val uint16) (x unsafe.Pointer) {
        if val < uint16(len(staticuint64s)) {
                x = unsafe.Pointer(&staticuint64s[val])
                if sys.BigEndian {
                        x = add(x, 6)
                }
        } else {
                x = mallocgc(2, uint16Type, false)
                *(*uint16)(x) = val
        }
        return
}

func convT32(val uint32) (x unsafe.Pointer) {
        if val < uint32(len(staticuint64s)) {
                x = unsafe.Pointer(&staticuint64s[val])
                if sys.BigEndian {
                        x = add(x, 4)
                }
        } else {
                x = mallocgc(4, uint32Type, false)
                *(*uint32)(x) = val
        }
        return
}

我们可以用下面例子来验证一下:

// go1.15-examples/runtime/tinyint2interface.go

package main

import (
    "math/rand"
)

func convertSmallInteger() interface{} {
    i := rand.Intn(256)
    var j interface{} = i
    return j
}

func main() {
    for i := 0; i < 100000000; i++ {
        convertSmallInteger()
    }
}

我们分别用go 1.14和go 1.15.2编译这个源文件(注意关闭内联等优化,否则很可能看不出效果):

// go 1.14

go build  -gcflags="-N -l" -o tinyint2interface-go14 tinyint2interface.go

// go 1.15.2

go build  -gcflags="-N -l" -o tinyint2interface-go15 tinyint2interface.go

我们使用下面命令输出程序执行时每次GC的信息:

$env GODEBUG=gctrace=1 ./tinyint2interface-go14
gc 1 @0.025s 0%: 0.009+0.18+0.021 ms clock, 0.079+0.079/0/0.20+0.17 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 2 @0.047s 0%: 0.003+0.14+0.013 ms clock, 0.031+0.099/0.064/0.037+0.10 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 3 @0.064s 0%: 0.008+0.20+0.016 ms clock, 0.071+0.071/0.018/0.081+0.13 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 4 @0.081s 0%: 0.005+0.14+0.013 ms clock, 0.047+0.059/0.023/0.032+0.10 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 5 @0.098s 0%: 0.005+0.10+0.017 ms clock, 0.042+0.073/0.027/0.080+0.13 ms cpu, 4->4->0 MB, 5 MB goal, 8 P

... ...

gc 192 @3.264s 0%: 0.003+0.11+0.013 ms clock, 0.024+0.060/0.005/0.035+0.11 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 193 @3.281s 0%: 0.005+0.13+0.032 ms clock, 0.042+0.075/0.041/0.050+0.25 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 194 @3.298s 0%: 0.004+0.12+0.013 ms clock, 0.033+0.072/0.030/0.033+0.10 ms cpu, 4->4->0 MB, 5 MB goal, 8 P
gc 195 @3.315s 0%: 0.003+0.17+0.023 ms clock, 0.029+0.062/0.055/0.024+0.18 ms cpu, 4->4->0 MB, 5 MB goal, 8 P

$env GODEBUG=gctrace=1 ./tinyint2interface-go15

我们看到和go 1.14编译的程序不断分配内存,不断导致GC相比,go1.15.2没有输出GC信息,间接证实了小整数转interface变量值时不会触发内存分配。

3. 加入更现代化的链接器(linker)

一个新版的现代化linker正在逐渐加入到Go中,Go 1.15是新版linker的起点。后续若干版本,linker优化会逐步加入进来。在Go 1.15中,对于大型项目,新链接器的性能要提高20%,内存占用减少30%。

4. objdump支持输出GNU汇编语法

go 1.15为objdump工具增加了-gnu选项,以在Go汇编的后面,辅助输出GNU汇编,便于对照

// go 1.14:

$go tool objdump -S tinyint2interface-go15|more
TEXT go.buildid(SB)

  0x1001000             ff20                    JMP 0(AX)
  0x1001002             476f                    OUTSD DS:0(SI), DX
  0x1001004             206275                  ANDB AH, 0x75(DX)
  0x1001007             696c642049443a20        IMULL $0x203a4449, 0x20(SP), BP
... ...

//go 1.15.2:

$go tool objdump  -S -gnu tinyint2interface-go15|more
TEXT go.buildid(SB)

  0x1001000             ff20                    JMP 0(AX)                            // jmpq *(%rax)           

  0x1001002             476f                    OUTSD DS:0(SI), DX                   // rex.RXB outsl %ds:(%rsi),(%dx)
  0x1001004             206275                  ANDB AH, 0x75(DX)                    // and %ah,0x75(%rdx)     

  0x1001007             696c642049443a20        IMULL $0x203a4449, 0x20(SP), BP      // imul $0x203a4449,0x20(%rsp,%riz,2),%ebp

... ...

四. 标准库

和以往发布的版本一样,标准库有大量小改动,这里挑出几个笔者感兴趣的和大家一起看一下。

1. 增加tzdata包

Go time包中很多方法依赖时区数据,但不是所有平台上都自带时区数据。Go time包会以下面顺序搜寻时区数据:

- ZONEINFO环境变量指示的路径中

- 在类Unix系统中一些常见的存放时区数据的路径(zoneinfo_unix.go中的zoneSources数组变量中存放这些常见路径):

    "/usr/share/zoneinfo/",
    "/usr/share/lib/zoneinfo/",
    "/usr/lib/locale/TZ/"

- 如果平台没有,则尝试使用$GOROOT/lib/time/zoneinfo.zip这个随着go发布包一起发布的时区数据。但在应用部署的环境中,很大可能不会进行go安装。

如果go应用找不到时区数据,那么go应用运行将会受到影响,就如下面这个例子:

// go1.15-examples/stdlib/tzdata.go

package main

import (
    "fmt"
    "time"
)

func main() {
    loc, err := time.LoadLocation("America/New_York")
    if err != nil {
        fmt.Println("LoadLocation error:", err)
        return
    }
    fmt.Println("LoadLocation is:", loc)
}

我们移除系统的时区数据(比如将/usr/share/zoneinfo改名)和Go安装包自带的zoneinfo.zip(改个名)后,在Go 1.15.2下运行该示例:

$ go run tzdata.go
LoadLocation error: unknown time zone America/New_York

为此,Go 1.15提供了一个将时区数据嵌入到Go应用二进制文件中的方法:导入time/tzdata包

// go1.15-examples/stdlib/tzdata.go

package main

import (
    "fmt"
    "time"
    _ "time/tzdata"
)

func main() {
    loc, err := time.LoadLocation("America/New_York")
    if err != nil {
        fmt.Println("LoadLocation error:", err)
        return
    }
    fmt.Println("LoadLocation is:", loc)
}

我们再用go 1.15.2运行一下上述导入tzdata包的例子:

$go run testtimezone.go
LoadLocation is: America/New_York

不过由于附带tzdata数据,应用二进制文件的size会增大大约800k,下面是在ubuntu下的实测值:

-rwxr-xr-x 1 root root 2.0M Oct 11 02:42 tzdata-withouttzdata*
-rwxr-xr-x 1 root root 2.8M Oct 11 02:42 tzdata-withtzdata*

2. 增加json解码限制

json包是日常使用最多的go标准库包之一,在Go 1.15中,go按照json规范的要求,为json的解码增加了一层限制:

// json规范要求

//https://tools.ietf.org/html/rfc7159#section-9

A JSON parser transforms a JSON text into another representation.  A
   JSON parser MUST accept all texts that conform to the JSON grammar.
   A JSON parser MAY accept non-JSON forms or extensions.

   An implementation may set limits on the size of texts that it
   accepts.  An implementation may set limits on the maximum depth of
   nesting.  An implementation may set limits on the range and precision
   of numbers.  An implementation may set limits on the length and
   character contents of strings.

这个限制就是增加了一个对json文本最大缩进深度值:

// $GOROOT/src/encoding/json/scanner.go

// This limits the max nesting depth to prevent stack overflow.
// This is permitted by https://tools.ietf.org/html/rfc7159#section-9
const maxNestingDepth = 10000

如果一旦传入的json文本数据缩进深度超过maxNestingDepth,那json包就会panic。当然,绝大多数情况下,我们是碰不到缩进10000层的超大json文本的。因此,该limit对于99.9999%的gopher都没啥影响。

3. reflect包

Go 1.15版本之前reflect包存在一处行为不一致的问题,我们看下面例子(例子来源于https://play.golang.org/p/Jnga2_6Rmdf):

// go1.15-examples/stdlib/reflect.go

package main

import "reflect"

type u struct{}

func (u) M() { println("M") }

type t struct {
    u
    u2 u
}

func call(v reflect.Value) {
    defer func() {
        if err := recover(); err != nil {
            println(err.(string))
        }
    }()
    v.Method(0).Call(nil)
}

func main() {
    v := reflect.ValueOf(t{}) // v := t{}
    call(v)                   // v.M()
    call(v.Field(0))          // v.u.M()
    call(v.Field(1))          // v.u2.M()
}

我们使用Go 1.14版本运行该示例:

$go run reflect.go
M
M
reflect: reflect.flag.mustBeExported using value obtained using unexported field

我们看到同为类型t中的非导出字段(field)的u和u2(u是以嵌入类型方式称为类型t的字段的),通过reflect包可以调用字段u的导出方法(如输出中的第二行的M),却无法调用非导出字段u2的导出方法(如输出中的第三行的panic信息)。

这种不一致在Go 1.15版本中被修复,我们使用Go 1.15.2运行上述示例:

$go run reflect.go
M
reflect: reflect.Value.Call using value obtained using unexported field
reflect: reflect.Value.Call using value obtained using unexported field

我们看到reflect无法调用非导出字段u和u2的导出方法了。但是reflect依然可以通过提升到类型t的方法来间接使用u的导出方法,正如运行结果中的第一行输出。
这一改动可能会影响到遗留代码中使用reflect调用以类型嵌入形式存在的非导出字段方法的代码,如果你的代码中存在这样的问题,可以直接通过提升(promote)到包裹类型(如例子中的t)中的方法(如例子中的call(v))来替代之前的方式。

五. 小结

由于Go 1.15删除了一些GC元数据和一些无用的类型元数据,Go 1.15编译出的二进制文件size会减少5%左右。我用一个中等规模的go项目实测了一下:

-rwxr-xr-x   1 tonybai  staff    23M 10 10 16:54 yunxind*
-rwxr-xr-x   1 tonybai  staff    24M  9 30 11:20 yunxind-go14*

二进制文件size的确有变小,大约4%-5%。

如果你还没有升级到Go 1.15,那么现在正是时候

本文中涉及的代码可以在这里下载。https://github.com/bigwhite/experiments/tree/master/go1.15-examples


我的Go技术专栏:“改善Go语⾔编程质量的50个有效实践”上线了,欢迎大家订阅学习!

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网上线了,感谢小伙伴们学习支持!

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/
smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。

2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

微博:https://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go 1.14中值得关注的几个变化

可能是得益于2020年2月26日Go 1.14的发布,在2020年3月份的TIOBE编程语言排行榜上,Go重新进入TOP 10,而去年同期Go仅排行在第18位。虽然Go语言以及其他主流语言在榜单上的“上蹿下跳”让这个榜单的权威性饱受质疑:),但Go在这样的一个时间节点能进入TOP 10,对于Gopher和Go社区来说,总还是一个不错的结果。并且在一定层度上说明:Go在努力耕耘十年后,已经在世界主流编程语言之林中牢牢占据了自己的一个位置。

img{512x368}

图:TIOBE编程语言排行榜2020.3月榜单,Go语言重入TOP10

Go自从宣布Go1 Compatible后,直到这次的Go 1.14发布,Go的语法和核心库都没有做出不兼容的变化。这让很多其他主流语言的拥趸们觉得Go很“无趣”。但这种承诺恰恰是Go团队背后努力付出的结果,因此Go的每个发布版本都值得广大gopher尊重,每个发布版本都是Go团队能拿出的最好版本

下面我们就来解读一下Go 1.14的变化,看看这个新版本中有哪些值得我们重点关注的变化。

一. 语言规范

和其他主流语言相比,Go语言的语法规范的变化那是极其少的(广大Gopher们已经习惯了这个节奏:)),偶尔发布一个变化,那自然是要引起广大Gopher严重关注的:)。不过事先说明:只要Go版本依然是1.x,那么这个规范变化也是backward-compitable的

Go 1.14新增的语法变化是:嵌入接口的方法集可重叠。这个变化背后的朴素思想是这样的。看下面代码(来自这里):

type I interface { f(); String() string }
type J interface { g(); String() string }

type IJ interface { I; J }  ----- (1)
type IJ interface { f(); g(); String() string }  ---- (2)

代码中已知定义的I和J两个接口的方法集中都包含有String() string这个方法。在这样的情况下,我们如果想定义一个方法集合为Union(I, J)的新接口IJ,我们在Go 1.13及之前的版本中只能使用第(2)种方式,即只能在新接口IJ中重新书写一遍所有的方法原型,而无法像第(1)种方式那样使用嵌入接口的简洁方式进行。

Go 1.14通过支持嵌入接口的方法集可重叠解决了这个问题:

// go1.14-examples/overlapping_interface.go
package foo

type I interface {
    f()
    String() string
}
type J interface {
    g()
    String() string
}

type IJ interface {
    I
    J
}

在go 1.13.6上运行:

$go build overlapping_interface.go
# command-line-arguments
./overlapping_interface.go:14:2: duplicate method String

但在go 1.14上运行:

$go build overlapping_interface.go

// 一切ok,无报错

不过对overlapping interface的支持仅限于接口定义中,如果你要在struct定义中嵌入interface,比如像下面这样:

// go1.14-examples/overlapping_interface1.go
package main

type I interface {
    f()
    String() string
}

type implOfI struct{}

func (implOfI) f() {}
func (implOfI) String() string {
    return "implOfI"
}

type J interface {
    g()
    String() string
}

type implOfJ struct{}

func (implOfJ) g() {}
func (implOfJ) String() string {
    return "implOfJ"
}

type Foo struct {
    I
    J
}

func main() {
    f := Foo{
        I: implOfI{},
        J: implOfJ{},
    }
    println(f.String())
}

虽然Go编译器没有直接指出结构体Foo中嵌入的两个接口I和J存在方法的重叠,但在使用Foo结构体时,下面的编译器错误肯定还是会给出的:

$ go run overlapping_interface1.go
# command-line-arguments
./overlapping_interface1.go:37:11: ambiguous selector f.String

对于结构体中嵌入的接口的方法集是否存在overlap,go编译器似乎并没有严格做“实时”检查,这个检查被延迟到为结构体实例选择method的执行者环节了,就像上面例子那样。如果我们此时让Foo结构体 override一个String方法,那么即便I和J的方法集存在overlap也是无关紧要的,因为编译器不会再模棱两可,可以正确的为Foo实例选出究竟执行哪个String方法:

// go1.14-examples/overlapping_interface2.go

.... ....

func (Foo) String() string {
        return "Foo"
}

func main() {
        f := Foo{
                I: implOfI{},
                J: implOfJ{},
        }
        println(f.String())
}

运行该代码:

$go run overlapping_interface2.go
Foo

二. Go运行时

1. 支持异步抢占式调度

《Goroutine调度实例简要分析》一文中,我曾提到过这样一个例子:

// go1.14-examples/preemption_scheduler.go
package main

import (
    "fmt"
    "runtime"
    "time"
)

func deadloop() {
    for {
    }
}

func main() {
    runtime.GOMAXPROCS(1)
    go deadloop()
    for {
        time.Sleep(time.Second * 1)
        fmt.Println("I got scheduled!")
    }
}

在只有一个P的情况下,上面的代码中deadloop所在goroutine将持续占据该P,使得main goroutine中的代码得不到调度(GOMAXPROCS=1的情况下),因此我们无法看到I got scheduled!字样输出。这是因为Go 1.13及以前的版本的抢占是”协作式“的,只在有函数调用的地方才能插入“抢占”代码(埋点),而deadloop没有给编译器插入抢占代码的机会。这会导致GC在等待所有goroutine停止时等待时间过长,从而导致GC延迟;甚至在一些特殊情况下,导致在STW(stop the world)时死锁。

Go 1.14采用了基于系统信号的异步抢占调度,这样上面的deadloop所在的goroutine也可以被抢占了:

// 使用Go 1.14版本编译器运行上述代码

$go run preemption_scheduler.go
I got scheduled!
I got scheduled!
I got scheduled!

不过由于系统信号可能在代码执行到任意地方发生,在Go runtime能cover到的地方,Go runtime自然会处理好这些系统信号。但是如果你是通过syscall包或golang.org/x/sys/unix在Unix/Linux/Mac上直接进行系统调用,那么一旦在系统调用执行过程中进程收到系统中断信号,这些系统调用就会失败,并以EINTR错误返回,尤其是低速系统调用,包括:读写特定类型文件(管道、终端设备、网络设备)、进程间通信等。在这样的情况下,我们就需要自己处理EINTR错误。一个最常见的错误处理方式就是重试。对于可重入的系统调用来说,在收到EINTR信号后的重试是安全的。如果你没有自己调用syscall包,那么异步抢占调度对你已有的代码几乎无影响。

Go 1.14的异步抢占调度在windows/arm, darwin/arm, js/wasm, and plan9/*上依然尚未支持,Go团队计划在Go 1.15中解决掉这些问题

2. defer性能得以继续优化

Go 1.13中,defer性能得到理论上30%的提升。我们还用那个例子来看看go 1.14与go 1.13版本相比defer性能又有多少提升,同时再看看使用defer和不使用defer的对比:

// go1.14-examples/defer_benchmark_test.go
package defer_test

import "testing"

func sum(max int) int {
    total := 0
    for i := 0; i < max; i++ {
        total += i
    }

    return total
}

func foo() {
    defer func() {
        sum(10)
    }()

    sum(100)
}

func Bar() {
    sum(100)
    sum(10)
}

func BenchmarkDefer(b *testing.B) {
    for i := 0; i < b.N; i++ {
        foo()
    }
}
func BenchmarkWithoutDefer(b *testing.B) {
    for i := 0; i < b.N; i++ {
        Bar()
    }
}

我们分别用Go 1.13和Go 1.14运行上面的基准测试代码:

Go 1.13:

$go test -bench . defer_benchmark_test.go
goos: darwin
goarch: amd64
BenchmarkDefer-8              17873574            66.7 ns/op
BenchmarkWithoutDefer-8       26935401            43.7 ns/op
PASS
ok      command-line-arguments    2.491s

Go 1.14:

$go test -bench . defer_benchmark_test.go
goos: darwin
goarch: amd64
BenchmarkDefer-8              26179819            45.1 ns/op
BenchmarkWithoutDefer-8       26116602            43.5 ns/op
PASS
ok      command-line-arguments    2.418s

我们看到,Go 1.14的defer性能照比Go 1.13还有大幅提升,并且已经与不使用defer的性能相差无几了,这也是Go官方鼓励大家在性能敏感的代码执行路径上也大胆使用defer的原因。

img{512x368}

图:各个Go版本defer性能对比(图来自于https://twitter.com/janiszt/status/1215601972281253888)

3. internal timer的重新实现

鉴于go timer长期以来性能不能令人满意,Go 1.14几乎重新实现了runtime层的timer。其实现思路遵循了Dmitry Vyukov几年前提出的实现逻辑:将timer分配到每个P上,降低锁竞争;去掉timer thread,减少上下文切换开销;使用netpoll的timeout实现timer机制。

// $GOROOT/src/runtime/time.go

type timer struct {
        // If this timer is on a heap, which P's heap it is on.
        // puintptr rather than *p to match uintptr in the versions
        // of this struct defined in other packages.
        pp puintptr

}

// addtimer adds a timer to the current P.
// This should only be called with a newly created timer.
// That avoids the risk of changing the when field of a timer in some P's heap,
// which could cause the heap to become unsorted.

func addtimer(t *timer) {
        // when must never be negative; otherwise runtimer will overflow
        // during its delta calculation and never expire other runtime timers.
        if t.when < 0 {
                t.when = maxWhen
        }
        if t.status != timerNoStatus {
                badTimer()
        }
        t.status = timerWaiting

        addInitializedTimer(t)
}

// addInitializedTimer adds an initialized timer to the current P.
func addInitializedTimer(t *timer) {
        when := t.when

        pp := getg().m.p.ptr()
        lock(&pp.timersLock)
        ok := cleantimers(pp) && doaddtimer(pp, t)
        unlock(&pp.timersLock)
        if !ok {
                badTimer()
        }

        wakeNetPoller(when)
}
... ...

这样你的程序中如果大量使用time.After、time.Tick或者在处理网络连接时大量使用SetDeadline,使用Go 1.14编译后,你的应用将得到timer性能的自然提升

img{512x368}

图:切换到新timer实现后的各Benchmark数据

三. Go module已经production ready了

Go 1.14中带来的关于go module的最大惊喜就是Go module已经production ready了,这意味着关于go module的运作机制,go tool的各种命令和其参数形式、行为特征已趋稳定了。笔者从Go 1.11引入go module以来就一直关注和使用Go module,尤其是Go 1.13中增加go module proxy的支持,使得中国大陆的gopher再也不用为获取类似golang.org/x/xxx路径下的module而苦恼了。

Go 1.14中go module的主要变动如下:

a) module-aware模式下对vendor的处理:如果go.mod中go version是go 1.14及以上,且当前repo顶层目录下有vendor目录,那么go工具链将默认使用vendor(即-mod=vendor)中的package,而不是module cache中的($GOPATH/pkg/mod下)。同时在这种模式下,go 工具会校验vendor/modules.txt与go.mod文件,它们需要保持同步,否则报错。

在上述前提下,如要非要使用module cache构建,则需要为go工具链显式传入-mod=mod ,比如:go build -mod=mod ./...

b) 增加GOINSECURE,可以不再要求非得以https获取module,或者即便使用https,也不再对server证书进行校验。

c) 在module-aware模式下,如果没有建立go.mod或go工具链无法找到go.mod,那么你必须显式传入要处理的go源文件列表,否则go tools将需要你明确go.mod。比如:在一个没有go.mod的目录下,要编译一个hello.go,我们需要使用go build hello.go(hello.go需要显式放在命令后面),如果你执行go build .就会得到类似如下错误信息:

$go build .
go: cannot find main module, but found .git/config in /Users/tonybai
    to create a module there, run:
    cd .. && go mod init

也就是说在没有go.mod的情况下,go工具链的功能是受限的。

d) go module支持subversion仓库了,不过subversion使用应该很“小众”了。

要系统全面的了解go module的当前行为机制,建议还是通读一遍Go command手册中关于module的说明以及官方go module wiki

四. 编译器

Go 1.14 go编译器在-race和-msan的情况下,默认会执行-d=checkptr,即对unsafe.Pointer的使用进行合法性检查,主要检查两项内容:

  • 当将unsafe.Pointer转型为*T时,T的内存对齐系数不能高于原地址的

比如下面代码:

// go1.14-examples/compiler_checkptr1.go
package main

import (
    "fmt"
    "unsafe"
)

func main() {
    var byteArray = [10]byte{'a', 'b', 'c'}
    var p *int64 = (*int64)(unsafe.Pointer(&byteArray[1]))
    fmt.Println(*p)
}

以-race运行上述代码:

$go run -race compiler_checkptr1.go
fatal error: checkptr: unsafe pointer conversion

goroutine 1 [running]:
runtime.throw(0x11646fd, 0x23)
    /Users/tonybai/.bin/go1.14/src/runtime/panic.go:1112 +0x72 fp=0xc00004cee8 sp=0xc00004ceb8 pc=0x106d152
runtime.checkptrAlignment(0xc00004cf5f, 0x1136880, 0x1)
    /Users/tonybai/.bin/go1.14/src/runtime/checkptr.go:13 +0xd0 fp=0xc00004cf18 sp=0xc00004cee8 pc=0x1043b70
main.main()
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.14-examples/compiler_checkptr1.go:10 +0x70 fp=0xc00004cf88 sp=0xc00004cf18 pc=0x11283b0
runtime.main()
    /Users/tonybai/.bin/go1.14/src/runtime/proc.go:203 +0x212 fp=0xc00004cfe0 sp=0xc00004cf88 pc=0x106f7a2
runtime.goexit()
    /Users/tonybai/.bin/go1.14/src/runtime/asm_amd64.s:1373 +0x1 fp=0xc00004cfe8 sp=0xc00004cfe0 pc=0x109b801
exit status 2

checkptr检测到:转换后的int64类型的内存对齐系数严格程度要高于转化前的原地址(一个byte变量的地址)。int64对齐系数为8,而一个byte变量地址对齐系数仅为1。

  • 做完指针算术后,转换后的unsafe.Pointer仍应指向原先Go堆对象
compiler_checkptr2.go
package main

import (
    "unsafe"
)

func main() {
    var n = 5
    b := make([]byte, n)
    end := unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(n+10))
    _ = end
}

运行上述代码:

$go run  -race compiler_checkptr2.go
fatal error: checkptr: unsafe pointer arithmetic

goroutine 1 [running]:
runtime.throw(0x10b618b, 0x23)
    /Users/tonybai/.bin/go1.14/src/runtime/panic.go:1112 +0x72 fp=0xc00003e720 sp=0xc00003e6f0 pc=0x1067192
runtime.checkptrArithmetic(0xc0000180b7, 0xc00003e770, 0x1, 0x1)
    /Users/tonybai/.bin/go1.14/src/runtime/checkptr.go:41 +0xb5 fp=0xc00003e750 sp=0xc00003e720 pc=0x1043055
main.main()
    /Users/tonybai/go/src/github.com/bigwhite/experiments/go1.14-examples/compiler_checkptr2.go:10 +0x8d fp=0xc00003e788 sp=0xc00003e750 pc=0x1096ced
runtime.main()
    /Users/tonybai/.bin/go1.14/src/runtime/proc.go:203 +0x212 fp=0xc00003e7e0 sp=0xc00003e788 pc=0x10697e2
runtime.goexit()
    /Users/tonybai/.bin/go1.14/src/runtime/asm_amd64.s:1373 +0x1 fp=0xc00003e7e8 sp=0xc00003e7e0 pc=0x1092581
exit status 2

checkptr检测到转换后的unsafe.Pointer已经超出原先heap object: b的范围了,于是报错。

不过目前Go标准库依然尚未能完全通过checkptr的检查,因为有些库代码显然违反了unsafe.Pointer的使用规则

Go 1.13引入了新的Escape Analysis,Go 1.14中我们可以通过-m=2查看详细的逃逸分析过程日志,比如:

$go run  -gcflags '-m=2' compiler_checkptr2.go
# command-line-arguments
./compiler_checkptr2.go:7:6: can inline main as: func() { var n int; n = 5; b := make([]byte, n); end := unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(n + 100)); _ = end }
./compiler_checkptr2.go:9:11: make([]byte, n) escapes to heap:
./compiler_checkptr2.go:9:11:   flow: {heap} = &{storage for make([]byte, n)}:
./compiler_checkptr2.go:9:11:     from make([]byte, n) (non-constant size) at ./compiler_checkptr2.go:9:11
./compiler_checkptr2.go:9:11: make([]byte, n) escapes to heap

五. 标准库

每个Go版本,变化最多的就是标准库,这里我们挑一个可能影响后续我们编写单元测试行为方式的变化说说,那就是testing包的T和B类型都增加了自己的Cleanup方法。我们通过代码来看一下Cleanup方法的作用:

// go1.14-examples/testing_cleanup_test.go
package main

import "testing"

func TestCase1(t *testing.T) {

    t.Run("A=1", func(t *testing.T) {
        t.Logf("subtest1 in testcase1")

    })
    t.Run("A=2", func(t *testing.T) {
        t.Logf("subtest2 in testcase1")
    })
    t.Cleanup(func() {
        t.Logf("cleanup1 in testcase1")
    })
    t.Cleanup(func() {
        t.Logf("cleanup2 in testcase1")
    })
}

func TestCase2(t *testing.T) {
    t.Cleanup(func() {
        t.Logf("cleanup1 in testcase2")
    })
    t.Cleanup(func() {
        t.Logf("cleanup2 in testcase2")
    })
}

运行上面测试:

$go test -v testing_cleanup_test.go
=== RUN   TestCase1
=== RUN   TestCase1/A=1
    TestCase1/A=1: testing_cleanup_test.go:8: subtest1 in testcase1
=== RUN   TestCase1/A=2
    TestCase1/A=2: testing_cleanup_test.go:12: subtest2 in testcase1
    TestCase1: testing_cleanup_test.go:18: cleanup2 in testcase1
    TestCase1: testing_cleanup_test.go:15: cleanup1 in testcase1
--- PASS: TestCase1 (0.00s)
    --- PASS: TestCase1/A=1 (0.00s)
    --- PASS: TestCase1/A=2 (0.00s)
=== RUN   TestCase2
    TestCase2: testing_cleanup_test.go:27: cleanup2 in testcase2
    TestCase2: testing_cleanup_test.go:24: cleanup1 in testcase2
--- PASS: TestCase2 (0.00s)
PASS
ok      command-line-arguments    0.005s

我们看到:

  • Cleanup方法运行于所有测试以及其子测试完成之后。

  • Cleanup方法类似于defer,先注册的cleanup函数后执行(比如上面例子中各个case的cleanup1和cleanup2)。

在拥有Cleanup方法前,我们经常像下面这样做:

// go1.14-examples/old_testing_cleanup_test.go
package main

import "testing"

func setup(t *testing.T) func() {
    t.Logf("setup before test")
    return func() {
        t.Logf("teardown/cleanup after test")
    }
}

func TestCase1(t *testing.T) {
    f := setup(t)
    defer f()
    t.Logf("test the testcase")
}

运行上面测试:

$go test -v old_testing_cleanup_test.go
=== RUN   TestCase1
    TestCase1: old_testing_cleanup_test.go:6: setup before test
    TestCase1: old_testing_cleanup_test.go:15: test the testcase
    TestCase1: old_testing_cleanup_test.go:8: teardown/cleanup after test
--- PASS: TestCase1 (0.00s)
PASS
ok      command-line-arguments    0.005s

有了Cleanup方法后,我们就不需要再像上面那样单独编写一个返回cleanup函数的setup函数了。

此次Go 1.14还将对unicode标准的支持从unicode 11 升级到 unicode 12 ,共增加了554个新字符。

六. 其他

超强的可移植性是Go的一个知名标签,在新平台支持方面,Go向来是“急先锋”。Go 1.14为64bit RISC-V提供了在linux上的实验性支持(GOOS=linux, GOARCH=riscv64)。

rust语言已经通过cargo-fuzz从工具层面为fuzz test提供了基础支持。Go 1.14也在这方面做出了努力,并且Go已经在向将fuzz test变成Go test的一等公民而努力。

七. 小结

Go 1.14的详细变更说明在这里可以查看。整个版本的milestone对应的issue集合在这里

不过目前Go 1.14在特定版本linux内核上会出现crash的问题,当然这个问题源于这些内核的一个已知bug。在这个issue中有关于这个问题的详细说明,涉及到的Linux内核版本包括:5.2.x, 5.3.0-5.3.14, 5.4.0-5.4.1。
本篇博客涉及的代码在这里可以下载。


我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网上线了,感谢小伙伴们学习支持!

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/
smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

微博:https://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats