标签 Compiler 下的文章

Go 1.8中值得关注的几个变化

在已经过去的2016年Go语言继在2009年之后再次成为编程语言界的明星- 问鼎TIOBE 2016年度语言。这与Go team、Go community和全世界的Gophers的努力是分不开的。按计划在这个2月份,Go team将正式发布Go 1.8版本(截至目前,Go的最新版本是Go 1.8rc3)。在这里我们一起来看一下在Go 1.8版本中都有哪些值得Gopher们关注的变化。

一、语言(Language)

Go 1.8版本依旧坚守Go Team之前的承诺,即Go1兼容性:使用Go 1.7及以前版本编写的Go代码,理论上都可以通过Go 1.8进行编译并运行。因此在臆想中的Go 2.0变成现实之前,每个Go Release版本在语言这方面的“改变”都会是十分微小的。

1、仅tags不同的两个struct可以相互做显式类型转换

在Go 1.8版本以前,两个struct即便字段个数相同且每个字段类型均一样,但如果某个字段的tag描述不一样,这两个struct相互间也不能做显式类型转换,比如:

//go18-examples/language/structtag.go
package main

import "fmt"

type XmlEventRegRequest struct {
    AppID     string `xml:"appid"`
    NeedReply int    `xml:"Reply,omitempty"`
}

type JsonEventRegRequest struct {
    AppID     string `json:"appid"`
    NeedReply int    `json:"reply,omitempty"`
}

func convert(in *XmlEventRegRequest) *JsonEventRegRequest {
    out := &JsonEventRegRequest{}
    *out = (JsonEventRegRequest)(*in)
    return out
}

func main() {
    in := XmlEventRegRequest{
        AppID:     "wx12345678",
        NeedReply: 1,
    }
    out := convert(&in)
    fmt.Println(out)
}

采用Go 1.7.4版本go compiler进行编译,我们会得到如下错误输出:

$go build structtag.go
# command-line-arguments
./structtag.go:17: cannot convert *in (type XmlEventRegRequest) to type JsonEventRegRequest

但在Go 1.8中,gc将忽略tag值的不同,使得显式类型转换成为可能:

$go run structtag.go
&{wx12345678 1}

改变虽小,但带来的便利却不小,否则针对上面代码中的convert,我们只能做逐一字段赋值了。

2、浮点常量的指数部分至少支持16bits长

在Go 1.8版本之前的The Go Programming Language Specificaton中,关于浮点数常量的指数部分的描述如下:

Represent floating-point constants, including the parts of a complex constant, with a mantissa of at least 256 bits and a signed exponent of at least 32 bits.

在Go 1.8版本中,文档中对于浮点数常量指数部分的长度的实现的条件放宽了,由支持最少32bit,放宽到最少支持16bits:

Represent floating-point constants, including the parts of a complex constant, with a mantissa of at least 256 bits and a signed binary exponent of at least 16 bits.

但Go 1.8版本go compiler实际仍然支持至少32bits的指数部分长度,因此这个改变对现存的所有Go源码不会造成影响。

二、标准库(Standard Library)

Go号称是一门”Batteries Included”编程语言。“Batteries Included”指的就是Go语言强大的标准库。使用Go标准库,你可以完成绝大部分你想要的功能,而无需再使用第三方库。Go语言的每次版本更新,都会在标准库环节增加强大的功能、提升性能或是提高使用上的便利性。每次版本更新,标准库也是改动最大的部分。这次也不例外,我们逐一来看。

1、便于slice sort的sort.Slice函数

在Go 1.8之前我们要对一个slice进行sort,需要定义出实现了下面接口的slice type:

//$GOROOT/src/sort.go
... ...
type Interface interface {
    // Len is the number of elements in the collection.
    Len() int
    // Less reports whether the element with
    // index i should sort before the element with index j.
    Less(i, j int) bool
    // Swap swaps the elements with indexes i and j.
    Swap(i, j int)
}

标准库定义了一些应对常见类型slice的sort类型以及对应的函数:

StringSlice -> sort.Strings
IntSlice -> sort.Ints
Float64Slice -> sort.Float64s

但即便如此,对于用户定义的struct或其他自定义类型的slice进行排序仍需定义一个新type,比如下面这个例子中的TiboeIndexByRank:

//go18-examples/stdlib/sort/sortslice-before-go18.go
package main

import (
    "fmt"
    "sort"
)

type Lang struct {
    Name string
    Rank int
}

type TiboeIndexByRank []Lang

func (l TiboeIndexByRank) Len() int           { return len(l) }
func (l TiboeIndexByRank) Less(i, j int) bool { return l[i].Rank < l[j].Rank }
func (l TiboeIndexByRank) Swap(i, j int)      { l[i], l[j] = l[j], l[i] }

func main() {
    langs := []Lang{
        {"rust", 2},
        {"go", 1},
        {"swift", 3},
    }
    sort.Sort(TiboeIndexByRank(langs))
    fmt.Printf("%v\n", langs)
}

$go run sortslice-before-go18.go
[{go 1} {rust 2} {swift 3}]

从上面的例子可以看到,我们要对[]Lang这个slice进行排序,我们就需要为之定义一个专门用于排序的类型:这里是TiboeIndexByRank,并让其实现sort.Interface接口。使用过sort包的gophers们可能都意识到了,我们在为新的slice type实现sort.Interface接口时,那三个方法的Body几乎每次都是一样的。为了使得gopher们在排序slice时编码更为简化和便捷,减少copy&paste,Go 1.8为slice type新增了三个函数:Slice、SliceStable和SliceIsSorted。我们重新用Go 1.8的sort.Slice函数实现上面例子中的排序需求,代码如下:

//go18-examples/stdlib/sort/sortslice-in-go18.go
package main

import (
    "fmt"
    "sort"
)

type Lang struct {
    Name string
    Rank int
}

func main() {
    langs := []Lang{
        {"rust", 2},
        {"go", 1},
        {"swift", 3},
    }
    sort.Slice(langs, func(i, j int) bool { return langs[i].Rank < langs[j].Rank })
    fmt.Printf("%v\n", langs)
}

$go run sortslice-in-go18.go
[{go 1} {rust 2} {swift 3}]

实现sort,需要三要素:Len、Swap和Less。在1.8之前,我们通过实现sort.Interface实现了这三个要素;而在1.8版本里,Slice函数通过reflect获取到swap和length,通过结合闭包实现的less参数让Less要素也具备了。我们从下面sort.Slice的源码可以看出这一点:

// $GOROOT/src/sort/sort.go
... ...
func Slice(slice interface{}, less func(i, j int) bool) {
    rv := reflect.ValueOf(slice)
    swap := reflect.Swapper(slice)
    length := rv.Len()
    quickSort_func(lessSwap{less, swap}, 0, length, maxDepth(length))
}

2、支持HTTP/2 Push

继在Go 1.6版本全面支持HTTP/2之后,Go 1.8又新增了对HTTP/2 Push的支持。HTTP/2是在HTTPS的基础上的下一代HTTP协议,虽然当前HTTPS的应用尚不是十分广泛。而HTTP/2 Push是HTTP/2的一个重要特性,无疑其提出的初衷也仍然是为了改善网络传输性能,提高Web服务的用户侧体验。这里我们可以借用知名网络提供商Cloudflare blog上的一幅示意图来诠释HTTP/2 Push究竟是什么:

img{512x368}

从上图中,我们可以看到:当Browser向Server发起Get page.html请求后,在同一条TCP Connection上,Server主动将style.css和image.png两个资源文件推送(Push)给了Browser。这是由于Server端启用了HTTP/2 Push机制,并预测判断Browser很可能会在接下来发起Get style.css和image.png两个资源的请求。这是一种典型的:“你可能会需要,但即使你不要,我也推给你”的处世哲学^0^。这种机制虽然在一定程度上能改善网络传输性能(减少Client发起Get的次数),但也可能造成带宽的浪费,因为这些主动推送给Browser的资源很可能是Browser所不需要的或是已经在Browser cache中存在的资源。

接下来,我们来看看Go 1.8是如何在net/http包中提供对HTTP/2 Push的支持的。由于HTTP/2是基于HTTPS的,因此我们先使用generate_cert.go生成程序所需的私钥和证书:

// 在go18-examples/stdlib/http2-push目录下,执行:

$go run $GOROOT/src/crypto/tls/generate_cert.go --host 127.0.0.1
2017/01/27 10:58:01 written cert.pem
2017/01/27 10:58:01 written key.pem

支持HTTP/2 Push的server端代码如下:

// go18-examples/stdlib/http2-push/server.go

package main

import (
    "fmt"
    "log"
    "net/http"
)

const mainJS = `document.write('Hello World!');`

func main() {
    http.Handle("/static/", http.StripPrefix("/static/", http.FileServer(http.Dir("./static"))))

    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        if r.URL.Path != "/" {
            http.NotFound(w, r)
            return
        }
        pusher, ok := w.(http.Pusher)
        if ok {
            // If it's a HTTP/2 Server.
            // Push is supported. Try pushing rather than waiting for the browser.
            if err := pusher.Push("/static/img/gopherizeme.png", nil); err != nil {
                log.Printf("Failed to push: %v", err)
            }
        }
        fmt.Fprintf(w, `<html>
<head>
<title>Hello Go 1.8</title>
</head>
<body>
    <img src="/static/img/gopherizeme.png"></img>
</body>
</html>
`)
    })
    log.Fatal(http.ListenAndServeTLS(":8080", "./cert.pem", "./key.pem", nil))
}

运行这段代码,打开Google Chrome浏览器,输入:https://127.0.0.1:8080,忽略浏览器的访问非受信网站的警告,继续浏览你就能看到下面的页面(这里打开了Chrome的“检查”功能):

img{512x368}

从示例图中的“检查”窗口,我们可以看到gopherizeme.png这个image资源就是Server主动推送给客户端的,这样浏览器在Get /后无需再发起一次Get /static/img/gopherizeme.png的请求了。

而这一切的背后,其实是HTTP/2的ResponseWriter实现了Go 1.8新增的http.Pusher interface:

// $GOROOT/src/net/http/http.go

// Pusher is the interface implemented by ResponseWriters that support
// HTTP/2 server push. For more background, see
// https://tools.ietf.org/html/rfc7540#section-8.2.
type Pusher interface {
    ... ...
    Push(target string, opts *PushOptions) error
}

3、支持HTTP Server优雅退出

Go 1.8中增加对HTTP Server优雅退出(gracefullly exit)的支持,对应的新增方法为:

func (srv *Server) Shutdown(ctx context.Context) error

和server.Close在调用时瞬间关闭所有active的Listeners和所有状态为New、Active或idle的connections不同,server.Shutdown首先关闭所有active Listeners和所有处于idle状态的Connections,然后无限等待那些处于active状态的connection变为idle状态后,关闭它们并server退出。如果有一个connection依然处于active状态,那么server将一直block在那里。因此Shutdown接受一个context参数,调用者可以通过context传入一个Shutdown等待的超时时间。一旦超时,Shutdown将直接返回。对于仍然处理active状态的Connection,就任其自生自灭(通常是进程退出后,自动关闭)。通过Shutdown的源码我们也可以看出大致的原理:

// $GOROOT/src/net/http/server.go
... ...
func (srv *Server) Shutdown(ctx context.Context) error {
    atomic.AddInt32(&srv.inShutdown, 1)
    defer atomic.AddInt32(&srv.inShutdown, -1)

    srv.mu.Lock()
    lnerr := srv.closeListenersLocked()
    srv.closeDoneChanLocked()
    srv.mu.Unlock()

    ticker := time.NewTicker(shutdownPollInterval)
    defer ticker.Stop()
    for {
        if srv.closeIdleConns() {
            return lnerr
        }
        select {
        case <-ctx.Done():
            return ctx.Err()
        case <-ticker.C:
        }
    }
}

我们来编写一个例子:

// go18-examples/stdlib/graceful/server.go

import (
    "context"
    "io"
    "log"
    "net/http"
    "os"
    "os/signal"
    "time"
)

func main() {
    exit := make(chan os.Signal)
    signal.Notify(exit, os.Interrupt)

    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        log.Println("Handle a new request:", *r)
        time.Sleep(10 * time.Second)
        log.Println("Handle the request ok!")
        io.WriteString(w, "Finished!")
    })

    srv := &http.Server{
        Addr:    ":8080",
        Handler: http.DefaultServeMux,
    }

    go func() {
        if err := srv.ListenAndServe(); err != nil {
            log.Printf("listen: %s\n", err)
        }
    }()

    <-exit // wait for SIGINT
    log.Println("Shutting down server...")

    // Wait no longer than 30 seconds before halting
    ctx, _ := context.WithTimeout(context.Background(), 30*time.Second)
    err := srv.Shutdown(ctx)

    log.Println("Server gracefully stopped:", err)
}

在上述例子中,我们通过设置Linux Signal的处理函数来拦截Linux Interrupt信号并处理。我们通过context给Shutdown传入30s的超时参数,这样Shutdown在退出之前会给各个Active connections 30s的退出时间。下面分为几种情况run一下这个例子:

a) 当前无active connections

在这种情况下,我们run上述demo,ctrl + C后,上述demo直接退出:

$go run server.go
^C2017/02/02 15:13:16 Shutting down server...
2017/02/02 15:13:16 Server gracefully stopped: <nil>

b) 当前有未处理完的active connections,ctx 超时

为了模拟这一情况,我们修改一下参数。让每个request handler的sleep时间为30s,而Shutdown ctx的超时时间改为10s。我们再来运行这个demo,并通过curl命令连接该server(curl -v http://localhost:8080),待连接成功后,再立即ctrl+c停止Server,待约10s后,我们得到如下日志:

$go run server.go
2017/02/02 15:15:57 Handle a new request: {GET / HTTP/1.1 1 1 map[User-Agent:[curl/7.30.0] Accept:[*/*]] {} <nil> 0 [] false localhost:8080 map[] map[] <nil> map[] [::1]:52590 / <nil> <nil> <nil> 0xc420016700}
^C2017/02/02 15:15:59 Shutting down server...
2017/02/02 15:15:59 listen: http: Server closed
2017/02/02 15:16:09 Server gracefully stopped: context deadline exceeded

c) 当前有未处理完的active connections,ctx超时之前,这些connections处理ok了

我们将上述demo的参数还原,即request handler sleep 10s,而Shutdown ctx超时时间为30s,运行这个Demo后,通过curl命令连接该server,待连接成功后,再立即ctrl+c停止Server。等待约10s后,我们得到如下日志:

$go run server.go
2017/02/02 15:19:56 Handle a new request: {GET / HTTP/1.1 1 1 map[User-Agent:[curl/7.30.0] Accept:[*/*]] {} <nil> 0 [] false localhost:8080 map[] map[] <nil> map[] [::1]:52605 / <nil> <nil> <nil> 0xc420078500}
^C2017/02/02 15:19:59 Shutting down server...
2017/02/02 15:19:59 listen: http: Server closed
2017/02/02 15:20:06 Handle the request ok!
2017/02/02 15:20:06 Server gracefully stopped: <nil>

可以看出,当ctx超时之前,request处理ok,connection关闭。这时不再有active connection和idle connection了,Shutdown成功返回,server立即退出。

4、Mutex Contention Profiling

Go 1.8中runtime新增了对Mutex和RWMutex的profiling(剖析)支持。golang team成员,负责从go user角度去看待go team的work是否满足用户需求的Jaana B. Dogan在其个人站点上写了一篇介绍mutex profiling的文章,这里借用一下其中的Demo:

//go18-examples/stdlib/mutexprofile/mutexprofile.go

package main

import (
    "net/http"
    _ "net/http/pprof"
    "runtime"
    "sync"
)

func main() {
    var mu sync.Mutex
    var items = make(map[int]struct{})

    runtime.SetMutexProfileFraction(5)
    for i := 0; i < 1000*1000; i++ {
        go func(i int) {
            mu.Lock()
            defer mu.Unlock()
            items[i] = struct{}{}
        }(i)
    }

    http.ListenAndServe(":8888", nil)
}

运行该程序后,在浏览器中输入:http://localhost:8888/debug/pprof/mutex,你就可以看到有关该程序的mutex profile(耐心等待一小会儿,因为数据的采样需要一点点时间^0^):

--- mutex:
cycles/second=2000012082
sampling period=5
378803564 776 @ 0x106c4d1 0x13112ab 0x1059991

构建该程序,然后通过下面命令:

go build mutexprofile.go
./mutexprofile
go tool pprof mutexprofile http://localhost:8888/debug/pprof/mutex?debug=1

可以进入pprof交互界面,这个是所有用过go pprof工具gophers们所熟知的:

$go tool pprof mutexprofile http://localhost:8888/debug/pprof/mutex?debug=1
Fetching profile from http://localhost:8888/debug/pprof/mutex?debug=1
Saved profile in /Users/tony/pprof/pprof.mutexprofile.localhost:8888.contentions.delay.003.pb.gz
Entering interactive mode (type "help" for commands)
(pprof) list
Total: 12.98s
ROUTINE ======================== main.main.func1 in /Users/tony/Test/GoToolsProjects/src/github.com/bigwhite/experiments/go18-examples/stdlib/mutexprofile/mutexprofile.go
         0     12.98s (flat, cum)   100% of Total
         .          .     17:            mu.Lock()
         .          .     18:            defer mu.Unlock()
         .          .     19:            items[i] = struct{}{}
         .          .     20:        }(i)
         .          .     21:    }
         .     12.98s     22:
         .          .     23:    http.ListenAndServe(":8888", nil)
         .          .     24:}
ROUTINE ======================== runtime.goexit in /Users/tony/.bin/go18rc2/src/runtime/asm_amd64.s
         0     12.98s (flat, cum)   100% of Total
         .          .   2192:    RET
         .          .   2193:
         .          .   2194:// The top-most function running on a goroutine
         .          .   2195:// returns to goexit+PCQuantum.
         .          .   2196:TEXT runtime·goexit(SB),NOSPLIT,$0-0
         .     12.98s   2197:    BYTE    $0x90    // NOP
         .          .   2198:    CALL    runtime·goexit1(SB)    // does not return
         .          .   2199:    // traceback from goexit1 must hit code range of goexit
         .          .   2200:    BYTE    $0x90    // NOP
         .          .   2201:
         .          .   2202:TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
ROUTINE ======================== sync.(*Mutex).Unlock in /Users/tony/.bin/go18rc2/src/sync/mutex.go
    12.98s     12.98s (flat, cum)   100% of Total
         .          .    121:            return
         .          .    122:        }
         .          .    123:        // Grab the right to wake someone.
         .          .    124:        new = (old - 1<<mutexWaiterShift) | mutexWoken
         .          .    125:        if atomic.CompareAndSwapInt32(&m.state, old, new) {
    12.98s     12.98s    126:            runtime_Semrelease(&m.sema)
         .          .    127:            return
         .          .    128:        }
         .          .    129:        old = m.state
         .          .    130:    }
         .          .    131:}
(pprof) top10
1.29s of 1.29s total (  100%)
      flat  flat%   sum%        cum   cum%
     1.29s   100%   100%      1.29s   100%  sync.(*Mutex).Unlock
         0     0%   100%      1.29s   100%  main.main.func1
         0     0%   100%      1.29s   100%  runtime.goexit

go pprof的另外一个用法就是在go test时,mutexprofile同样支持这一点:

go test -mutexprofile=mutex.out
go tool pprof <test.binary> mutex.out

5、其他重要改动

Go 1.8标准库还有两个值得注意的改动,一个是:crypto/tls,另一个是database/sql。

HTTPS逐渐成为主流的今天,各个编程语言对HTTPS连接的底层加密协议- TLS协议支持的成熟度日益被人们所关注。Go 1.8给广大Gophers们带来了一个更为成熟、性能更好、更为安全的TLS实现,同时也增加了对一些TLS领域最新协议规范的支持。无论你是实现TLS Server端,还是Client端,都将从中获益。

Go 1.8在crypto/tls中提供了基于ChaCha20-Poly1305的cipher suite,其中ChaCha20是一种stream cipher算法;而Poly1305则是一种code authenticator算法。它们共同组成一个TLS suite。使用这个suite,将使得你的web service或站点具有更好的mobile浏览性能,这是因为传统的AES算法实现在没有硬件支持的情况下cost更多。因此,如果你在使用tls时没有指定cipher suite,那么Go 1.8会根据硬件支持情况(是否有AES的硬件支持),来决定是使用ChaCha20还是AES算法。除此之外,crypto/tls还实现了更为安全和高效的X25519密钥交换算法等。

Go 1.4以来,database/sql包的变化很小,但对于该包的feature需求却在与日俱增。终于在Go 1.8这个dev cycle中,govendor的作者Daniel TheophanesBrad Fitzpatrick的“指导”下,开始对database/sql进行“大规模”的改善。在Go 1.8中,借助于context.Context的帮助,database/sql增加了Cancelable Queries、SQL Database Type、Multiple Result Sets、Database ping、Named Parameters和Transaction Isolation等新Features。在GopherAcademy的Advent 2016系列文章中,我们可以看到Daniel Theophanes亲手撰写的文章,文章针对Go 1.8 database/sql包新增的features作了详细解释。

三、Go工具链(Go Toolchain)

在目前市面上的主流编程语言中,如果说Go的工具链在成熟度和完善度方面排第二,那没有语言敢称自己是第一吧^_^。Go 1.8在Go Toolchain上继续做着持续地改进,下面我们来逐一看看。

1、Plugins

Go在1.8版本中提供了对Plugin的初步支持,并且这种支持仅限于Linux。plugin这个术语在不同语言、不同情景上下文中有着不同的含义,那么什么是Go Plugin呢?

Go Plugin为Go程序提供了一种在运行时加载代码、执行代码以改变运行行为的能力,它实质上由两个部分组成:

  • go build -buildmode=plugin xx.go 构建xx.so plugin文件
  • 利用plugin包在运行时动态加载xx.so并执行xx.so中的代码

C程序员看到这里肯定会有似曾相识的赶脚,因为这和传统的动态共享库在概念上十分类似:

go build -buildmode=plugin xx.go 类似于 gcc -o xx.so -shared xx.c
go plugin包 类似于 linux上的dlopen/dlsym或windows上的LoadLibrary

我们来看一个例子!我们先来建立一个名为foo.so的go plugin:

//go18-examples/gotoolchain/plugins/foo.go

package main

import "fmt"

var V int
var v int

func init() {
        V = 17
        v = 23
        fmt.Println("init function in plugin foo")
}

func Foo(in string) string {
        return "Hello, " + in
}

func foo(in string) string {
        return "hello, " + in
}

通过go build命令将foo.go编译为foo.so:

# go build -buildmode=plugin foo.go
# ldd foo.so
    linux-vdso.so.1 =>  (0x00007ffe47f67000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f9d06f4b000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f9d06b82000)
    /lib64/ld-linux-x86-64.so.2 (0x000055c69cfcf000)

# nm foo.so|grep Foo
0000000000150010 t local.plugin/unnamed-69e21ef38d16a3fee5eb7b9e515c27a389067879.Foo
0000000000150010 T plugin/unnamed-69e21ef38d16a3fee5eb7b9e515c27a389067879.Foo
000000000036a0dc D type..namedata.Foo.

我们看到go plugin的.so文件就是一个标准的Linux动态共享库文件,我们可以通过nm命令查看.so中定义的各种符号。接下来,我们来load这个.so,并查找并调用相应符号:

//go18-examples/gotoolchain/plugins/main.go

package main

import (
        "fmt"
        "plugin"
        "time"
)

func init() {
        fmt.Println("init in main program")
}

func loadPlugin(i int) {
        fmt.Println("load plugin #", i)
        var err error
        fmt.Println("before opening the foo.so")

        p, err := plugin.Open("foo.so")
        if err != nil {
                fmt.Println("plugin Open error:", err)
                return
        }
        fmt.Println("after opening the foo.so")

        f, err := p.Lookup("Foo")
        if err != nil {
                fmt.Println("plugin Lookup symbol Foo error:", err)
        } else {
                fmt.Println(f.(func(string) string)("gophers"))
        }

        f, err = p.Lookup("foo")
        if err != nil {
                fmt.Println("plugin Lookup symbol foo error:", err)
        } else {
                fmt.Println(f.(func(string) string)("gophers"))
        }

        v, err := p.Lookup("V")
        if err != nil {
                fmt.Println("plugin Lookup symbol V error:", err)
        } else {
                fmt.Println(*v.(*int))
        }

        v, err = p.Lookup("v")
        if err != nil {
                fmt.Println("plugin Lookup symbol v error:", err)
        } else {
                fmt.Println(*v.(*int))
        }
        fmt.Println("load plugin #", i, "done")
}

func main() {
        var counter int = 1
        for {
                loadPlugin(counter)
                counter++
                time.Sleep(time.Second * 30)
        }
}

执行这个程序:

# go run main.go
init in main program
load plugin # 1
before opening the foo.so
init function in plugin foo
after opening the foo.so
Hello, gophers
plugin Lookup symbol foo error: plugin: symbol foo not found in plugin plugin/unnamed-69e21ef38d16a3fee5eb7b9e515c27a389067879
17
plugin Lookup symbol v error: plugin: symbol v not found in plugin plugin/unnamed-69e21ef38d16a3fee5eb7b9e515c27a389067879
load plugin # 1 done

load plugin # 2
before opening the foo.so
after opening the foo.so
Hello, gophers
plugin Lookup symbol foo error: plugin: symbol foo not found in plugin plugin/unnamed-69e21ef38d16a3fee5eb7b9e515c27a389067879
17
plugin Lookup symbol v error: plugin: symbol v not found in plugin plugin/unnamed-69e21ef38d16a3fee5eb7b9e515c27a389067879
load plugin # 2 done
... ...

我们来分析一下这个执行结果!

a) foo.go中的代码也包含在main package下,但只是当foo.so被第一次加载时,foo.go中的init函数才会被执行;
b) foo.go中的exported function和variable才能被Lookup到,如Foo、V;查找unexported的变量和函数符号将得到error信息,如:“symbol foo not found in plugin”;
c) Lookup返回的是plugin.Symbol类型的值,plugin.Symbol是一个指向plugin中变量或函数的指针;
d) foo.go中的init在后续重复加载中并不会被执行。

注意:plugin.Lookup是goroutine-safe的。

在golang-dev group上,有人曾问过:buildmode=c-shared和buildmode=plugin有何差别?Go team member给出的答案如下:

The difference is mainly on the program that loads the shared library.

For c-shared, we can't assume anything about the host, so the c-shared dynamic library must be self-contained, but for plugin, we know the host program will be a Go program built with the same runtime version, so the toolchain can omit at least the runtime package from the dynamic library, and possibly more if it's certain that some packages are linked into the host program. (This optimization hasn't be implemented yet, but we need the distinction to enable this kind of optimization in the future.)

2、默认的GOPATH

Go team在Go 1.8以及后续版本会更加注重”Go语言的亲民性”,即进一步降低Go的入门使用门槛,让大家更加Happy的使用Go。对于一个Go初学者来说,一上来就进行GOPATH的设置很可能让其感到有些迷惑,甚至有挫折感,就像建立Java开发环境需要设置JAVA_HOME和CLASSPATH一样。Gophers们期望能做到Go的安装即可用。因此Go 1.8就在这方面做出了改进:支持默认的GOPATH。

在Linux/Mac系下,默认的GOPATH为$HOME/go,在Windows下,GOPATH默认路径为:%USERPROFILE%/go。你可以通过下面命令查看到这一结果:

$ go env
GOARCH="amd64"
GOBIN="/home/tonybai/.bin/go18rc3/bin"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="linux"
GOOS="linux"
GOPATH="/home/tonybai/go"
GORACE=""
GOROOT="/home/tonybai/.bin/go18rc3"
GOTOOLDIR="/home/tonybai/.bin/go18rc3/pkg/tool/linux_amd64"
GCCGO="gccgo"
CC="gcc"
GOGCCFLAGS="-fPIC -m64 -pthread -fmessage-length=0 -fdebug-prefix-map=/tmp/go-build313929093=/tmp/go-build -gno-record-gcc-switches"
CXX="g++"
CGO_ENABLED="1"
PKG_CONFIG="pkg-config"
CGO_CFLAGS="-g -O2"
CGO_CPPFLAGS=""
CGO_CXXFLAGS="-g -O2"
CGO_FFLAGS="-g -O2"
CGO_LDFLAGS="-g -O2"

BTW,在Linux/Mac下,默认的GOROOT为/usr/local/go,如果你的Go环境没有安装到这个路径下,在没有设置$GOROOT环境变量的情况下,当你执行go subcommand相关命令时,你会看到如下错误:

$go env
go: cannot find GOROOT directory: /usr/local/go

3、其他变化

Go 1.8删除了Go 1.7中增加的用于关闭ssa新后端的”-ssa=0” compiler flag,并且将ssa backend扩展到所有architecture中,对ssa后端也进一步做了优化。与此同时,为了将来进一步的性能优化打基础,Go 1.8还引入了一个新编译器前端,当然这对于普通Gopher的Go使用并没有什么影响。

Go 1.8还新增go bug子命令,该命令会自动使用默认浏览器打开new issue页面,并将采集到的issue提交者的系统信息填入issue模板,以帮助gopher提交符合要求的go issue,下面是go bug打开的issue page的图示:

img{512x368}

四、性能变化(Performance Improvement)

无论是Gotoolchain、还是runtime(包括GC)的性能,一直都是Go team重点关注的领域。本次Go 1.8依旧给广大Gophers们带来了性能提升方面的惊喜。

首先,Go SSA后端扩展到所有architecture和新编译器前端的引入,将会给除X86-64之外架构上运行的Go代码带来约20-30%的运行性能提升。对于x86-64,虽然Go 1.7就已经开启了SSA,但Go 1.8对SSA做了进一步优化,x86-64上的Go代码依旧可能会得到10%以内的性能提升。

其次,Go 1.8持续对Go compiler和linker做性能优化,和1.7相比,平均编译链接的性能提升幅度在15%左右。虽然依旧没有达到Go 1.4的性能水准。不过,优化依旧在持续进行中,目标的达成是可期的。

再次,GC在低延迟方面的优化给了我们最大的惊喜。在Go 1.8中,由于消除了GC的“stop-the-world stack re-scanning”,使得GC STW(stop-the-world)的时间通常低于100微秒,甚至经常低于10微秒。当然这或多或少是以牺牲“吞吐”作为代价的。因此在Go 1.9中,GC的改进将持续进行,会在吞吐和低延迟上做一个很好的平衡。

最后,defer的性能消耗在Go 1.8中下降了一半,与此下降幅度相同的还有通过cgo在go中调用C代码的性能消耗。

五、小结兼参考资料

Go 1.8的变化不仅仅是以上这些,更多变化以及详细的描述请参考下面参考资料中的“Go 1.8 Release Notes”:

以上demo中的代码在这里可以找到。

Go 1.4中值得关注的几个变化

在Go 1.3发布半年过去后,Go核心项目组于本月初发布了Go 1.4 Beta1版本。这个版本的几个变化点虽然不是革命性的,但对后续Go语言的发展来说,打下了基础,定下了基调。这里就几个值得关注的变化点结合Go 1.4代码进行一些简单描述,希望大家能对Go 1.4有个感性的认知和了解。

Go 1.4依旧保持了Go 1兼容性的承诺,你的已有代码几乎无需任何改动就可以通过Go 1.4的编译并运行。(以下是我的测试环境:go version go1.3 darwin/amd64 vs. go version go1.4beta1 linux/amd64

一、语言变化

1、For-range循环

在Go 1.3及以前,for-range循环具有两种形式:

for k, v := range x {
    …
}

for k := range x {
    …
}

问题:如果我们不关心循环中的值,我们只关心循环本身,我们仍然要提供一个变量,或用_占位。

for _ = range x {
    …
}

下面这样的语法在Go 1.3及以前是无法编译通过的:

for range x {
    …
}

不过Go 1.4支持这种形式的语法,它使得代码更加clean,虽然它可能很少会被使用到。

例子:

//testforrange.go

package main

import "fmt"

func main() {
        var a [5]int = [5]int{2, 3, 4, 5, 6}
        for k, v := range a {
                fmt.Println(k, v)
        }

        for k := range a {
                fmt.Println(k)
        }

        for _ = range a {
                fmt.Println("print without care about the key and value")
        }

        for range a {
                fmt.Println("new syntax – print without care about the key and value")
        }
}

Go 1.3编译出错:

$go run testforrange.go
# command-line-arguments
./testforrange.go:19: syntax error: unexpected range, expecting {
./testforrange.go:22: syntax error: unexpected }

Go 1.4编译成功并输出正确结果:

0 2
1 3
2 4
3 5
4 6
0
1
2
3
4
print without care about the key and value
print without care about the key and value
print without care about the key and value
print without care about the key and value
print without care about the key and value
new syntax – print without care about the key and value
new syntax – print without care about the key and value
new syntax – print without care about the key and value
new syntax – print without care about the key and value
new syntax – print without care about the key and value

2、通过**T调用方法

下面这个例子:

package main

import "fmt"

type T int

func (T) M() {
        fmt.Println("Call M")
}

var x **T

func main() {
        x.M()
}

按照Go 1.4官方release note的说法,1.3版本及以前的gc和gccgo都会正常接受这种调用方式。但Go 1规范只允许自动在x前面加一个解引用,而不是两个,因此这个是有悖于定义的。Go 1.4强制禁止这种调用。

不过根据我实际的测试,Go 1.3和Go 1.4针对上面代码都会出现同样地编译错误。

$go run testdoubledeferpointer.go
# command-line-arguments
./testdoubledeferpointer.go:14: calling method M with receiver x (type **T) requires explicit dereference

二、支持的操作系统以及处理器体系架构的变化

这个无法演示。不过一个主要的变化就是Go 1.4可以构建出运行于ARM处理器Android操作系统上的二进制程序了。使用go.mobile库中的支持包,Go 1.4也可以构建出可以被Android应用加载的.so库。

三、兼容性变化

人们通过unsafe包并利用Go的内部实现细节和数据的机器表示形式来绕过Go语言类型系统的约束。Go的设计者们认为这是对Go兼容性规范的 不尊重,在Go 1.4中,Go核心组正式宣布unsafe code不再保证其兼容性。这次Go 1.4并没有针对此做任何代码变动,只是一个clarification而已。

四、实现和工具的变化

1、运行时(runtime)的变化

Go 1.3及以前版本,Go语言的runtime(垃圾收集、并发支持、interface管理、maps、slices、strings等)主要由C语言和 少量汇编语言实现的。在1.4版本中,很多代码被替换成了用Go自身实现,这样垃圾回收器可以扫描程序运行时栈,获取活跃变量的精确信息。这个变 化很大,但对程序应该没有语义上的影响。

这次重写使得垃圾回收器变得更加精确,这意味着它知道所有程序中活跃指针的位置。这些相关改变将减小heap的大小,总体上大约减少 10%~30%。

这样做的结果是栈也不再需要是分段的(segmented)了,消除了“hot split”的问题。如果一个stack到达了使用上限,Go将分配一个新的更大的stack,相应goroutine中的所有活跃的栈帧将被复制到新 stack上,所有指向栈的指针将被更新。在某些场景下,其性能将会变得显著提升,并且这样修改后,其性能更具可预测性。

连续栈(contiguous stacks)的使用使得栈的初始Size可以更小,在Go 1.4中goroutine的初始栈大小从8192字节缩小为2048字节。(正式发布时也许会改为4096)。

interface值类型的实现也做了调整。在之前的发布版中,interface值内部用一个字(word)来承载,要么是一个指针,要么是一 个单字(one-word)大小的纯量值,这取决于interface值变量中具体存储的是什么对象。这个实现会给垃圾收集器带来诸多困难,因此 在Go 1.4版本中interface值内部就用指针表示。在运行的程序中,绝大多数interface值都是指针,因此这个影响很小。不过那些在 interface值类型变量中存储整型值的程序将会有更多的内存分配。

2、gccgo的状态

Gcc和Go两个项目的发布计划不是同步的,GCC 4.9版本包含了实现了1.2规范的gccgo,下一个发布版gcc 5.0将可能包含实现了1.4规范的gccgo。

3、internal包(内部包)

Go以package为基本逻辑单元组织代码。Go 1.3及之前版本的Go语言实际上只支持两种形式Package内符号的可见性:本地的(unexported)和全局的(exported)。有些时候 我们希望一些包并非能被所有外部包所导入,但却能被其“临近”的包所导入和访问。但之前的Go语言不具备这种特性。Go 1.4引入了"internal"包的概念,导入这种internal包的规则约束如下:

如果导入代码本身不在以"internal"目录的父目录为root的目录树中,那么 不允许其导入路径(import path)中包含internal元素。

例如:
    – a/b/c/internal/d/e/f只可以被以a/b/c为根的目录树下的代码导入,不能被a/b/g下的代码导入。
    – $GOROOT/src/pkg/internal/xxx只能被标准库($GOROOT/src)中的代码所导入。(注:Go 1.4 取消了$GOROOT/src/pkg,标准库都移到$GOROOT/src下了)。
    – $GOROOT/src/pkg/net/http/internal只能被net/http和net/http/*的包所导入
    – $GOPATH/src/mypkg/internal/foo只能被$GOPATH/src/mypkg包的代码所导入

对于Go 1.4该规则首先强制应用于$GOROOT下。Go 1.5将扩展应用到$GOPATH下。

4、权威导入路径(import paths)

我们经常使用托管在公共代码托管服务中的代码,诸如github.com,这意味着包导入路径包含托管服务名,比如github.com/rsc /pdf。一些场景下为了不破坏用户代码,我们用rsc.io/pdf,屏蔽底层具体哪家托管服务,比如rso.io/pdf的背后可能是 github.com也可能是bitbucket。但这样会引入一个问题,那就是不经意间我们为一个包生成了两个合法的导入路径。如果一个程序中 使用了这两个合法路径,一旦某个路径没有被识别出有更新,或者将包迁移到另外一个不同的托管公共服务下去时,使用旧导入路径包的程序就会报错。

Go 1.4引入一个包字句的注释,用于标识这个包的权威导入路径。如果使用的导入的路径不是权威路径,go命令会拒绝编译。语法很简单:

package pdf // import "rsc.io/pdf"

如果pdf包使用了权威导入路径注释,那么那些尝试使用github.com/rsc/pdf导入路径的程序将会被go编译器拒绝编译。

这个权威导入路径检查是在编译期进行的,而不是下载阶段。

我们举个例子:

我们的包foo以前是放在github.com/bigwhite/foo下面的,后来主托管站换成了tonybai.com/foo,最新的 foo包的代码:

package foo // import "tonybai.com/foo"

import "fmt"

func Echo(a string) {
        fmt.Println("Foo:, a)
}

某个应用通过旧路径github.com/bigwhite/foo导入了该包:

//testcanonicalimportpath.go
package main

import "github.com/bigwhite/foo"

func main() {
        foo.Echo("Hello!")
}

我们编译该go文件,得到以下结果:

code in directory /home/tonybai/Test/Go/src/github.com/bigwhite/foo expects import "tonybai.com/foo"

5、go generate子命令

go 1.4中go工具集合新引入一个子命令:go generate,用于在编译前自动化生成某类代码。例如在.y上运行yacc编译器生成实现该语法的.go源文件。或是使用stringer工 具自动为常量生成String方法。这个命令并非由go tools(build, get等)自动执行,而必须显式执行。

不过我简单测试了一下,似乎这个命令设计文档中的:

// +build generate

并不好用啊。即便将其作为generate directive放入go源文件,该文件依旧会被go编译器当做正常go文件编译。Go 1.4标准库中使用go generate directive的有三个地方:

strconv/quote.go://go:generate go run makeisprint.go -output isprint.go
time/zoneinfo_windows.go://go:generate go run genzabbrs.go -output zoneinfo_abbrs_windows.go
unicode/letter.go://go:generate go run maketables.go -tables=all -output tables.go

通过go generate来实现泛型(generics)似乎不那么优雅啊。虽然设计者并非将其作为Go泛型的实现^_^。

6、源码布局变化

在Go自身源码库($GOROOT下)中,包的源码放在src/pkg中,这样做与其他库不同,包括Go自己的子库,比如go.tools。因此在Go 1.4中,pkg这一层目录树将被去除,比如fmt包的源码曾经放在src/pkg/fmt下,现在则放在src/fmt下。

五、性能

绝大多数程序使用1.4编译后的运行速度会与1.3的一致或略有提升,有些可能也会变得慢些。这次修改的较多,很难准确预测。

这次许多runtime的代码由C变为Go,这将导致一些heap大小有所缩减。另外这样做后有利于Go编译器的优化,诸如内联,会带来性能上的小幅提升。

垃圾回收器一方面得到了加速,使得重度依赖垃圾收集的程序得到可衡量的提升。但另外一方面,新的write barrier又引起了性能下降。提升和下降的量的多少取决于程序的行为。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats