标签 开源 下的文章

Ian Lance Taylor:Go泛型使用的一般准则

本文永久链接 – https://tonybai.com/2021/11/07/using-generics-in-go

在近期Google Open Source LiveGo Day 2021环节Go泛型的主要设计者Ian Lance Taylor做了Using Generics in Go的简短演讲(国内地址在这里)。这篇演讲的重点不是即将于Go 1.18版本降临的Go泛型的语法细节,而是介绍目前Go核心团队在设计、实现以及内部实践Go泛型的过程中积累的一些实践经验。Ian将这些经验总结成了这么一段小视频,旨在Go泛型落地之前,为Go社区提供一些Go泛型使用的通用指导原则。这里将演讲内容整理出来,供大家参考。

我们将于2022年2月的Go 1.18版本中提供泛型。

什么是泛型?

泛型可以让你先来编写数据结构和函数,然后在使用时指定其中的类型。当然,当前Go语言中的函数也有形式参数(parameter)。但有了泛型后,函数可以支持一类新的形式参数(parameter),这类形式参数被称为“类型参数(type parameter)”。当前不支持任何参数的类型也可以拥有自己的类型参数。带有类型参数的函数与类型可以通过类型实参(type argument)进行实例化。对于类型参数,我们会用“实例化”而不是调用(call),因为整个操作发生在编译阶段,而不是运行阶段。

类型参数定义了约束(constraints),这些约束限制了允许的类型实参集合,这与普通形参通过类型限制允许的实参集合类似。比如下面这个例子:

看看MapKeys这个函数,它接受一个map类型形参,返回一个包含该map所有key的切片。在Go中,我们很容易这对特定的map类型实现这个函数。上面的例子就是一个针对map[string]int类型形参的实现。但对你要使用的特定map类型,你需要编写一个该函数的不同副本,或者你也可以通过标准库的reflect(反射包)来实现这个函数。但后者实现起来很笨拙并且性能相对来说也不高。使用reflect包来实现非常复杂,这里我就不举例了。

或者,你用类型参数来实现它:

使用类型参数,你只需要实现一遍这个函数,它便可以支持所有map类型,并且编译器可以对传入的参数进行充分的类型检查。这里类型参数命名为K和V。而之前例子中类型为map[string]int的普通形参m在这个例子中的类型为map[K]V。类型参数K是map的key的类型,它应该是可比较的(comparable)。在例子代码中,我们通过为K增加表述这一要求的约束。你也可以将其视为类型参数的元类型(meta type)。它就是是一个预声明的约束comparable。类型参数V可以使任意类型,所以它的约束是预声明的约束any,该约束顾名思义,意味着V可以是任意类型。函数体与原先一样,除了变量s的类型变为了元素类型为K的切片类型,而不再是元素类型为字符串的切片了。

泛型这个新语法特性还有很多语法细节,但我在这里不会详说。重要的是你知道函数可以拥有类型参数了,另外虽然这个例子没有展示,但实际上类型本身也可以有类型参数。你可以通过https://golang.org/s/generics-proposal这个链接页面了解关于泛型特性的更多细节。

什么情况适合使用泛型

我今天要谈的不是什么是泛型或如何使用泛型,我要谈的是什么情况下适合使用泛型以及什么情况下不适合使用泛型。更明确来说,我在这里将给出一些通用的指导建议,但它们不是不可违反的硬性规定。具体情况,你自己来判断。如果你不能确定,你可以参考下面我要讲解的内容。

首先,我们先来说说Go编程的一般指导规则。我们通过编写代码来编写Go程序,而不是通过定义类型。当涉及泛型时,如果你编写Go代码时,总是在尝试定义类型参数的约束,那你可能走错路了。你应该从编写函数开始,如果你明确了类型参数会有用,那么后续为函数添加类型参数非常容易。

让我们看一下什么情况下类型参数很有用。

类型参数的一种有用的情况是当编写的函数的操作元素的类型为slice、map、channel等特定类型时。如果一个函数接受这些类型的形参,并且函数代码没有对参数的元素类型作出任何假设,那么使用类型参数可能会非常有用。例如,我们之前看到的MapKeys函数。那个函数返回map中所有key组成的切片。函数对Map key的类型没有做任何假设,这让MapKeys函数成为使用类型参数的一个很好的候选者。正如我之前提到过的,此类使用类型参数的函数的另外一个替代方案通常是使用反射(reflection)。那是一个更笨拙的编程模型,并且它无法进行静态类型检查,运行起来也更慢。

另一个相似的适合使用类型参数的情况是编写通用数据结构。所谓的通用数据结构,我指的是像切片或map,但Go语言没有提供原生支持的类型。比如一个链表或一个二叉树。今天,需要这类数据结构的程序会使用特定的元素类型实现它们,或使用接口类型(interface{})实现。使用类型参数替换特定元素类型可以实现一个更通用的数据结构,这个通用的数据结构将可以被其他程序所复用。用类型参数替换接口类型通常也会让数据存储的更为高效。在一些场合,使用类型参数替代接口类型意味着代码可以避免进行类型断言(type assertion),并且在编译阶段还可以进行全面的类型静态检查。比如下面这个例子:

这是使用了类型参数的二叉树结构的一个可能实现。这是一个类型使用类型参数的例子。树中每个叶子节点(leaf)都包含一个类型参数T类型的值。当我们用某个具体类型实参对这个树结构进行实例化时,类型实参的值将直接存储在叶子节点中,它们不会被存储为interface类型的值。下面是这个树类型的一个方法实现:

无需过于关注代码的实现细节或代码的风格,重点在于这是一个类型参数合理使用的示例,因为这个树结构以及上述方法的实现代码多是与元素类型T无关的。这个数据结构的确需要知道如何比较元素类型T的值,它使用一个传入的比较函数来进行元素的比较。你可以看到在上面代码的第四行,它调用了bt.cmp函数。除此之外,类型参数没有任何其他作用。

这个二叉树的例子为我们展示了另外一条一般原则:当你需要使用像比较函数这样的功能时,最好使用函数而不是方法。我们本可以将这个二叉树结构定义为其元素类型需要实现一个compare方法或less方法,我们可以通过定义一个需要compare或less方法的约束来实现。这就意味着任何用来实例化这个树结构的类型实参必须包含这样一个方法。但是这就意味着任何想用一个简单类型int来实例化这个树结构的开发者都必须定义一个带有compare方法的自定义int类型。同时这样意味着任何想用自定义类型实例化这个树结构的开发者也都要为其自定义的类型定一个compare方法,即便这本不需要。

如果我们像上面示例中代码那样,定义一个接受一个函数的树结构,那么传入一个期望的compare函数十分容易。并且如果元素恰好拥有compare方法,我们可以简单的以element.compare形式传入method expression来作为比较函数即可。换句话说,将方法转换为函数比向一个类型添加一个方法要容易的多。因此,对于通用数据结构,最好使用函数,而不是编写一个需要方法的约束。

另外一个类型参数有用的情况是当不同类型需要实现一些通用方法,并且不同类型的方法实现看起来都相同。比如考虑一下标准库sort包的sort.Interface,它需要实现它的类型实现三个方法:Len、Swap和Less。下面这个例子展示了一个sliceFn,一个为任意类型实现sort.Interface而定义的泛型类型:

对于任意slice类型,Len与Swap方法的实现都相同。Less方法需要一个比较函数,这就是sliceFn名字中Fn部分的功能,和我们在之前树结构例子中一样,当我们创建一个sliceFn时,我们传入一个函数。下面的代码演示了如何使用sliceFn对任意切片进行排序:

这里,对于任何slice类型,我们都使用类型参数去实现sort.Interface的方法。类型参数非常适合这个例子,因为对于所有切片类型来说,这些方法的实现都相同。

现在我应该说一下:Go 1.18版本很大可能会包含一个使用比较函数做切片排序的通用函数,并且这个通用函数很大可能不会使用sort.Interface,但即便这个示例今后可能没有用处,但其观点仍然是对的。

当你需要实现的相关类型的方法看起来都一样时,使用类型参数是合理的。

什么情况不宜使用泛型

现在让我们来讨论这个问题的另一面:什么情况不宜使用泛型。

什么情况下,使用类型参数不是一个好主意呢?

Go拥有interface类型。接口类型已经支持了一定程度上的通用机制。例如:广泛使用的io.Reader接口提供了一种从任意含有信息的值,或生产类似随机数生成器的地方读取数据。

如果你对于某一类型的值所要做的全部操作仅仅是在那个值上调用一个方法,请使用interface类型,而不是类型参数。io.Reader易读且高效。没有必要使用一个类型参数像调用Read方法那样去从一个值中读取数据。例如,不要像下面这样编写代码:

我们可以不用类型参数实现相同功能的函数。省略类型参数将使得函数更简洁易读易实现,并且运行时间可能是相同的。

最后强调一点,开发者(尤其是那些熟悉C++的)可能会假设,使用特定类型实参实例化的函数往往比使用虚拟方法的代码运行稍快。我说虚拟方法,是因为C++使用的是虚拟方法。就本次演讲而言,C++所说的虚拟方法类似于Go语言中的接口方法。当然在Go语言中,具体的细节还取决于编译器。

与使用接口方法的类似代码相比,使用类型实参实例化的函数很有可能并不是更快。因此,不要出于效率考虑使用类型参数。使用类型参数的原因是它们让你的代码更清晰。如果是它们让你的代码变得更复杂,就不要使用

现在回到类型参数与接口类型之间的选择。当不同的类型使用一个共同的方法时,考虑该方法的实现。前面我们说过,如果一个方法的实现对于所有类型都相同,则使用类型参数;相反,如果每种类型的实现各不相同,请使用不同的方法,不要使用类型参数。例如,从文件读取的实现与从随机数生成器读取的实现完全不同。这意味着我们要编写两种不同的读取方法,并且两种方法都不应使用类型参数。

虽然我今天仅提到了几次,Go也有反射。反射确实允许进行某种通用编程,它允许你编写适用于任何类型的代码。如果某些操作必须支持甚至没有方法的类型,那么接口类型便不起作用。并且如果每种类型的操作都不同,请使用反射。这方面的一个典型例子是json编码包。我们不要求我们编码的每个类型都支持MarshalJSON方法,因此我们不能使用接口类型。但是对整数类型进行编码与对结构类型进行编码完全不同,因此我们不应该使用类型参数。json包使用的是反射。相关代码太复杂,这里就不展示了。如果你有兴趣,可以查看go源码。

一个简单的准则

最后,整个talk可总结为一条简单的准则,如果你发现自己多次编写完全相同的代码(样板代码),各个版本之间唯一的差别是代码使用不同的类型,请考虑是否可以使用类型参数。换一种表达方法,在你注意到自己要多次编写完全相同的代码之前,应该避免使用类型参数。

感谢聆听。希望你在泛型特性推出后,能谨慎合理的使用go泛型。


“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强,欢迎大家加入!

img{512x368}

img{512x368}
img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

一文告诉你如何用好uber开源的zap日志库

本文永久链接 – https://tonybai.com/2021/07/14/uber-zap-advanced-usage

1. 引子

日志在后端系统中有着重要的地位,通过日志不仅可以直观看到程序的当前运行状态,更重要的是日志可以在程序发生问题时为开发人员提供线索。

在Go生态中,logrus可能是使用最多的Go日志库,它不仅提供结构化的日志,更重要的是与标准库log包在api层面兼容。在性能不敏感的领域,logrus确实是不二之选。

但在性能敏感的领域和场景下,logrus便不那么香了,出镜更多的是大厂uber开源的名为zap的日志库。之所以在这些场景下zap更香,虽与其以高性能著称不无关系,但其背后的大厂uber背书也是极其重要的。uber大厂有着太多性能和延迟敏感的场景,其生产环境现存数千个Go语言开发的微服务,这些微服务估计大多使用的都是zap,经历过大厂性能敏感场景考验的log库信誉有保障,后续有人持续维护,自然被大家青睐。

关于zap高性能的原理,在网络上已经有不少高质量的资料(参见本文末的参考资料)做过详尽的分析了。zap的主要优化点包括:

  • 避免使用interface{}带来的开销(拆装箱、对象逃逸到堆上
  • 坚决不用反射,每个要输出的字段(field)在传入时都携带类型信息(这虽然降低了开发者使用zap的体验,但相对于其获得的性能提升,这点体验下降似乎也算不得什么):
logger.Info("failed to fetch URL",
    // Structured context as strongly typed Field values.
    zap.String("url", `http://foo.com`),
    zap.Int("attempt", 3),
    zap.Duration("backoff", time.Second),
)
  • 使用sync.Pool减少堆内存分配(针对代表一条完整日志消息的zapcore.Entry),降低对GC压力。

下面是一个简单zap与logrus的性能基准benchmark对比:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/benchmark/log_lib_test.go
package main

import (
    "io"
    "testing"
    "time"

    "github.com/sirupsen/logrus"
    "go.uber.org/zap"
    "go.uber.org/zap/zapcore"
)

func BenchmarkLogrus(b *testing.B) {
    b.ReportAllocs()
    b.StopTimer()
    logger := logrus.New()
    logger.SetOutput(io.Discard)
    b.StartTimer()
    for i := 0; i < b.N; i++ {
        logger.WithFields(logrus.Fields{
            "url":     "http://foo.com",
            "attempt": 3,
            "backoff": time.Second,
        }).Info("failed to fetch URL")
    }
}

func BenchmarkZap(b *testing.B) {
    b.ReportAllocs()
    b.StopTimer()
    cfg := zap.NewProductionConfig()
    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(io.Discard),
        zapcore.InfoLevel,
    )
    logger := zap.New(core)
    b.StartTimer()
    for i := 0; i < b.N; i++ {
        logger.Info("failed to fetch URL",
            zap.String("url", `http://foo.com`),
            zap.Int("attempt", 3),
            zap.Duration("backoff", time.Second),
        )
    }
}

在上面的基准测试中,我们使用logrus和zap分别向io.Discard写入相同内容的日志,基准测试的运行结果如下:

$go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/zap-usage
cpu: Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz
BenchmarkLogrus-8         281667          4001 ns/op        1365 B/op         25 allocs/op
BenchmarkZap-8           1319922           901.1 ns/op       192 B/op          1 allocs/op
PASS
ok      github.com/bigwhite/zap-usage   3.296s

我们看到zap的写日志性能是logrus的4倍,且每op仅一次内存分配,相比之下,logrus在性能和内存分配方面的确逊色不少。

有优点,就有不足。前面也说过,虽然zap在性能方面一骑绝尘,但是在使用体验方面却给开发者留下“阴影”。就比如在上面的性能基准测试中,考虑测试过程中的日志输出,我们没有采用默认的向stdout或stderr写入,而是将output设置为io.Discard。这样的改变在logrus中仅需一行:

logger.SetOutput(io.Discard)

而在zap项目的官方首页中,我居然没有找到进行这一变更的操作方法,在一阵查询和阅读后,才找到正确的方法(注:方法不唯一):

cfg := zap.NewProductionConfig()
core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(io.Discard),
        zapcore.InfoLevel,
)
logger := zap.New(core)

上面的logrus和zap在创建写向io.Discard的logger时的方法对比很直观地反映出两者在使用体验上的差异。

那么选择了zap后,我们如何能更好地使用zap以尽量弥合与logrus等log库在体验方面的差距呢?这就是本文想要和大家分享的内容。

2. 对zap进行封装,让其更好用

进入Go世界后,大家使用的第一个log库想必是Go标准库自带的log包,log包可谓是“开箱即用”:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/stdlog/demo1.go 

import "log"

func main() {
    log.Println("this is go standard log package")
}

上面的示例代码直接向标准错误(stderr)输出一行日志内容,而我们居然连一个logger变量都没有创建。即便是将日志写入文件,在log包看来也是十分easy的事情,看下面代码段:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/stdlog/demo2.go 

package main

import (
    "log"
    "os"
)

func main() {
    file, err := os.OpenFile("./demo2.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    log.SetOutput(file)
    log.Println("this is go standard log package")
}

我们仅需要将实现了io.Writer的os.File传给log包的SetOutput函数即可。这种无需创建logger变量而是直接使用包名+函数的方式写日志的方式减少了传递和管理logger变量的复杂性,这种使用者体验是我们对zap进行封装的目标。不过,我们也要做到心里有数:zap是一个通用的log库,我们封装后,只需提供我们所需的特性即可,没有必要再封装成一个像zap一样通用的库。另外用户只需依赖我们封装后的log包,而无需显式依赖zap/zapcore。

下面我们就来建立demo1:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1
$tree demo1
demo1
├── go.mod
├── go.sum
├── main.go
└── pkg
    ├── log
    │   └── log.go
    └── pkg1
        └── pkg1.go

我们对zap的封装在pkg/log/log.go中:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/pkg/log/log.go
package log

import (
    "io"
    "os"

    "go.uber.org/zap"
    "go.uber.org/zap/zapcore"
)

type Level = zapcore.Level

const (
    InfoLevel   Level = zap.InfoLevel   // 0, default level
    WarnLevel   Level = zap.WarnLevel   // 1
    ErrorLevel  Level = zap.ErrorLevel  // 2
    DPanicLevel Level = zap.DPanicLevel // 3, used in development log
    // PanicLevel logs a message, then panics
    PanicLevel Level = zap.PanicLevel // 4
    // FatalLevel logs a message, then calls os.Exit(1).
    FatalLevel Level = zap.FatalLevel // 5
    DebugLevel Level = zap.DebugLevel // -1
)

type Field = zap.Field

func (l *Logger) Debug(msg string, fields ...Field) {
    l.l.Debug(msg, fields...)
}

func (l *Logger) Info(msg string, fields ...Field) {
    l.l.Info(msg, fields...)
}

func (l *Logger) Warn(msg string, fields ...Field) {
    l.l.Warn(msg, fields...)
}

func (l *Logger) Error(msg string, fields ...Field) {
    l.l.Error(msg, fields...)
}
func (l *Logger) DPanic(msg string, fields ...Field) {
    l.l.DPanic(msg, fields...)
}
func (l *Logger) Panic(msg string, fields ...Field) {
    l.l.Panic(msg, fields...)
}
func (l *Logger) Fatal(msg string, fields ...Field) {
    l.l.Fatal(msg, fields...)
}

// function variables for all field types
// in github.com/uber-go/zap/field.go

var (
    Skip        = zap.Skip
    Binary      = zap.Binary
    Bool        = zap.Bool
    Boolp       = zap.Boolp
    ByteString  = zap.ByteString
    ... ...
    Float64     = zap.Float64
    Float64p    = zap.Float64p
    Float32     = zap.Float32
    Float32p    = zap.Float32p
    Durationp   = zap.Durationp
    ... ...
    Any         = zap.Any

    Info   = std.Info
    Warn   = std.Warn
    Error  = std.Error
    DPanic = std.DPanic
    Panic  = std.Panic
    Fatal  = std.Fatal
    Debug  = std.Debug
)

// not safe for concurrent use
func ResetDefault(l *Logger) {
    std = l
    Info = std.Info
    Warn = std.Warn
    Error = std.Error
    DPanic = std.DPanic
    Panic = std.Panic
    Fatal = std.Fatal
    Debug = std.Debug
}

type Logger struct {
    l     *zap.Logger // zap ensure that zap.Logger is safe for concurrent use
    level Level
}

var std = New(os.Stderr, int8(InfoLevel))

func Default() *Logger {
    return std
}

// New create a new logger (not support log rotating).
func New(writer io.Writer, level Level) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    cfg := zap.NewProductionConfig()
    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )
    logger := &Logger{
        l:     zap.New(core),
        level: level,
    }
    return logger
}

func (l *Logger) Sync() error {
    return l.l.Sync()
}

func Sync() error {
    if std != nil {
        return std.Sync()
    }
    return nil
}

在这个封装中,我们有如下几点说明:

  • 参考标准库log包,我们提供包级函数接口,底层是创建的默认Logger: std;
  • 你可以使用New函数创建了自己的Logger变量,但此时只能使用该实例的方法实现log输出,如果期望使用包级函数接口输出log,需要调用ResetDefault替换更新std实例的值,这样后续调用包级函数(Info、Debug)等就会输出到新实例的目标io.Writer中了。不过最好在输出任何日志前调用ResetDefault换掉std;
  • 由于zap在输出log时要告知具体类型,zap封装出了Field以及一些sugar函数(Int、String等),这里为了不暴露zap给用户,我们使用type alias语法定义了我们自己的等价于zap.Field的类型log.Field:
type Field = zap.Field

var (
    Skip        = zap.Skip
    Binary      = zap.Binary
    Bool        = zap.Bool
    Boolp       = zap.Boolp
    ByteString  = zap.ByteString
    ... ...
)
  • 我们使用method value语法将std实例的各个方法以包级函数的形式暴露给用户,简化用户对logger实例的获取:
var (
    Info   = std.Info
    Warn   = std.Warn
    Error  = std.Error
    DPanic = std.DPanic
    Panic  = std.Panic
    Fatal  = std.Fatal
    Debug  = std.Debug
)

下面是我们利用默认std使用包级函数直接输出日志到stderr的示例:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/main.go
package main

import (
    "github.com/bigwhite/zap-usage/pkg/log"
    "github.com/bigwhite/zap-usage/pkg/pkg1"
)

func main() {
    defer log.Sync()
    log.Info("demo1:", log.String("app", "start ok"),
        log.Int("major version", 2))
    pkg1.Foo()
}

在这个main.go中,我们像标准库log包那样直接使用包级函数实现日志输出,同时我们无需创建logger实例,也无需管理和传递logger实例,在log包的另外一个用户pkg1包中,我们同样可以直接使用包级函数输出log:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/pkg/pkg1/pkg1.go

package pkg1

import "github.com/bigwhite/zap-usage/pkg/log"

func Foo() {
    log.Info("call foo", log.String("url", "https://tonybai.com"),
        log.Int("attempt", 3))
}

如果你不想使用默认的std,而是要创建一个写入文件系统文件的logger,我们可以这样处理:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/main_new_logger.go
package main

import (
    "os"

    "github.com/bigwhite/zap-usage/pkg/log"
    "github.com/bigwhite/zap-usage/pkg/pkg1"
)

func main() {
    file, err := os.OpenFile("./demo1.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    logger := log.New(file, log.InfoLevel)
    log.ResetDefault(logger)
    defer log.Sync()
    log.Info("demo1:", log.String("app", "start ok"),
        log.Int("major version", 2))
    pkg1.Foo()
}

我们使用log.New创建一个新的Logger实例,然后通过log.ResetDefault用其替换掉std,这样后续的包级函数调用(log.Info)就会使用新创建的Logger实例了。

3. 自定义encoder

运行上面的demo1,我们会得到类似于下面格式的日志内容:

{"level":"info","ts":1625954037.630399,"msg":"demo1:","app":"start ok","major version":2}
{"level":"info","ts":1625954037.630462,"msg":"call foo","url":"https://tonybai.com","attempt":3}

我们可以定制zap的输出内容格式。

在定制之前,我们先来看看zap的内部结构:


图来自Go: How Zap Package is Optimized(见参考资料)

和其他log库相似,zap也是由创建logger与写log两个关键过程组成。其中zap的核心是名为zapcore.Core抽象,Core是zap定义的一个log接口,正如其名,围绕着这个Core,zap提供上层log对象以及相应的方法(zap.Logger就组合了zapcore.Core),开发者同样可以基于该接口定制自己的log包(比如:前面我们在New函数的实现)。

我们一般通过zapcore.NewCore函数创建一个实现了zapcore.Core的实例,NewCore接收三个参数,也是Core的主要组成部分,它们如下图:

                                 ┌───────────────┐
                                 │               │
                                 │               │
                      ┌─────────►│     Encoder   │
                      │          │               │
                      │          │               │
                      │          └───────────────┘
┌────────────────┐    │
│                ├────┘
│                │               ┌───────────────┐
│                │               │               │
│      Core      ├──────────────►│  WriteSyncer  │
│                │               │               │
│                ├─────┐         │               │
└────────────────┘     │         └───────────────┘
                       │
                       │
                       │         ┌───────────────┐
                       │         │               │
                       └────────►│  LevelEnabler │
                                 │               │
                                 │               │
                                 └───────────────┘
  • Encoder是日志消息的编码器;
  • WriteSyncer是支持Sync方法的io.Writer,含义是日志输出的地方,我们可以很方便的通过zap.AddSync将一个io.Writer转换为支持Sync方法的WriteSyncer;
  • LevelEnabler则是日志级别相关的参数。

由此我们看到要定制日志的输出格式,我们的重点是Encoder。

从大类别上分,zap内置了两类编码器,一个是ConsoleEncoder,另一个是JSONEncoder。ConsoleEncoder更适合人类阅读,而JSONEncoder更适合机器处理。zap提供的两个最常用创建Logger的函数:NewProduction和NewDevelopment则分别使用了JSONEncoder和ConsoleEncoder。两个编码器默认输出的内容对比如下:

// ConsoleEncoder(NewDevelopment创建)
2021-07-11T09:39:04.418+0800    INFO    zap/testzap2.go:12  failed to fetch URL {"url": "localhost:8080", "attempt": 3, "backoff": "1s"}

// JSONEncoder (NewProduction创建)
{"level":"info","ts":1625968332.269727,"caller":"zap/testzap1.go:12","msg":"failed to fetch URL","url":"localhost:8080","attempt":3,"backoff":1}

我们可以看到两者差异巨大!ConsoleEncoder输出的内容跟适合我们阅读,而JSONEncoder输出的结构化日志更适合机器/程序处理。前面我们说了,我们封装的log包不是要做通用log包,我们无需同时支持这两大类Encoder,于是我们在上面的示例选择采用的JSONEncoder:

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )

基于Encoder,我们可以定制的内容有很多,多数开发人员可能都会对日期格式、是否显示此条日志的caller信息等定制感兴趣。

zap库自身也提供了基于功能选项模式的Option接口:

// zap options.go
type Option interface {
    apply(*Logger)
}

func WithCaller(enabled bool) Option {
    return optionFunc(func(log *Logger) {
        log.addCaller = enabled
    })
}

我们的log库如果要提供一定的Encoder定制能力,我们也需要像Field那样通过type alias语法将zap.Option暴露给用户,同时以函数类型变量的形式将zap的部分option导出给用户。至于时间戳,我们选择一种适合我们的格式后可固定下来。下面是demo1的log的基础上增加了一些对encoder的定制功能而形成的demo2 log包:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo2/pkg/log/log.go

var std = New(os.Stderr, InfoLevel, WithCaller(true))

type Option = zap.Option

var (
    WithCaller    = zap.WithCaller
    AddStacktrace = zap.AddStacktrace
)

// New create a new logger (not support log rotating).
func New(writer io.Writer, level Level, opts ...Option) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )
    logger := &Logger{
        l:     zap.New(core, opts...),
        level: level,
    }
    return logger
}

定制后,我们的log包输出的内容就变成了如下这样了:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo2/
$go run main.go
{"level":"info","ts":"2021-07-11T10:45:38.858+0800","caller":"log/log.go:33","msg":"demo1:","app":"start ok"}

4. 写入多log文件

定制完encoder,我们再来看看writeSyncer。nginx想必没人没用过,nginx有两个重要的日志文件:access.log和error.log,前者是正常的访问日志,后者则是报错日志。如果我们也要学习nginx,为业务系统建立两类日志文件,一类类似于access.log,记录正常业务吹的日志,另外一类则类似error.log,记录系统的出错日志,我们该如何设计和实现?有人可能会说,那就建立两个logger呗。没错,这的确是一个方案。但如果我就想使用包级函数来写多个log文件,并且无需传递logger实例呢?zap提供了NewTee这个导出函数就是用来写多个日志文件的。

下面我们就来用demo3来实现这个功能,我们也对外提供一个NewTee的函数,用于创建写多个log文件的logger:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo3/pkg/log/log.go
type LevelEnablerFunc func(lvl Level) bool

type TeeOption struct {
    W   io.Writer
    Lef LevelEnablerFunc
}

func NewTee(tops []TeeOption, opts ...Option) *Logger {
    var cores []zapcore.Core
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }
    for _, top := range tops {
        top := top
        if top.W == nil {
            panic("the writer is nil")
        }         

        lv := zap.LevelEnablerFunc(func(lvl zapcore.Level) bool {
            return top.Lef(Level(lvl))
        })        

        core := zapcore.NewCore(
            zapcore.NewJSONEncoder(cfg.EncoderConfig),
            zapcore.AddSync(top.W),
            lv,
        )
        cores = append(cores, core)
    }

    logger := &Logger{
        l: zap.New(zapcore.NewTee(cores...), opts...),
    }
    return logger
}

我们看到由于多个日志文件可能会根据写入的日志级别选择是否落入文件,于是我们提供了一个TeeOption类型,类型定义中包含一个io.Writer以及一个level enabler func,我们来看一下如何使用这个NewTee函数:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo3/main.go
package main

import (
    "os"

    "github.com/bigwhite/zap-usage/pkg/log"
)

func main() {
    file1, err := os.OpenFile("./access.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    file2, err := os.OpenFile("./error.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }

    var tops = []log.TeeOption{
        {
            W: file1,
            Lef: func(lvl log.Level) bool {
                return lvl <= log.InfoLevel
            },
        },
        {
            W: file2,
            Lef: func(lvl log.Level) bool {
                return lvl > log.InfoLevel
            },
        },
    }

    logger := log.NewTee(tops)
    log.ResetDefault(logger)

    log.Info("demo3:", log.String("app", "start ok"),
        log.Int("major version", 3))
    log.Error("demo3:", log.String("app", "crash"),
        log.Int("reason", -1))

}

我们建立两个TeeOption,分别对应access.log和error.log,前者接受level<=info级别的日志,后者接受level>error级别的日志。我们运行一下该程序:

$go run main.go
$cat access.log
{"level":"info","ts":"2021-07-11T12:09:47.736+0800","msg":"demo3:","app":"start ok","major version":3}
$cat error.log
{"level":"error","ts":"2021-07-11T12:09:47.737+0800","msg":"demo3:","app":"crash","reason":-1}

如我们预期,不同level的日志写入到不同文件中了,而我们只需调用包级函数即可,无需管理和传递不同logger。

5. 让日志文件支持自动rotate(轮转)

如果log写入文件,那么文件迟早会被写满!我们不能坐视不管!业内通用的方案是log rotate(轮转),即当log文件size到达一定大小时,会归档该文件,并重新创建一个新文件继续写入,这个过程对应用是透明无感知的。

而log rotate方案通常有两种,一种是基于logrotate工具的外部方案,一种是log库自身支持轮转。zap库与logrotate工具的兼容性似乎有些问题,zap官方FAQ也推荐第二种方案

不过zap并不是原生支持rotate,而是通过外部包来支持,zap提供了WriteSyncer接口可以方便我们为zap加入rotate功能。目前在支持logrotate方面,natefinch的lumberjack是应用最为官方的包,下面我们来看看如何为demo3的多日志文件增加logrotate:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo4/pkg/log/log.go

type RotateOptions struct {
    MaxSize    int
    MaxAge     int
    MaxBackups int
    Compress   bool
}

type TeeOption struct {
    Filename string
    Ropt     RotateOptions
    Lef      LevelEnablerFunc
}

func NewTeeWithRotate(tops []TeeOption, opts ...Option) *Logger {
    var cores []zapcore.Core
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }

    for _, top := range tops {
        top := top

        lv := zap.LevelEnablerFunc(func(lvl zapcore.Level) bool {
            return top.Lef(Level(lvl))
        })

        w := zapcore.AddSync(&lumberjack.Logger{
            Filename:   top.Filename,
            MaxSize:    top.Ropt.MaxSize,
            MaxBackups: top.Ropt.MaxBackups,
            MaxAge:     top.Ropt.MaxAge,
            Compress:   top.Ropt.Compress,
        })

        core := zapcore.NewCore(
            zapcore.NewJSONEncoder(cfg.EncoderConfig),
            zapcore.AddSync(w),
            lv,
        )
        cores = append(cores, core)
    }

    logger := &Logger{
        l: zap.New(zapcore.NewTee(cores...), opts...),
    }
    return logger
}

我们在TeeOption中加入了RotateOptions(当然这种绑定并非必须),并使用lumberjack.Logger作为io.Writer传给zapcore.AddSync,这样创建出来的logger既有写多日志文件的能力,又让每种日志文件具备了自动rotate的功能。

我们在main中使用该log:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/main.go
package main

import (
    "github.com/bigwhite/zap-usage/pkg/log"
)

func main() {
    var tops = []log.TeeOption{
        {
            Filename: "access.log",
            Ropt: log.RotateOptions{
                MaxSize:    1,
                MaxAge:     1,
                MaxBackups: 3,
                Compress:   true,
            },
            Lef: func(lvl log.Level) bool {
                return lvl <= log.InfoLevel
            },
        },
        {
            Filename: "error.log",
            Ropt: log.RotateOptions{
                MaxSize:    1,
                MaxAge:     1,
                MaxBackups: 3,
                Compress:   true,
            },
            Lef: func(lvl log.Level) bool {
                return lvl > log.InfoLevel
            },
        },
    }

    logger := log.NewTeeWithRotate(tops)
    log.ResetDefault(logger)

    // 为了演示自动rotate效果,这里多次调用log输出
    for i := 0; i < 20000; i++ {
        log.Info("demo3:", log.String("app", "start ok"),
            log.Int("major version", 3))
        log.Error("demo3:", log.String("app", "crash"),
            log.Int("reason", -1))
    }
}

运行上述main包,我们将看到如下输出:

// demo4

$go run main.go
$ls -l
total 3680
drwxr-xr-x  10 tonybai  staff      320  7 11 12:54 ./
drwxr-xr-x   8 tonybai  staff      256  7 11 12:23 ../
-rw-r--r--   1 tonybai  staff     3938  7 11 12:54 access-2021-07-11T04-54-04.697.log.gz
-rw-r--r--   1 tonybai  staff  1011563  7 11 12:54 access.log
-rw-r--r--   1 tonybai  staff     3963  7 11 12:54 error-2021-07-11T04-54-04.708.log.gz
-rw-r--r--   1 tonybai  staff   851580  7 11 12:54 error.log

我们看到access.log和error.log都在size超过1M后完成了一次自动轮转,归档的日志也按照之前的配置(compress)进行了压缩。

6. 小结

本文对zap日志库的使用方法做了深度说明,包括对zap进行封装的一种方法,使得我们可以像标准库log包那样通过包级函数直接输出log而无需管理和传递logger变量;我们可以自定义zap encoder(时间、是否输出caller等);通过NewTee可以创建一次性写入多个日志文件的logger,并且可以通过log level判断是否接受写入;最后,我们让zap日志支持了自动轮转。

如果说有不足,那就是zap不支持动态设置全局logger的日志级别,不过似乎有第三方方案,这里就不深入了,作为遗留问题留给大家了。

本文涉及到的代码可以在这里下载: https://github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage

7. 参考资料

  • Go: How Zap Package is Optimized – https://medium.com/@blanchon.vincent/go-how-zap-package-is-optimized-dbf72ef48f2d
  • 深度 | 从Go高性能日志库zap看如何实现高性能Go组件 – https://mp.weixin.qq.com/s/i0bMh_gLLrdnhAEWlF-xDw

“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats