标签 docker 下的文章

探索Docker默认网络NAT映射的分配与过滤行为

本文永久链接 – https://tonybai.com/2024/12/05/exploring-nat-mapping-assignment-and-filtering-behavior-of-docker-default-network

在《WebRTC第一课:网络架构与NAT工作原理》一文中,我们对WebRTC的网路架构进行说明,了解到了NAT的工作原理、RFC 3489对NAT的四种传统分类以及较新的RFC 4787中按分配行为和过滤行为对NAT行为的分类。

不过,“纸上得来终觉浅,绝知此事要躬行”,在这篇文章中,我打算选取一个具体的NAT实现进行案例研究(Case Study)。在市面上的NAT实现中,Docker容器的网络NAT绝对是最容易获得的一种实现。因此,我们将把Docker默认网络的NAT实现机制作为本篇的研究对象,探索该NAT的分配行为和过滤行为,以确定Docker默认网络的NAT类型。

为了这次探索,我们首选需要构建实验网络环境。

1. 构建实验环境

Docker默认网络使用NAT(网络地址转换)来允许容器访问外部网络。创建容器时,如果未指定网络设置,容器会连接到默认的”bridge”网络,并分配一个内部IP地址(通常在172.17.0.0/16范围内)。Docker在宿主机上创建一个虚拟网桥(docker0),作为容器与外部网络的接口。当容器尝试访问外部网络时,使用源网络地址转换(SNAT),将内部IP和端口转换为宿主机的IP和一个随机高位端口,以便与外部网络通信。Docker通过配置iptables规则来实现这些NAT功能,处理数据包的转发、地址转换和过滤。

基于上述描述,我们用两台主机来构建一个实验环境,拓扑图如下:

从上图可以看到:我们的实验环境有两台主机:192.168.0.124和192.168.0.125。在124上,我们基于docker默认网络启动一个容器,在该容器中放置一个用于NAT打洞验证的nat-hole-puncher程序,该程序通过访问192.168.0.125上的udp-client-addr-display程序在Docker的NAT上留下一个“洞”,然后我们在125上使用nc(natcat)工具验证是否可以通过这个洞向容器发送数据。

我们要确定Docker默认网络NAT的具体类型,需要进行一些测试来观察其行为。具体来说,主要需要关注两个方面:

  • 端口分配行为:观察NAT是如何为内部主机(容器)分配外部端口的。
  • 过滤行为:检查NAT如何处理和过滤入站数据的,是否与源IP、源Port有关等。

接下来,我们来准备一下验证NAT类型需要的两个程序:nat-hole-puncher和udp-client-addr-display。

2. 准备nat-hole-puncher程序和udp-client-addr-display程序

下图描述了nat-hole-puncher、udp-client-addr-display以及nc命令的交互流程:

三者的交互流程在图中已经用文字标记的十分清楚了。

根据该图中的逻辑,我们分别实现一下nat-hole-puncher和udp-client-addr-display。

下面是nat-hole-puncher的源码:

// docker-default-nat/nat-hole-puncher/main.go

package main

import (
    "fmt"
    "net"
    "os"
    "strconv"
)

func main() {
    if len(os.Args) != 5 {
        fmt.Println("Usage: nat-hole-puncher <local_ip> <local_port> <target_ip> <target_port>")
        return
    }

    localIP := os.Args[1]
    localPort := os.Args[2]
    targetIP := os.Args[3]
    targetPort := os.Args[4]

    // 向target_ip:target_port发送数据
    err := sendUDPMessage("Hello, World!", localIP, localPort, targetIP+":"+targetPort)
    if err != nil {
        fmt.Println("Error sending message:", err)
        return
    }
    fmt.Println("sending message to", targetIP+":"+targetPort, "ok")

    // 向target_ip:target_port+1发送数据
    p, _ := strconv.Atoi(targetPort)
    nextTargetPort := fmt.Sprintf("%d", p+1)
    err = sendUDPMessage("Hello, World!", localIP, localPort, targetIP+":"+nextTargetPort)
    if err != nil {
        fmt.Println("Error sending message:", err)
        return
    }
    fmt.Println("sending message to", targetIP+":"+nextTargetPort, "ok")

    // 重新监听local addr
    startUDPReceiver(localIP, localPort)
}

func sendUDPMessage(message, localIP, localPort, target string) error {
    addr, err := net.ResolveUDPAddr("udp", target)
    if err != nil {
        return err
    }

    lport, _ := strconv.Atoi(localPort)
    conn, err := net.DialUDP("udp", &net.UDPAddr{
        IP:   net.ParseIP(localIP),
        Port: lport,
    }, addr)
    if err != nil {
        return err
    }
    defer conn.Close()

    // 发送数据
    _, err = conn.Write([]byte(message))
    if err != nil {
        return err
    }

    return nil
}

func startUDPReceiver(ip, port string) {
    addr, err := net.ResolveUDPAddr("udp", ip+":"+port)
    if err != nil {
        fmt.Println("Error resolving address:", err)
        return
    }

    conn, err := net.ListenUDP("udp", addr)
    if err != nil {
        fmt.Println("Error listening:", err)
        return
    }
    defer conn.Close()
    fmt.Println("listen address:", ip+":"+port, "ok")

    buf := make([]byte, 1024)
    for {
        n, senderAddr, err := conn.ReadFromUDP(buf)
        if err != nil {
            fmt.Println("Error reading:", err)
            return
        }
        fmt.Printf("Received message: %s from %s\n", string(buf[:n]), senderAddr.String())
    }
}

我们将其编译完打到镜像中去,Makefile和Dockerfile如下:

// docker-default-nat/nat-hole-puncher/Makefile

all:
    CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -o nat-hole-puncher main.go
image:
    docker build -t nat-hole-puncher .

// docker-default-nat/nat-hole-puncher/Dockerfile

# 使用 Alpine 作为基础镜像
FROM alpine:latest

# 创建工作目录
WORKDIR /app

# 复制已编译的可执行文件到镜像中
COPY nat-hole-puncher .

# 设置文件权限
RUN chmod +x nat-hole-puncher

执行构建和打镜像命令:

$ make
CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -o nat-hole-puncher main.go
$ make image
docker build -t nat-hole-puncher .
[+] Building 0.7s (9/9) FINISHED                                                                                   docker:default
 => [internal] load .dockerignore                                                                                            0.0s
 => => transferring context: 2B                                                                                              0.0s
 => [internal] load build definition from Dockerfile                                                                         0.0s
 => => transferring dockerfile: 265B                                                                                         0.0s
 => [internal] load metadata for docker.io/library/alpine:latest                                                             0.0s
 => [1/4] FROM docker.io/library/alpine:latest                                                                               0.0s
 => [internal] load build context                                                                                            0.0s
 => => transferring context: 2.70MB                                                                                          0.0s
 => CACHED [2/4] WORKDIR /app                                                                                                0.0s
 => [3/4] COPY nat-hole-puncher .                                                                                            0.2s
 => [4/4] RUN chmod +x nat-hole-puncher                                                                                      0.3s
 => exporting to image                                                                                                       0.1s
 => => exporting layers                                                                                                      0.1s
 => => writing image sha256:fec6c105f36b1acce5e3b0a5fb173f3cac5c700c2b07d1dc0422a5917f934530                                 0.0s
 => => naming to docker.io/library/nat-hole-puncher                                                                          0.0s

接下来,我们再来看看udp-client-addr-display源码:

// docker-default-nat/udp-client-addr-display/main.go
package main

import (
    "fmt"
    "net"
    "os"
    "strconv"
    "sync"
)

func main() {
    if len(os.Args) != 3 {
        fmt.Println("Usage: udp-client-addr-display <local_ip> <local_port>")
        return
    }

    localIP := os.Args[1]
    localPort := os.Args[2]

    var wg sync.WaitGroup
    wg.Add(2)

    go func() {
        defer wg.Done()
        startUDPReceiver(localIP, localPort)
    }()

    go func() {
        defer wg.Done()
        p, _ := strconv.Atoi(localPort)
        nextLocalPort := fmt.Sprintf("%d", p+1)
        startUDPReceiver(localIP, nextLocalPort)
    }()

    wg.Wait()
}

func startUDPReceiver(localIP, localPort string) {
    addr, err := net.ResolveUDPAddr("udp", localIP+":"+localPort)
    if err != nil {
        fmt.Println("Error:", err)
        return
    }

    conn, err := net.ListenUDP("udp", addr)
    if err != nil {
        fmt.Println("Error:", err)
        return
    }
    defer conn.Close()

    buf := make([]byte, 1024)

    n, clientAddr, err := conn.ReadFromUDP(buf)
    if err != nil {
        fmt.Println("Error:", err)
        return
    }

    fmt.Printf("Received message: %s from %s\n", string(buf[:n]), clientAddr.String())
}

现在两个程序都就绪了,接下来我们就开始我们的探索。

3. 探索步骤

我们先在192.168.0.125上启动udp-client-addr-display,监听6000和6001 UDP端口:

// 在192.168.0.125上执行

$./udp-client-addr-display 192.168.0.125 6000

然后在192.168.0.124上创建client1容器:

// 在192.168.0.124上执行
$docker run -d --name client1 nat-hole-puncher:latest sleep infinity
eeebc0fbe3c7d56e7f43cd5af19a18e65a703b3f987115c521e81bb8cdc6c0be

获取client1容器的IP地址:

// 在192.168.0.124上执行
$docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' client1
172.17.0.5

启动client1容器中的nat-hole-puncher程序,绑定本地5000端口,然后向192.168.0.125的6000和6001端口发送数据包:

$ docker exec client1 /app/nat-hole-puncher 172.17.0.5 5000 192.168.0.125 6000
sending message to 192.168.0.125:6000 ok
sending message to 192.168.0.125:6001 ok
listen address: 172.17.0.5:5000 ok

之后,我们会在125的udp-client-addr-display输出中看到如下结果:

./udp-client-addr-display 192.168.0.125 6000
Received message: Hello, World! from 192.168.0.124:5000
Received message: Hello, World! from 192.168.0.124:5000

通过这个结果我们得到了NAT映射后的源地址和端口:192.168.0.124:5000。

现在我们在125上用nc程序向该映射后的地址发送三个UDP包:

$ echo "hello from 192.168.0.125:6000" | nc -u -p 6000 -v 192.168.0.124 5000
Ncat: Version 7.50 ( https://nmap.org/ncat )
Ncat: Connected to 192.168.0.124:5000.
Ncat: 30 bytes sent, 0 bytes received in 0.01 seconds.

$ echo "hello from 192.168.0.125:6001" | nc -u -p 6001 -v 192.168.0.124 5000
Ncat: Version 7.50 ( https://nmap.org/ncat )
Ncat: Connected to 192.168.0.124:5000.
Ncat: 30 bytes sent, 0 bytes received in 0.01 seconds.

$ echo "hello from 192.168.0.125:6002" | nc -u -p 6002 -v 192.168.0.124 5000
Ncat: Version 7.50 ( https://nmap.org/ncat )
Ncat: Connected to 192.168.0.124:5000.
Ncat: 30 bytes sent, 0 bytes received in 0.01 seconds.

在124上,我们看到nat-hole-puncher程序输出如下结果:

Received message: hello from 192.168.0.125:6000
 from 192.168.0.125:6000
Received message: hello from 192.168.0.125:6001
 from 192.168.0.125:6001

4. 探索后的结论

通过上面的执行步骤以及输出的结果,我们从端口分配行为和过滤行为这两方面分析一下Docker默认网络NAT的行为特征。

首先,我们先来看端口分配行为。

在上面的探索步骤中,我们先后执行了:

  • 172.17.0.5:5000 -> 192.168.0.125:6000
  • 172.17.0.5:5000 -> 192.168.0.125:6001

但从udp-client-addr-display的输出来看:

Received message: Hello, World! from 192.168.0.124:5000
Received message: Hello, World! from 192.168.0.124:5000

Docker默认网络的NAT的端口分配行为肯定不是Address and Port-Dependent Mapping,那么到底是不是Address-Dependent Mapping的呢?你可以将nat-hole-puncher/main.go中的startUDPReceiver调用注释掉,然后再在另外一台机器192.168.0.126上启动一个udp-client-addr-display(监听7000和7001),然后在124上分别执行:

$ docker exec client1 /app/nat-hole-puncher 172.17.0.5 5000 192.168.0.125 6000
sending message to 192.168.0.125:6000 ok
sending message to 192.168.0.125:6001 ok

$ docker exec client1 /app/nat-hole-puncher 172.17.0.4 5000 192.168.0.126 7000
sending message to 192.168.0.126:7000 ok
sending message to 192.168.0.126:7001 ok

而从125和126上的udp-client-addr-display的输出来看:

//125:
./udp-client-addr-display 192.168.0.125 6000
Received message: Hello, World! from 192.168.0.124:5000
Received message: Hello, World! from 192.168.0.124:5000

//126:
 ./udp-client-addr-display 192.168.0.126 7000
Received message: Hello, World! from 192.168.0.124:5000
Received message: Hello, World! from 192.168.0.124:5000

可以看出:即便是target ip不同,只要源ip+port一致,NAT也只会分配同一个端口(这里是5000),显然在端口分配行为上,Docker默认网络的NAT是Endpoint-Independent Mapping类型的

我们再来看过滤行为。nat-hole-puncher在NAT打洞后,我们在125上使用nc工具向该“洞”发UDP包,结果是只有nat-hole-puncher发过的目的ip和端口(比如6000和6001)才可以成功将数据通过“洞”发给nat-hole-puncher。换个端口(比如6002),数据都会被丢弃掉。即便我们没有测试从不同IP向“洞”发送udp数据,但上述过滤行为已经足够让我们判定Docker默认网络的NAT过滤行为属于Address and Port-Dependent Filtering

综合上述两个行为特征,如果按照传统NAT类型划分,Docker默认网络的NAT应该属于端口受限锥形

5. 小结

本文探讨了Docker默认网络的NAT(网络地址转换)行为。我们通过构建实验环境,使用两个自制程序(nat-hole-puncher和udp-client-addr-display)以及nc工具,来测试和分析Docker NAT的端口分配行为和过滤行为。

主要的探索结论如下:

  • 端口分配行为:Docker默认网络的NAT表现为Endpoint-Independent Mapping类型。即无论目标IP和端口如何变化,只要源IP和端口相同,NAT就会分配相同的外部端口。

  • 过滤行为:Docker默认网络的NAT表现为Address and Port-Dependent Filtering类型。只有之前通信过的特定IP和端口组合才能成功穿透NAT发送数据包到内部网络。

基于这两种行为特征,我们可以得出结论:按照传统NAT类型划分,Docker默认网络的NAT属于端口受限锥形(Port Restricted Cone)NAT。

不过,在真正实践中判断一个NAT的类型无需如此费劲,RFC3489给出检测NAT类型(传统四种类别)的流程图

github上也有上述算法的开源的实现,比如:pystun3。下面是利用pystun3检测网络NAT类型的方法:

$docker run -it python:3-alpine /bin/sh
/ # pip install pystun3
/ # pystun3
NAT Type: Symmetric NAT
External IP: xxx.xxx.xxx.xxx
External Port: yyyy

注:这里pystun3的检测结果是多层NAT的结果,并非单纯的Docker默认网络的NAT类型。

本文涉及的源码可以在这里下载 – https://github.com/bigwhite/experiments/blob/master/docker-default-nat


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

从DevOps到日常脚本:聊聊Go语言的多面性

本文永久链接 – https://tonybai.com/2024/10/08/go-languages-versatility-from-devops-to-daily-scripts

2024年初,TIOBE编程语言排行榜上,Go再次进入了前十,并在之后又成功冲高至第七名

Go语言的排名上升,至少在Reddit Go论坛上帖子数量和在线人数上得到了体现,尽管目前与Rust热度仍有差距,但可见Go的关注度在提升:


2024年国庆节假期某天下午的实时在线数对比

随着Go语言人气的上升,论坛中的问题也变得愈发多样化。许多Gopher常常问及为何Go是DevOps语言Go适合用作脚本语言吗等问题,这些都反映了Go语言的多面性。

从最初的系统编程语言,到如今在DevOps领域的广泛应用,再到一些场合被探索用作脚本语言,Go展现出了令人惊叹的灵活性和适应性。在本篇文章中,我们将聚焦于Go语言在DevOps领域的应用以及它作为脚本替代语言的潜力,聊聊其强大多面性如何满足这些特定场景的需求。

1. Go在DevOps中的优势

随着DevOps的发展,平台工程(Platform Engineering)这一新兴概念逐渐兴起。在自动化任务、微服务部署和系统管理中,编程语言的作用变得愈发重要。Go语言凭借其高性能、并发处理能力以及能够编译成单一二进制文件的特点,越来越受到DevOps领域开发人员的青睐,成为开发DevOps工具链的重要组成部分。

首先,Go的跨平台编译能力使得DevOps团队可以在一个平台上编译,然后在多个不同的操作系统和架构上运行,结合编译出的单一可执行文件的能力,大大简化了部署流程,这也是很多Go开发者认为Go适合DevOps的第一优势:

$GOOS=linux GOARCH=amd64 go build -o myapp-linux-amd64 main.go
$GOOS=linux GOARCH=arm64 go build -o myapp-linux-arm64 main.go
$GOOS=darwin GOARCH=amd64 go build -o myapp-darwin-amd64 main.go
$GOOS=windows GOARCH=amd64 go build -o myapp-windows-amd64.exe main.go

其次,Go的标准库仿佛“瑞士军刀”,开箱即用,为DevOps场景提供了所需的丰富的网络、加密和系统操作功能库,大幅降低对外部的依赖,即便不使用第三方包生态系统,也可以满足大部分的DevOps功能需求。

此外,Go的goroutines和channels为处理高并发任务提供了极大便利,这在DevOps中也尤为重要。例如,以下代码展示了如何使用goroutines并发检查多个服务的健康状态:

func checkServices(services []string) {
    var wg sync.WaitGroup
    for _, service := range services {
        wg.Add(1)
        go func(s string) {
            defer wg.Done()
            if err := checkHealth(s); err != nil {
                log.Printf("Service %s is unhealthy: %v", s, err)
            } else {
                log.Printf("Service %s is healthy", s)
            }
        }(service)
    }
    wg.Wait()
}

并且,许多知名的DevOps基础设施、中间件和工具都是用Go编写的,如Docker、Kubernetes、Prometheus等,集成起来非常丝滑。这些工具的成功进一步证明了Go在DevOps领域的适用性。

2. Go作为脚本语言的潜力

在传统的DevOps任务中,Python和Shell脚本长期以来都是主力军,它们(尤其是Python)以其简洁的语法和丰富的生态系统赢得了DevOps社区的广泛青睐。然而,传统主力Python和Shell脚本虽然灵活易用,但在处理大规模数据或需要高性能的场景时往往力不从心。此外,它们的动态类型系统可能导致运行时错误,增加了调试难度。

随着Go的普及,它的“超高性价比”逐渐被开发运维人员所接受:既有着接近于脚本语言的较低的学习曲线与较高的生产力(也得益于Go超快的编译速度),又有着静态语言的高性能,还有单一文件在部署方面的便利性

下面是一个简单的文件处理脚本,用于向大家展示Go的简单易学:

package main

import (
    "bufio"
    "fmt"
    "os"
    "strings"
)

func main() {
    file, err := os.Open("input.txt")
    if err != nil {
        fmt.Println("Error opening file:", err)
        return
    }
    defer file.Close()

    scanner := bufio.NewScanner(file)
    for scanner.Scan() {
        line := scanner.Text()
        if strings.Contains(line, "ERROR") {
            fmt.Println(line)
        }
    }
}

这个示例虽然要比同等功能的Python或shell代码行数要多,但由于Go的简单和直观,多数人都很容易看懂这段代码。

此外,Go的静态强类型系统可以在编译时捕获更多错误,避免在运行时的调试,提高了脚本在运行时的可靠性。

开发运维人员眼中的脚本语言,如Shell脚本和Python脚本,通常是直接基于源代码进行解释和运行的。实际上,Go语言同样可以实现这一点,而其关键工具就是go run命令。这个命令允许开发者快速执行Go代码,从而使Go源码看起来更像是“脚本”,下面我们就来看看go run。

3. go run:桥接编译型语言与脚本语言的利器

我们知道go run命令实际上是编译和运行的组合,它首先编译源代码,然后立即执行生成的二进制文件。这个过程对用户来说是透明的,使得Go程序可以像脚本一样方便地运行。这一命令也大大简化了Go程序的开发流程,使Go更接近传统的脚本语言工作流。可以说,通过go run,Go语言向脚本语言的使用体验更靠近了一步。

此外,go run与go build在编译阶段的行为并不完全相同:

  • go run在运行结束后,不保留编译后的二进制文件;而go build生成可执行文件并保留。

  • go run编译时默认不包含调试信息,以减少构建时间;而go build则保留完整的调试信息。

  • go run可以使用-exec标志指定运行环境,比如:

$go run -exec="ls" main.go
/var/folders/cz/sbj5kg2d3m3c6j650z0qfm800000gn/T/go-build1742641170/b001/exe/main

我们看到,如果设置了-exec标志,那么go run -exec=”prog” main.go args编译后的命令执行就变为了”prog a.out args”。go run还支持跨平台模拟执行,当GOOS或GOARCH与系统默认值不同时,如果在\$PATH路径下存在名为”go_\$GOOS_\$GOARCH_exec”的程序,那么go run就会执行:

$go_$GOOS_$GOARCH_exec a.out args

比如:go_js_wasm_exec a.out args
  • go run通常用于运行main包,在go module开启的情况下,go run使用的是main module的上下文。go build可以编译多个包,对于非main包时只检查构建而不生成输出

  • go run还支持运行一个指定版本号的包

当指定了版本后缀(如@v1.0.0或@latest)时,go run会进入module-aware mode(模块感知模式),并忽略当前目录或上级目录中的go.mod文件。这意味着,即使你当前的项目中存在依赖管理文件go.mod,go run也不会影响或修改当前项目的依赖关系,下面这个示例展示了这一点:

$go run golang.org/x/example/hello@latest

go: downloading golang.org/x/example v0.0.0-20240925201653-1a5e218e5455
go: downloading golang.org/x/example/hello v0.0.0-20240925201653-1a5e218e5455
Hello, world!

这个功能特别适合在不影响主模块依赖的情况下,临时运行某个工具或程序。例如,如果你只是想测试某个工具的特定版本,或者快速运行一个远程程序包,而不希望它干扰你正在开发的项目中的依赖项,这种方式就很实用。

不过有一点要注意的是:go run的退出状态并不等于编译后二进制文件的退出状态,看下面这个示例:

// main.go成功退出
$go run main.go
Hello from myapp!
$echo $?
0

// main.go中调用os.Exit(2)退出
$go run main.go
Hello from myapp!
exit status 2
$echo $?
1

go run使用退出状态1来表示其运行程序的异常退出状态,但这个值和真实的exit的状态值不相等。

到这里我们看到,go run xxx.go可以像bash xxx.sh或python xxx.py那样,以“解释”方式运行一个Go源码文件。这使得Go语言在某种程度上具备了脚本语言的特性。然而,在脚本语言中,例如Bash或Python等,用户可以通过将源码文件设置为可执行,并在文件的首行添加适当的解释器指令,从而直接运行脚本,而无需显式调用解释器。这种灵活性使得脚本的执行变得更加简便。那么Go是否也可以做到这一点呢?我们继续往下看。

4. Go脚本化的实现方式

下面是通过一些技巧或第三方工具实现Go脚本化的方法。对于喜欢使用脚本的人来说,最熟悉的莫过于shebang(即解释器指令)。在许多脚本语言中,通过在文件的第一行添加指定的解释器路径,可以直接运行脚本,而无需显式调用解释器。例如,在Bash或Python脚本中,通常会看到这样的行:

#!/usr/bin/env python3

那么Go语言支持shebang吗? 是否可以实现实现类似的效果呢?我们下面来看看。

4.1 使用“shebang(#!)”运行Go脚本

很遗憾,Go不能直接支持shebang,我们看一下这个示例main.go:

#!/usr/bin/env go run 

package main

import (
    "fmt"
    "os"
)

func main() {
    s := "world"
    if len(os.Args) > 1 {
        s = os.Args[1]
    }
    fmt.Printf("Hello, %v!\n", s)
}

这一示例的第一行就是一个shebang解释器指令,我们chmod u+x main.go,然后执行该Go“脚本”:

$./main.go
main.go:1:1: illegal character U+0023 '#'

这个执行过程中,Shell可以正常识别shebang,然后调用go run去运行main.go,问题就在于go编译器视shebang这一行为非法语法!

常规的shebang写法行不通,我们就使用一些trick,下面是改进后的示例:

//usr/bin/env go run $0 $@; exit

package main

import (
    "fmt"
    "os"
)

func main() {
    s := "world"
    if len(os.Args) > 1 {
        s = os.Args[1]
    }
    fmt.Printf("Hello, %v!\n", s)
}

这段代码则可以chmod +x 后直接运行:

$./main.go
Hello, world!
$./main.go gopher
Hello, gopher!

这是因为它巧妙地结合了shell脚本和Go代码的特性。我们来看一下第一行:

//usr/bin/env go run $0 $@; exit

这一行看起来像是Go的注释,但实际上是一个shell命令。当文件被执行时,shell会解释这一行,/usr/bin/env用于寻找go命令的路径,go run \$0 \$@ 告诉go命令运行当前脚本文件(\$0)以及所有传递给脚本的参数(\$@),当go run编译这个脚本时,又会将第一行当做注释行而忽略,这就是关键所在。最后的exit确保shell在Go程序执行完毕后退出。如果没有exit,shell会执行后续Go代码,那显然会导致报错!

除了上述trick外,我们还可以将Go源码文件注册为可执行格式(仅在linux上进行了测试),下面就是具体操作步骤。

4.2 在Linux系统中注册Go为可执行格式

就像在Windows上双击某个文件后,系统打开特定程序处理对应的文件一样,我们也可以将Go源文件(xxx.go)注册为可执行格式,并指定用于处理该文件的程序。实现这一功能,我们需要借助binfmt_misc。binfmt_misc是Linux内核的一个功能,允许用户注册新的可执行文件格式。这使得Linux系统能够识别并执行不同类型的可执行文件,比如脚本、二进制文件等。

我们用下面命令将Go源文件注册到binfmt_misc中:

echo ':golang:E::go::/usr/local/bin/gorun:OC' | sudo tee /proc/sys/fs/binfmt_misc/register

简单解释一下上述命令:

  • :golang::这是注册的格式的名称,可以自定义。
  • E:::表示执行文件的魔数(magic number),在这里为空,表示任何文件类型。
  • go:::指定用于执行的解释器,这里是go命令。
  • /usr/local/bin/gorun:指定用于执行的程序路径,这里是一个自定义的gorun脚本
  • :OC:表示这个格式是可执行的(O)并且支持在运行时创建(C)。

当你执行一个Go源文件时,Linux内核会检查文件的类型。如果文件的格式与注册的格式匹配,内核会调用指定的解释器(在这个例子中是gorun)来执行该文件。

gorun脚本是我们自己编写的,源码如下:

#!/bin/bash

# 检查是否提供了源文件
if [ -z "$1" ]; then
  echo "用法: gorun <go源文件> [参数...]"
  exit 1
fi

# 检查文件是否存在
if [ ! -f "$1" ]; then
  echo "错误: 文件 $1 不存在"
  exit 1
fi

# 将第一个参数作为源文件,剩余的参数作为执行参数
GO_FILE="$1"
shift  # 移除第一个参数,剩余的参数将会被传递

# 使用go run命令执行Go源文件,传递其余参数
go run "$GO_FILE" "$@"

将gorun脚本放置带/usr/local/bin下,并chmod +x使其具有可执行权限。

接下来,我们就可以直接执行不带有”shebang”的正常go源码了:

// main.go
package main

import (
    "fmt"
    "os"
)

func main() {
      s := "world"
      if len(os.Args) > 1 {
          s = os.Args[1]
      }
      fmt.Printf("Hello, %v!\n", s)
}

直接执行上述源文件:

$ ./main.go
Hello, world!
$ ./main.go gopher
Hello, gopher!

4.3 第三方工具支持

Go社区也有一些将支持将Go源文件视为脚本的解释器工具,比如:traefik/yaegi等。

$go install github.com/traefik/yaegi/cmd/yaegi@latest
go: downloading github.com/traefik/yaegi v0.16.1
$yaegi main.go
Hello, main.go!

yaegi还可以像python那样,提供Read-Eval-Print-Loop功能,我们可以与yaegi配合进行交互式“Go脚本”编码:

$ yaegi
> 1+2
: 3
> import "fmt"
: 0xc0003900d0
> fmt.Println("hello, golang")
hello, golang
: 14
>

类似的提供REPL功能的第三方Go解释器还包括:cosmos72/gomacrox-motemen/gore等,这里就不深入介绍了,感兴趣的童鞋可以自行研究。

5. 小结

在本文中,我们探讨了Go语言在DevOps和日常脚本编写中的多面性。首先,Go语言因其高性能、并发处理能力及跨平台编译特性,成为DevOps领域的重要工具,助力于自动化任务和微服务部署。其次,随着Go语言的普及,其作为脚本语言的潜力逐渐被开发运维人员认识,Go展现出了优于传统脚本语言的高效性和可靠性。

我们还介绍了Go脚本的实现方式,包括使用go run命令,它使得Go程序的执行更像传统脚本语言,同时也探讨了一些技巧和工具,帮助开发者将Go源码文件作为可执行脚本直接运行。通过这些探索,我们可以看到Go语言在现代开发中的灵活应用及其日益增长的吸引力。

随着AI能力的飞速发展,使用Go编写一个日常脚本就是分分钟的事情,但Go的特性让这样的脚本具备了传统脚本语言所不具备的并发性、可靠性和性能优势。我们有理由相信,Go在DevOps和脚本编程领域的应用将会越来越广泛,为开发者带来更多的可能性和便利。

6. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats