理解Kubernetes网络之Flannel网络

第一次采用kube-up.sh脚本方式安装Kubernetes cluster目前运行良好,master node上的组件状态也始终是“没毛病”:

# kubectl get cs
NAME                 STATUS    MESSAGE              ERROR
controller-manager   Healthy   ok
scheduler            Healthy   ok
etcd-0               Healthy   {"health": "true"}

不过在第二次尝试用kubeadm安装和初始化Kubernetes cluster时遇到的各种网络问题还是让我“心有余悸”。于是趁上个周末,对Kubernetes的网络原理进行了一些针对性的学习。这里把对Kubernetes网络的理解记录一下和大家一起分享。

Kubernetes支持FlannelCalicoWeave network等多种cni网络Drivers,但由于学习过程使用的是第一个cluster的Flannel网络,这里的网络原理只针对k8s+Flannel网络。

一、环境+提示

凡涉及到Docker、Kubernetes这类正在active dev的开源项目的文章,我都不得不提一嘴,那就是随着K8s以及flannel的演化,本文中的一些说法可能不再正确。提醒大家:阅读此类技术文章务必结合“环境”。

这里我们使用的环境就是我第一次建立k8s cluster的环境:

# kube-apiserver --version
Kubernetes v1.3.7

# /opt/bin/flanneld -version
0.5.5

# /opt/bin/etcd -version
etcd Version: 3.0.12
Git SHA: 2d1e2e8
Go Version: go1.6.3
Go OS/Arch: linux/amd64

另外整个集群搭建在阿里云上,每个ECS上的OS及kernel版本:Ubuntu 14.04.4 LTS,3.19.0-70-generic。

在我的测试环境,有两个node:master node和一个minion node。master node参与workload的调度。所以你基本可以认为有两个minion node即可。

二、Kubernetes Cluster中的几个“网络”

之前的k8s cluster采用的是默认安装,即直接使用了配置脚本中(kubernetes/cluster/ubuntu/config-default.sh)自带的一些参数,比如:

//摘自kubernetes/cluster/ubuntu/config-default.sh

export nodes=${nodes:-"root@master_node_ip root@minion_node_ip"}
export SERVICE_CLUSTER_IP_RANGE=${SERVICE_CLUSTER_IP_RANGE:-192.168.3.0/24}
export FLANNEL_NET=${FLANNEL_NET:-172.16.0.0/16}

从这里我们能够识别出三个“网络”:

  • node network:承载kubernetes集群中各个“物理”Node(master和minion)通信的网络;
  • service network:由kubernetes集群中的Services所组成的“网络”;
  • flannel network: 即Pod网络,集群中承载各个Pod相互通信的网络。

node network自不必多说,node间通过你的本地局域网(无论是物理的还是虚拟的)通信。

service network比较特殊,每个新创建的service会被分配一个service IP,在当前集群中,这个IP的分配范围是192.168.3.0/24。不过这个IP并不“真实”,更像一个“占位符”并且只有入口流量,所谓的“network”也是“名不符实”的,后续我们会详尽说明。

flannel network是我们要理解的重点,cluster中各个Pod要实现相互通信,必须走这个网络,无论是在同一node上的Pod还是跨node的Pod。我们的cluster中,flannel net的分配范围是:172.16.0.0/16。

在进一步挖掘“原理”之前,我们先来直观认知一下service network和flannel network:

Service network(看cluster-ip一列):

# kubectl get services
NAME           CLUSTER-IP      EXTERNAL-IP   PORT(S)     AGE
index-api      192.168.3.168   <none>        30080/TCP   18d
kubernetes     192.168.3.1     <none>        443/TCP     94d
my-nginx       192.168.3.179   <nodes>       80/TCP      90d
nginx-kit      192.168.3.196   <nodes>       80/TCP      12d
rbd-rest-api   192.168.3.22    <none>        8080/TCP    60d

Flannel network(看IP那列):

# kubectl get pod -o wide
NAME                           READY     STATUS    RESTARTS   AGE       IP            NODE
my-nginx-2395715568-gpljv      1/1       Running   6          91d       172.16.99.3   {master node ip}
nginx-kit-3872865736-rc8hr     2/2       Running   0          12d       172.16.57.7   {minion node ip}
... ...

三、平坦的Flannel网络

1、Kubenetes安装后的网络状态

首先让我们来看看:kube-up.sh在安装k8s集群时对各个K8s Node都动了什么手脚!

a) 修改docker default配置

在ubuntu 14.04下,docker的配置都在/etc/default/docker文件中。如果你曾经修改过该文件,那么kube-up.sh脚本方式安装完kubernetes后,你会发现/etc/default/docker已经变样了,只剩下了一行:

master node:
DOCKER_OPTS=" -H tcp://127.0.0.1:4243 -H unix:///var/run/docker.sock --bip=172.16.99.1/24 --mtu=1450"

minion node:
DOCKER_OPTS=" -H tcp://127.0.0.1:4243 -H unix:///var/run/docker.sock --bip=172.16.57.1/24 --mtu=1450"

可以看出kube-up.sh修改了Docker daemon的–bip选项,使得该node上docker daemon在该node的fannel subnet范围以内为启动的Docker container分配IP地址。

b) 在etcd中初始化flannel网络数据

多个node上的Flanneld依赖一个etcd cluster来做集中配置服务,etcd保证了所有node上flanned所看到的配置是一致的。同时每个node上的flanned监听etcd上的数据变化,实时感知集群中node的变化。

我们可以通过etcdctl查询到这些配置数据:

master node:

//flannel network配置
# etcdctl --endpoints http://127.0.0.1:{etcd listen port} get  /coreos.com/network/config
{"Network":"172.16.0.0/16", "Backend": {"Type": "vxlan"}}

# etcdctl --endpoints http://127.0.0.1:{etcd listen port} ls  /coreos.com/network/subnets
/coreos.com/network/subnets/172.16.99.0-24
/coreos.com/network/subnets/172.16.57.0-24

//某一node上的flanne subnet和vtep配置
# etcdctl --endpoints http://127.0.0.1:{etcd listen port} get  /coreos.com/network/subnets/172.16.99.0-24
{"PublicIP":"{master node ip}","BackendType":"vxlan","BackendData":{"VtepMAC":"b6:bf:4c:81:cf:3b"}}

minion node:
# etcdctl --endpoints http://127.0.0.1:{etcd listen port} get  /coreos.com/network/subnets/172.16.57.0-24
{"PublicIP":"{minion node ip}","BackendType":"vxlan","BackendData":{"VtepMAC":"d6:51:2e:80:5c:69"}}

或用etcd 提供的rest api:

# curl -L http://127.0.0.1:{etcd listen port}/v2/keys/coreos.com/network/config
{"action":"get","node":{"key":"/coreos.com/network/config","value":"{\"Network\":\"172.16.0.0/16\", \"Backend\": {\"Type\": \"vxlan\"}}","modifiedIndex":5,"createdIndex":5}}
c) 启动flanneld

kube-up.sh在每个Kubernetes node上启动了一个flanneld的程序:

# ps -ef|grep flanneld

master node:
root      1151     1  0  2016 ?        00:02:34 /opt/bin/flanneld --etcd-endpoints=http://127.0.0.1:{etcd listen port} --ip-masq --iface={master node ip}

minion node:
root     11940     1  0  2016 ?        00:07:05 /opt/bin/flanneld --etcd-endpoints=http://{master node ip}:{etcd listen port} --ip-masq --iface={minion node ip}

一旦flanneld启动,它将从etcd中读取配置,并请求获取一个subnet lease(租约),有效期目前是24hrs,并且监视etcd的数据更新。flanneld一旦获取subnet租约、配置完backend,它会将一些信息写入/run/flannel/subnet.env文件。

master node:
# cat /run/flannel/subnet.env
FLANNEL_NETWORK=172.16.0.0/16
FLANNEL_SUBNET=172.16.99.1/24
FLANNEL_MTU=1450
FLANNEL_IPMASQ=true

minion node:
# cat /run/flannel/subnet.env
FLANNEL_NETWORK=172.16.0.0/16
FLANNEL_SUBNET=172.16.57.1/24
FLANNEL_MTU=1450
FLANNEL_IPMASQ=true

当然flanneld的最大意义在于根据etcd中存储的全cluster的subnet信息,跨node传输flannel network中的数据包,这个后面会详细说明。

d) 创建flannel.1 网络设备、更新路由信息

各个node上的网络设备列表新增一个名为flannel.1的类型为vxlan的网络设备:

master node:

# ip -d link show
4: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether b6:bf:4c:81:cf:3b brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local {master node local ip} dev eth0 port 0 0 nolearning ageing 300

minion node:

349: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether d6:51:2e:80:5c:69 brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local  {minion node local ip} dev eth0 port 0 0 nolearning ageing 300

从flannel.1的设备信息来看,它似乎与eth0存在着某种bind关系。这是在其他bridge、veth设备描述信息中所没有的。

flannel.1设备的ip:

master node:

flannel.1 Link encap:Ethernet  HWaddr b6:bf:4c:81:cf:3b
          inet addr:172.16.99.0  Bcast:0.0.0.0  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1450  Metric:1
          RX packets:5993274 errors:0 dropped:0 overruns:0 frame:0
          TX packets:5829044 errors:0 dropped:292 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:1689890445 (1.6 GB)  TX bytes:1144725704 (1.1 GB)

minion node:

flannel.1 Link encap:Ethernet  HWaddr d6:51:2e:80:5c:69
          inet addr:172.16.57.0  Bcast:0.0.0.0  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1450  Metric:1
          RX packets:6294640 errors:0 dropped:0 overruns:0 frame:0
          TX packets:5755599 errors:0 dropped:25 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:989362527 (989.3 MB)  TX bytes:1861492847 (1.8 GB)

可以看到两个node上的flannel.1的ip与k8s cluster为两个node上分配subnet的ip范围是对应的。

下面是两个node上的当前路由表:

master node:

# ip route
... ...
172.16.0.0/16 dev flannel.1  proto kernel  scope link  src 172.16.99.0
172.16.99.0/24 dev docker0  proto kernel  scope link  src 172.16.99.1
... ...

minion node:

# ip route
... ...
172.16.0.0/16 dev flannel.1
172.16.57.0/24 dev docker0  proto kernel  scope link  src 172.16.57.1
... ...

以上信息将为后续数据包传输分析打下基础。

e) 平坦的flannel network

从以上kubernetes和flannel network安装之后获得的网络信息,我们能看出flannel network是一个flat network。在flannel:172.16.0.0/16这个大网下,每个kubernetes node从中分配一个子网片段(/24):

master node:
  --bip=172.16.99.1/24

minion node:
  --bip=172.16.57.1/24

root@node1:~# etcdctl --endpoints http://127.0.0.1:{etcd listen port} ls  /coreos.com/network/subnets
/coreos.com/network/subnets/172.16.99.0-24
/coreos.com/network/subnets/172.16.57.0-24

用一张图来诠释可能更为直观:

img{512x368}

这个是不是有些像x86-64的虚拟内存寻址空间啊(同样是平坦内存地址访问模型)!

在平坦的flannel network中,每个pod都会被分配唯一的ip地址,且每个k8s node的subnet各不重叠,没有交集。不过这样的subnet分配模型也有一定弊端,那就是可能存在ip浪费:一个node上有200多个flannel ip地址(xxx.xxx.xxx.xxx/24),如果仅仅启动了几个Pod,那么其余ip就处于闲置状态。

2、Flannel网络通信原理

这里我们模仿flannel官方的那幅原理图,画了一幅与我们的实验环境匹配的图,作为后续讨论flannel网络通信流程的基础:

img{512x368}

如上图所示,我们来看看从pod1:172.16.99.8发出的数据包是如何到达pod3:172.16.57.15的(比如:在pod1的某个container中ping -c 3 172.16.57.15)。

a) 从Pod出发

由于k8s更改了docker的DOCKER_OPTS,显式指定了–bip,这个值与分配给该node上的subnet的范围是一致的。这样一来,docker引擎每次创建一个Docker container,该container被分配到的ip都在flannel subnet范围内。

当我们在Pod1下的某个容器内执行ping -c 3 172.16.57.15,数据包便开始了它在flannel network中的旅程。

Pod是Kubernetes调度的基本unit。Pod内的多个container共享一个network namespace。kubernetes在创建Pod时,首先先创建pause容器,然后再以pause的network namespace为基础,创建pod内的其他容器(–net=container:xxx),这样Pod内的所有容器便共享一个network namespace,这些容器间的访问直接通过localhost即可。比如Pod下A容器启动了一个服务,监听8080端口,那么同一个Pod下面的另外一个B容器通过访问localhost:8080即可访问到A容器下面的那个服务。

在之前的《理解Docker容器网络之Linux Network Namespace》一文中,我相信我已经讲清楚了单机下Docker容器数据传输的路径。在这个环节中,数据包的传输路径也并无不同。

我们看一下Pod1中某Container内的路由信息:

# docker exec ba75f81455c7 ip route
default via 172.16.99.1 dev eth0
172.16.99.0/24 dev eth0  proto kernel  scope link  src 172.16.99.8

目的地址172.16.57.15并不在直连网络中,因此数据包通过default路由出去。default路由的路由器地址是172.16.99.1,也就是上面的docker0 bridge的IP地址。相当于docker0 bridge以“三层的工作模式”直接接收到来自容器的数据包(而并非从bridge的二层端口接收)。

b) docker0与flannel.1之间的包转发

数据包到达docker0后,docker0的内核栈处理程序发现这个数据包的目的地址是172.16.57.15,并不是真的要送给自己,于是开始为该数据包找下一hop。根据master node上的路由表:

master node:

# ip route
... ...
172.16.0.0/16 dev flannel.1  proto kernel  scope link  src 172.16.99.0
172.16.99.0/24 dev docker0  proto kernel  scope link  src 172.16.99.1
... ...

我们匹配到“172.16.0.0/16”这条路由!这是一条直连路由,数据包被直接送到flannel.1设备上。

c) flannel.1设备以及flanneld的功用

flannel.1是否会重复docker0的套路呢:包不是发给自己,转发数据包?会,也不会。

“会”是指flannel.1肯定要将包转发出去,因为毕竟包不是给自己的(包目的ip是172.16.57.15, vxlan设备ip是172.16.99.0)。
“不会”是指flannel.1不会走寻常套路去转发包,因为它是一个vxlan类型的设备,也称为vtep,virtual tunnel end point。

那么它到底是怎么处理数据包的呢?这里涉及一些Linux内核对vxlan处理的内容,详细内容可参见本文末尾的参考资料。

flannel.1收到数据包后,由于自己不是目的地,也要尝试将数据包重新发送出去。数据包沿着网络协议栈向下流动,在二层时需要封二层以太包,填写目的mac地址,这时一般应该发出arp:”who is 172.16.57.15″。但vxlan设备的特殊性就在于它并没有真正在二层发出这个arp包,因为下面的这个内核参数设置:

master node:

# cat /proc/sys/net/ipv4/neigh/flannel.1/app_solicit
3

而是由linux kernel引发一个”L3 MISS”事件并将arp请求发到用户空间的flanned程序。

flanned程序收到”L3 MISS”内核事件以及arp请求(who is 172.16.57.15)后,并不会向外网发送arp request,而是尝试从etcd查找该地址匹配的子网的vtep信息。在前面章节我们曾经展示过etcd中Flannel network的配置信息:

master node:

# etcdctl --endpoints http://127.0.0.1:{etcd listen port} ls  /coreos.com/network/subnets
/coreos.com/network/subnets/172.16.99.0-24
/coreos.com/network/subnets/172.16.57.0-24

# curl -L http://127.0.0.1:{etcd listen port}/v2/keys/coreos.com/network/subnets/172.16.57.0-24
{"action":"get","node":{"key":"/coreos.com/network/subnets/172.16.57.0-24","value":"{\"PublicIP\":\"{minion node local ip}\",\"BackendType\":\"vxlan\",\"BackendData\":{\"VtepMAC\":\"d6:51:2e:80:5c:69\"}}","expiration":"2017-01-17T09:46:20.607339725Z","ttl":21496,"modifiedIndex":2275460,"createdIndex":2275460}}

flanneld从etcd中找到了答案:

subnet: 172.16.57.0/24
public ip: {minion node local ip}
VtepMAC: d6:51:2e:80:5c:69

我们查看minion node上的信息,发现minion node上的flannel.1 设备mac就是d6:51:2e:80:5c:69:

minion node:

#ip -d link show

349: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether d6:51:2e:80:5c:69 brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local 10.46.181.146 dev eth0 port 0 0 nolearning ageing 300

接下来,flanned将查询到的信息放入master node host的arp cache表中:

master node:

#ip n |grep 172.16.57.15
172.16.57.15 dev flannel.1 lladdr d6:51:2e:80:5c:69 REACHABLE

flanneld完成这项工作后,linux kernel就可以在arp table中找到 172.16.57.15对应的mac地址并封装二层以太包了。

到目前为止,已经呈现在大家眼前的封包如下图:

img{512x368}

不过这个封包还不能在物理网络上传输,因为它实际上只是vxlan tunnel上的packet。

d) kernel的vxlan封包

我们需要将上述的packet从master node传输到minion node,需要将上述packet再次封包。这个任务在backend为vxlan的flannel network中由linux kernel来完成。

flannel.1为vxlan设备,linux kernel可以自动识别,并将上面的packet进行vxlan封包处理。在这个封包过程中,kernel需要知道该数据包究竟发到哪个node上去。kernel需要查看node上的fdb(forwarding database)以获得上面对端vtep设备(已经从arp table中查到其mac地址:d6:51:2e:80:5c:69)所在的node地址。如果fdb中没有这个信息,那么kernel会向用户空间的flanned程序发起”L2 MISS”事件。flanneld收到该事件后,会查询etcd,获取该vtep设备对应的node的”Public IP“,并将信息注册到fdb中。

这样Kernel就可以顺利查询到该信息并封包了:

master node:

# bridge fdb show dev flannel.1|grep d6:51:2e:80:5c:69
d6:51:2e:80:5c:69 dst {minion node local ip} self permanent

由于目标ip是minion node,查找路由表,包应该从master node的eth0发出,这样src ip和src mac地址也就确定了。封好的包示意图如下:

img{512x368}

e) kernel的vxlan拆包

minion node上的eth0接收到上述vxlan包,kernel将识别出这是一个vxlan包,于是拆包后将flannel.1 packet转给minion node上的vtep(flannel.1)。minion node上的flannel.1再将这个数据包转到minion node上的docker0,继而由docker0传输到Pod3的某个容器里。

3、Pod内到外部网络

我们在Pod中除了可以与pod network中的其他pod通信外,还可以访问外部网络,比如:

master node:
# docker exec ba75f81455c7 ping -c 3 baidu.com
PING baidu.com (180.149.132.47): 56 data bytes
64 bytes from 180.149.132.47: icmp_seq=0 ttl=54 time=3.586 ms
64 bytes from 180.149.132.47: icmp_seq=1 ttl=54 time=3.752 ms
64 bytes from 180.149.132.47: icmp_seq=2 ttl=54 time=3.722 ms
--- baidu.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.586/3.687/3.752/0.072 ms

这个通信与vxlan就没有什么关系了,主要是通过docker引擎在iptables的POSTROUTING chain中设置的MASQUERADE规则:

mastre node:

#iptables -t nat -nL
... ...
Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination
MASQUERADE  all  --  172.16.99.0/24       0.0.0.0/0
... ...

docker将容器的pod network地址伪装为node ip出去,包回来时再snat回容器的pod network地址,这样网络就通了。

四、”不真实”的Service网络

每当我们在k8s cluster中创建一个service,k8s cluster就会在–service-cluster-ip-range的范围内为service分配一个cluster-ip,比如本文开始时提到的:

# kubectl get services
NAME           CLUSTER-IP      EXTERNAL-IP   PORT(S)     AGE
index-api      192.168.3.168   <none>        30080/TCP   18d
kubernetes     192.168.3.1     <none>        443/TCP     94d
my-nginx       192.168.3.179   <nodes>       80/TCP      90d
nginx-kit      192.168.3.196   <nodes>       80/TCP      12d
rbd-rest-api   192.168.3.22    <none>        8080/TCP    60d

这个cluster-ip只是一个虚拟的ip,并不真实绑定某个物理网络设备或虚拟网络设备,仅仅存在于iptables的规则中:

Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination
KUBE-SERVICES  all  --  0.0.0.0/0            0.0.0.0/0            /* kubernetes service portals */

# iptables -t nat -nL|grep 192.168.3
Chain KUBE-SERVICES (2 references)
target     prot opt source               destination
KUBE-SVC-XGLOHA7QRQ3V22RZ  tcp  --  0.0.0.0/0            192.168.3.182        /* kube-system/kubernetes-dashboard: cluster IP */ tcp dpt:80
KUBE-SVC-NPX46M4PTMTKRN6Y  tcp  --  0.0.0.0/0            192.168.3.1          /* default/kubernetes:https cluster IP */ tcp dpt:443
KUBE-SVC-AU252PRZZQGOERSG  tcp  --  0.0.0.0/0            192.168.3.22         /* default/rbd-rest-api: cluster IP */ tcp dpt:8080
KUBE-SVC-TCOU7JCQXEZGVUNU  udp  --  0.0.0.0/0            192.168.3.10         /* kube-system/kube-dns:dns cluster IP */ udp dpt:53
KUBE-SVC-BEPXDJBUHFCSYIC3  tcp  --  0.0.0.0/0            192.168.3.179        /* default/my-nginx: cluster IP */ tcp dpt:80
KUBE-SVC-UQG6736T32JE3S7H  tcp  --  0.0.0.0/0            192.168.3.196        /* default/nginx-kit: cluster IP */ tcp dpt:80
KUBE-SVC-ERIFXISQEP7F7OF4  tcp  --  0.0.0.0/0            192.168.3.10         /* kube-system/kube-dns:dns-tcp cluster IP */ tcp dpt:53
... ...

可以看到在PREROUTING环节,k8s设置了一个target: KUBE-SERVICES。而KUBE-SERVICES下面又设置了许多target,一旦destination和dstport匹配,就会沿着chain进行处理。

比如:当我们在pod网络curl 192.168.3.22 8080时,匹配到下面的KUBE-SVC-AU252PRZZQGOERSG target:

KUBE-SVC-AU252PRZZQGOERSG  tcp  --  0.0.0.0/0            192.168.3.22         /* default/rbd-rest-api: cluster IP */ tcp dpt:8080

沿着target,我们看到”KUBE-SVC-AU252PRZZQGOERSG”对应的内容如下:

Chain KUBE-SVC-AU252PRZZQGOERSG (1 references)
target     prot opt source               destination
KUBE-SEP-I6L4LR53UYF7FORX  all  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */ statistic mode random probability 0.50000000000
KUBE-SEP-LBWOKUH4CUTN7XKH  all  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */

Chain KUBE-SEP-I6L4LR53UYF7FORX (1 references)
target     prot opt source               destination
KUBE-MARK-MASQ  all  --  172.16.99.6          0.0.0.0/0            /* default/rbd-rest-api: */
DNAT       tcp  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */ tcp to:172.16.99.6:8080

Chain KUBE-SEP-LBWOKUH4CUTN7XKH (1 references)
target     prot opt source               destination
KUBE-MARK-MASQ  all  --  172.16.99.7          0.0.0.0/0            /* default/rbd-rest-api: */
DNAT       tcp  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */ tcp to:172.16.99.7:8080

Chain KUBE-MARK-MASQ (17 references)
target     prot opt source               destination
MARK       all  --  0.0.0.0/0            0.0.0.0/0            MARK or 0x4000

请求被按5:5开的比例分发(起到负载均衡的作用)到KUBE-SEP-I6L4LR53UYF7FORX 和KUBE-SEP-LBWOKUH4CUTN7XKH,而这两个chain的处理方式都是一样的,那就是先做mark,然后做dnat,将service ip改为pod network中的Pod IP,进而请求被实际传输到某个service下面的pod中处理了。

五、参考资料

理解Docker容器网络之Linux Network Namespace

由于2016年年中调换工作的原因,对容器网络的研究中断过一段时间。随着当前项目对Kubernetes应用的深入,我感觉之前对于容器网络的粗浅理解已经不够了,容器网络成了摆在前面的“一道坎”。继续深入理解K8s网络、容器网络已经势在必行。而这篇文章就算是一个重新开始,也是对之前浅表理解的一个补充。

我还是先从Docker容器网络入手,虽然Docker与Kubernetes采用了不同的网络模型:K8s是Container Network Interface, CNI模型,而Docker则采用的是Container Network Model, CNM模型。而要了解Docker容器网络,理解Linux Network Namespace是不可或缺的。在本文中我们将尝试理解Linux Network Namespace及相关Linux内核网络设备的概念,并手工模拟Docker容器网络模型的部分实现,包括单机容器网络中的容器与主机连通、容器间连通以及端口映射等。

一、Docker的CNM网络模型

Docker通过libnetwork实现了CNM网络模型。libnetwork设计doc中对CNM模型的简单诠释如下:

img{512x368}

CNM模型有三个组件:

  • Sandbox(沙盒):每个沙盒包含一个容器网络栈(network stack)的配置,配置包括:容器的网口、路由表和DNS设置等。
  • Endpoint(端点):通过Endpoint,沙盒可以被加入到一个Network里。
  • Network(网络):一组能相互直接通信的Endpoints。

光看这些,我们还很难将之与现实中的Docker容器联系起来,毕竟是抽象的模型不对应到实体,总有种漂浮的赶脚。文档中又给出了CNM模型在Linux上的参考实现技术,比如:沙盒的实现可以是一个Linux Network Namespace;Endpoint可以是一对VETH;Network则可以用Linux BridgeVxlan实现。

这些实现技术反倒是比较接地气。之前我们在使用Docker容器时,了解过Docker是用linux network namespace实现的容器网络隔离的。使用docker时,在物理主机或虚拟机上会有一个docker0的linux bridge,brctl show时能看到 docker0上“插上了”好多veth网络设备:

# ip link show
... ...
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 02:42:30:11:98:ef brd ff:ff:ff:ff:ff:ff
19: veth4559467@if18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP mode DEFAULT group default
    link/ether a6:14:99:52:78:35 brd ff:ff:ff:ff:ff:ff link-netnsid 3
... ...

$ brctl show
bridge name    bridge id        STP enabled    interfaces
... ...
docker0        8000.0242301198ef    no        veth4559467

模型与现实终于有点接驳了!下面我们将进一步深入对这些术语概念的理解。

二、Linux Bridge、VETH和Network Namespace

Linux Bridge,即Linux网桥设备,是Linux提供的一种虚拟网络设备之一。其工作方式非常类似于物理的网络交换机设备。Linux Bridge可以工作在二层,也可以工作在三层,默认工作在二层。工作在二层时,可以在同一网络的不同主机间转发以太网报文;一旦你给一个Linux Bridge分配了IP地址,也就开启了该Bridge的三层工作模式。在Linux下,你可以用iproute2工具包或brctl命令对Linux bridge进行管理。

VETH(Virtual Ethernet )是Linux提供的另外一种特殊的网络设备,中文称为虚拟网卡接口。它总是成对出现,要创建就创建一个pair。一个Pair中的veth就像一个网络线缆的两个端点,数据从一个端点进入,必然从另外一个端点流出。每个veth都可以被赋予IP地址,并参与三层网络路由过程。

关于Linux Bridge和VETH的具体工作原理,可以参考IBM developerWorks上的这篇文章《Linux 上的基础网络设备详解》。

Network namespace,网络名字空间,允许你在Linux创建相互隔离的网络视图,每个网络名字空间都有独立的网络配置,比如:网络设备、路由表等。新建的网络名字空间与主机默认网络名字空间之间是隔离的。我们平时默认操作的是主机的默认网络名字空间。

概念总是抽象的,接下来我们将在一个模拟Docker容器网络的例子中看到这些Linux网络概念和网络设备到底是起到什么作用的以及是如何操作的。

三、用Network namespace模拟Docker容器网络

为了进一步了解network namespace、bridge和veth在docker容器网络中的角色和作用,我们来做一个demo:用network namespace模拟Docker容器网络,实际上Docker容器网络在linux上也是基于network namespace实现的,我们只是将其“自动化”的创建过程做成了“分解动作”,便于大家理解。

1、环境

我们在一台物理机上进行这个Demo实验。物理机安装了Ubuntu 16.04.1,内核版本:4.4.0-57-generic。Docker容器版本:

Client:
 Version:      1.12.1
 API version:  1.24
 Go version:   go1.6.3
 Git commit:   23cf638
 Built:        Thu Aug 18 05:33:38 2016
 OS/Arch:      linux/amd64

Server:
 Version:      1.12.1
 API version:  1.24
 Go version:   go1.6.3
 Git commit:   23cf638
 Built:        Thu Aug 18 05:33:38 2016
 OS/Arch:      linux/amd64

另外,环境中需安装了iproute2和brctl工具。

2、拓扑

我们来模拟一个拥有两个容器的容器桥接网络:

img{512x368}

对应的用手工搭建的模拟版本拓扑如下(由于在同一台主机,模拟版本采用172.16.0.0/16网段):

img{512x368}

3、创建步骤

a) 创建Container_ns1和Container_ns2 network namespace

默认情况下,我们在Host上看到的都是default network namespace的视图。为了模拟容器网络,我们新建两个network namespace:

sudo ip netns add Container_ns1
sudo ip netns add Container_ns2

$ sudo ip netns list
Container_ns2
Container_ns1

创建的ns也可以在/var/run/netns路径下看到:

$ sudo ls /var/run/netns
Container_ns1  Container_ns2

我们探索一下新创建的ns的网络空间(通过ip netns exec命令可以在特定ns的内部执行相关程序,这个exec命令是至关重要的,后续还会发挥更大作用):

$ sudo ip netns exec Container_ns1 ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

$ sudo ip netns exec Container_ns2 ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

$ sudo ip netns exec Container_ns2 ip route

可以看到,新建的ns的网络设备只有一个loopback口,并且路由表为空。

b) 创建MyDocker0 bridge

我们在default network namespace下创建MyDocker0 linux bridge:

$ sudo brctl addbr MyDocker0

$ brctl show
bridge name    bridge id        STP enabled    interfaces
MyDocker0        8000.000000000000    no

给MyDocker0分配ip地址并生效该设备,开启三层,为后续充当Gateway做准备:

$ sudo ip addr add 172.16.1.254/16 dev MyDocker0
$ sudo ip link set dev MyDocker0 up

启用后,我们发现default network namespace的路由配置中增加了一条路由:

$ route -n
内核 IP 路由表
目标            网关            子网掩码        标志  跃点   引用  使用 接口
0.0.0.0         10.11.36.1      0.0.0.0         UG    100    0        0 eno1
... ...
172.16.0.0      0.0.0.0         255.255.0.0     U     0      0        0 MyDocker0
... ...
c) 创建VETH,连接两对network namespaces

到目前为止,default ns与Container_ns1、Container_ns2之间还没有任何瓜葛。接下来就是见证奇迹的时刻了。我们通过veth pair建立起多个ns之间的联系:

创建连接default ns与Container_ns1之间的veth pair – veth1和veth1p:

$sudo ip link add veth1 type veth peer name veth1p

$sudo ip -d link show
... ...
21: veth1p@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether 66:6d:e7:75:3f:43 brd ff:ff:ff:ff:ff:ff promiscuity 0
    veth addrgenmode eui64
22: veth1@veth1p: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether 56:cd:bb:f2:10:3f brd ff:ff:ff:ff:ff:ff promiscuity 0
    veth addrgenmode eui64
... ...

将veth1“插到”MyDocker0这个bridge上:

$ sudo brctl addif MyDocker0 veth1
$ sudo ip link set veth1 up
$ brctl show
bridge name    bridge id        STP enabled    interfaces
MyDocker0        8000.56cdbbf2103f    no        veth1

将veth1p“放入”Container_ns1中:

$ sudo ip link set veth1p netns Container_ns1

$ sudo ip netns exec Container_ns1 ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
21: veth1p@if22: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 66:6d:e7:75:3f:43 brd ff:ff:ff:ff:ff:ff link-netnsid 0

这时,你在default ns中将看不到veth1p这个虚拟网络设备了。按照上面拓扑,位于Container_ns1中的veth应该更名为eth0:

$ sudo ip netns exec Container_ns1 ip link set veth1p name eth0
$ sudo ip netns exec Container_ns1 ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
21: eth0@if22: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 66:6d:e7:75:3f:43 brd ff:ff:ff:ff:ff:ff link-netnsid 0

将Container_ns1中的eth0生效并配置IP地址:

$ sudo ip netns exec Container_ns1 ip link set eth0 up
$ sudo ip netns exec Container_ns1 ip addr add 172.16.1.1/16 dev eth0

赋予IP地址后,自动生成一条直连路由:

sudo ip netns exec Container_ns1 ip route
172.16.0.0/16 dev eth0  proto kernel  scope link  src 172.16.1.1

现在在Container_ns1下可以ping通MyDocker0了,但由于没有其他路由,包括默认路由,ping其他地址还是不通的(比如:docker0的地址:172.17.0.1):

$ sudo ip netns exec Container_ns1 ping -c 3 172.16.1.254
PING 172.16.1.254 (172.16.1.254) 56(84) bytes of data.
64 bytes from 172.16.1.254: icmp_seq=1 ttl=64 time=0.074 ms
64 bytes from 172.16.1.254: icmp_seq=2 ttl=64 time=0.064 ms
64 bytes from 172.16.1.254: icmp_seq=3 ttl=64 time=0.068 ms

--- 172.16.1.254 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.064/0.068/0.074/0.010 ms

$ sudo ip netns exec Container_ns1 ping -c 3 172.17.0.1
connect: Network is unreachable

我们再给Container_ns1添加一条默认路由,让其能ping通物理主机上的其他网络设备或其他ns空间中的网络设备地址:

$ sudo ip netns exec Container_ns1 ip route add default via 172.16.1.254
$ sudo ip netns exec Container_ns1 ip route
default via 172.16.1.254 dev eth0
172.16.0.0/16 dev eth0  proto kernel  scope link  src 172.16.1.1

$ sudo ip netns exec Container_ns1 ping -c 3 172.17.0.1
PING 172.17.0.1 (172.17.0.1) 56(84) bytes of data.
64 bytes from 172.17.0.1: icmp_seq=1 ttl=64 time=0.068 ms
64 bytes from 172.17.0.1: icmp_seq=2 ttl=64 time=0.076 ms
64 bytes from 172.17.0.1: icmp_seq=3 ttl=64 time=0.069 ms

--- 172.17.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.068/0.071/0.076/0.003 ms

不过这时候,如果想在Container_ns1中ping通物理主机之外的地址,比如:google.com,那还是不通的。为什么呢?因为ping的icmp的包的源地址没有做snat(docker是通过设置iptables规则实现的),导致出去的以172.16.1.1为源地址的包“有去无回”了^0^。

接下来,我们按照上述步骤,再创建连接default ns与Container_ns2之间的veth pair – veth2和veth2p,由于步骤相同,这里就不列出那么多信息了,只列出关键操作:

$ sudo ip link add veth2 type veth peer name veth2p
$ sudo brctl addif MyDocker0 veth2
$ sudo ip link set veth2 up
$ sudo ip link set veth2p netns Container_ns2
$ sudo ip netns exec Container_ns2 ip link set veth2p name eth0
$ sudo ip netns exec Container_ns2 ip link set eth0 up
$ sudo ip netns exec Container_ns2 ip addr add 172.16.1.2/16 dev eth0
$ sudo ip netns exec Container_ns2 ip route add default via 172.16.1.254

至此,模拟创建告一段落!两个ns之间以及它们与default ns之间连通了!

$ sudo ip netns exec Container_ns2 ping -c 3 172.16.1.1
PING 172.16.1.1 (172.16.1.1) 56(84) bytes of data.
64 bytes from 172.16.1.1: icmp_seq=1 ttl=64 time=0.101 ms
64 bytes from 172.16.1.1: icmp_seq=2 ttl=64 time=0.083 ms
64 bytes from 172.16.1.1: icmp_seq=3 ttl=64 time=0.087 ms

--- 172.16.1.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.083/0.090/0.101/0.010 ms

$ sudo ip netns exec Container_ns1 ping -c 3 172.16.1.2
PING 172.16.1.2 (172.16.1.2) 56(84) bytes of data.
64 bytes from 172.16.1.2: icmp_seq=1 ttl=64 time=0.053 ms
64 bytes from 172.16.1.2: icmp_seq=2 ttl=64 time=0.092 ms
64 bytes from 172.16.1.2: icmp_seq=3 ttl=64 time=0.089 ms

--- 172.16.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1999ms
rtt min/avg/max/mdev = 0.053/0.078/0.092/0.017 ms

当然此时两个ns之间连通,主要还是通过直连网络,实质上是MyDocker0在二层起到的作用。以在Container_ns1中ping Container_ns2的eth0地址为例:

Container_ns1此时的路由表:

$ sudo ip netns exec Container_ns1 ip route
default via 172.16.1.254 dev eth0
172.16.0.0/16 dev eth0  proto kernel  scope link  src 172.16.1.1

ping 172.16.1.2执行后,根据路由表,将首先匹配到直连网络(第二条),即无需gateway转发便可以直接将数据包送达。arp查询后(要么从arp cache中找到,要么在MyDocker0这个二层交换机中泛洪查询)获得172.16.1.2的mac地址。ip包的目的ip填写172.16.1.2,二层数据帧封包将目的mac填写为刚刚查到的mac地址,通过eth0(172.16.1.1)发送出去。eth0实际上是一个veth pair,另外一端“插”在MyDocker0这个交换机上,因此这一过程就是一个标准的二层交换机的数据报文交换过程, MyDocker0相当于从交换机上的一个端口收到以太帧数据,并将数据从另外一个端口发出去。ping应答包亦如此。

而如果是在Container_ns1中ping某个docker container的地址,比如172.17.0.2。当ping执行后,根据Container_ns1下的路由表,没有匹配到直连网络,只能通过default路由将数据包发给Gateway: 172.16.1.254。虽然都是MyDocker0接收数据,但这次更类似于“数据被直接发到 Bridge 上,而不是Bridge从一个端口接收(这块儿与我之前的文章中的理解稍有差异)”。二层的目的mac地址填写的是gateway 172.16.1.254自己的mac地址(Bridge的mac地址),此时的MyDocker0更像是一块普通网卡的角色,工作在三层。MyDocker0收到数据包后,发现并非是发给自己的ip包,通过主机路由表找到直连链路路由,MyDocker0将数据包Forward到docker0上(封装的二层数据包的目的MAC地址为docker0的mac地址)。此时的docker0也是一种“网卡”的角色,由于目的ip依然不是docker0自身,因此docker0也会继续这一转发流程。通过traceroute可以印证这一过程:

$ sudo ip netns exec Container_ns1  traceroute 172.17.0.2
traceroute to 172.17.0.2 (172.17.0.2), 30 hops max, 60 byte packets
 1  172.16.1.254 (172.16.1.254)  0.082 ms  0.023 ms  0.019 ms
 2  172.17.0.2 (172.17.0.2)  0.054 ms  0.034 ms  0.029 ms

$ sudo ip netns exec Container_ns1  ping -c 3 172.17.0.2
PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=63 time=0.084 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=63 time=0.101 ms
64 bytes from 172.17.0.2: icmp_seq=3 ttl=63 time=0.098 ms

--- 172.17.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.084/0.094/0.101/0.010 ms

现在,你应该大致了解docker engine在创建单机容器网络时都在背后做了哪些手脚了吧(当然,这里只是简单模拟,docker实际做的要比这复杂许多)。

四、基于userland proxy的容器端口映射的模拟

端口映射让位于容器中的service可以将服务范围扩展到主机之外,比如:一个运行于container中的nginx可以通过宿主机的9091端口对外提供http server服务:

$ sudo docker run -d -p 9091:80 nginx:latest
8eef60e3d7b48140c20b11424ee8931be25bc47b5233aa42550efabd5730ac2f

$ curl 10.11.36.15:9091
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
    body {
        width: 35em;
        margin: 0 auto;
        font-family: Tahoma, Verdana, Arial, sans-serif;
    }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at
<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

容器的端口映射实际是通过docker engine的docker proxy功能实现的。默认情况下,docker engine(截至docker 1.12.1版本)采用userland proxy(–userland-proxy=true)为每个expose端口的容器启动一个proxy实例来做端口流量转发:

$ ps -ef|grep docker-proxy
root     26246  6228  0 16:18 ?        00:00:00 /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.0 -host-port 9091 -container-ip 172.17.0.2 -container-port 80

docker-proxy实际上就是在default ns和container ns之间转发流量而已。我们完全可以模拟这一过程。

我们创建一个fileserver demo:

//testfileserver.go
package main

import "net/http"

func main() {
    http.ListenAndServe(":8080", http.FileServer(http.Dir(".")))
}

我们在Container_ns1下启动这个Fileserver service:

$ sudo ip netns exec Container_ns1 ./testfileserver

$ sudo ip netns exec Container_ns1 lsof -i tcp:8080
COMMAND    PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
testfiles 3605 root    3u  IPv4 297022      0t0  TCP *:http-alt (LISTEN)

可以看到在Container_ns1下面,8080已经被testfileserver监听,不过在default ns下,8080端口依旧是avaiable的。

接下来,我们在default ns下创建一个简易的proxy:

//proxy.go
... ...

var (
    host          string
    port          string
    container     string
    containerport string
)

func main() {
    flag.StringVar(&host, "host", "0.0.0.0", "host addr")
    flag.StringVar(&port, "port", "", "host port")
    flag.StringVar(&container, "container", "", "container addr")
    flag.StringVar(&containerport, "containerport", "8080", "container port")

    flag.Parse()

    fmt.Printf("%s\n%s\n%s\n%s", host, port, container, containerport)

    ln, err := net.Listen("tcp", host+":"+port)
    if err != nil {
        // handle error
        log.Println("listen error:", err)
        return
    }
    log.Println("listen ok")

    for {
        conn, err := ln.Accept()
        if err != nil {
            // handle error
            log.Println("accept error:", err)
            continue
        }
        log.Println("accept conn", conn)
        go handleConnection(conn)
    }
}

func handleConnection(conn net.Conn) {
    cli, err := net.Dial("tcp", container+":"+containerport)
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    log.Println("dial ", container+":"+containerport, " ok")

    go io.Copy(conn, cli)
    _, err = io.Copy(cli, conn)
    fmt.Println("communication over: error:", err)
}

在default ns下执行:

./proxy -host 0.0.0.0 -port 9090 -container 172.16.1.1 -containerport 8080
0.0.0.0
9090
172.16.1.1
80802017/01/11 17:26:10 listen ok

我们http get一下宿主机的9090端口:

$curl 10.11.36.15:9090
<pre>
<a href="proxy">proxy</a>
<a href="proxy.go">proxy.go</a>
<a href="testfileserver">testfileserver</a>
<a href="testfileserver.go">testfileserver.go</a>
</pre>

成功获得file list!

proxy的输出日志:

2017/01/11 17:26:16 accept conn &{{0xc4200560e0}}
2017/01/11 17:26:16 dial  172.16.1.1:8080  ok
communication over: error:<nil>

由于每个做端口映射的Container都要启动至少一个docker proxy与之配合,一旦运行的container增多,那么docker proxy对资源的消耗将是大大的。因此docker engine在docker 1.6之后(好像是这个版本)提供了基于iptables的端口映射机制,无需再启动docker proxy process了。我们只需修改一下docker engine的启动配置即可:

在使用systemd init system的系统中如果为docker engine配置–userland-proxy=false,可以参考《当Docker遇到systemd》这篇文章。

由于这个与network namespace关系不大,后续单独理解^0^。

六、参考资料

1、《Docker networking cookbook
2、《Docker cookbook

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats