写Go代码时遇到的那些问题[第1期]

程序员步入“大龄”,写代码的节奏也会受到影响。以前是长时间持续地写,现在写代码的节奏变成了“波浪形”:即写一段时间,歇一段时间。当然这里的“歇”并不是真的歇,而是做其他事情了,比如:回顾、整理与总结。

平时写Go代码,时不时就遇到一些问题,或是写出一些让自己还算满意的代码,这里全部列为“问题”行列。这些“问题”(以及其解决方法)往往比较“小”、比较“碎片”,不适合以自己“擅长”的“长篇”风格写出来分享,也不知道以什么样的“题目”去分享更好,但这样的“问题”在日常又总是会遇到。考量来考量去,赶脚还是用一系列的文章去分享比较合适,即每隔一段时间,积累了一些问题后,就写一篇文章分享一下。

这是第一篇,后续不确定时间地(注意:这不是weekly的哦)发布新篇,直到没啥可写了或不写Go代码了^0^。

一、Go包管理

首当其冲的是Go包管理

1. vendor的“传染性”带来的问题

Go从1.5版本开始引入vendor机制以辅助Go的包管理。随着vendor机制的应用日益广泛,我们会发现:有些时候你要是不用vendor(在不借助第三方包管理工具的前提下),很多编译问题是解决不了的,或者说vendor机制有一定的传染性。比如下面这个例子:

img{512x368}

如上图所示:app_c包直接调用lib_a包中函数,并使用了lib_b包(v0.2版本)中的类型,lib_a包vendor了lib_b包(v0.1版本)。在这样的情况下,当我们编译app_c包时,是否会出现什么问题呢?我们一起来看一下这个例子:

在$GOPATH/src路径下面我们查看当前示例的目录结构:

$tree
├── app_c
    ├── c.go
├── lib_a
    ├── a.go
    └── vendor
        └── lib_b
            └── b.go
├── lib_b
    ├── b.go

各个源文件的示例代码如下:

//lib_a/a.go
package lib_a

import "lib_b"

func Foo(b lib_b.B) {
    b.Do()
}

//lib_a/vendor/lib_b/b.go

package lib_b

import "fmt"

type B struct {
}

func (*B) Do() {
    fmt.Println("lib_b version:v0.1")
}

// lib_b/b.go
package lib_b

import "fmt"

type B struct {
}

func (*B) Do() {
    fmt.Println("lib_b version:v0.2")
}

// app_c/c.go
package app_c

import (
    "lib_a"
    "lib_b"
)

func main() {
    var b lib_b.B
    lib_a.Foo(b)
}

进入app_c目录,执行编译命令:

$go build c.go
# command-line-arguments
./c.go:10:11: cannot use b (type "lib_b".B) as type "lib_a/vendor/lib_b".B in argument to lib_a.Foo

我们看到go compiler认为:app_c包main函数中定义的变量b的类型(lib_b.B)与lib_a.Foo的参数b的类型(lib_a/vendor/lib_b.B)是不同的类型,不能相互赋值

2. 通过手工vendor解决上述问题

这个例子非常有代表性,那么怎么解决这个问题呢?我们需要在app_c中也使用vendor机制,即将app_c所需的lib_a和lib_b都vendor到app_c中。

按照上述思路解决后的示例的目录结构:

$tree
├── app_c
    ├── c.go
    └── vendor
        ├── lib_a
        │   └── a.go
        └── lib_b
            └── b.go
├── lib_a
    ├── a.go
    └── vendor
        └── lib_b
            └── b.go
├── lib_b
    ├── b.go

不过要注意的是:app_c/vendor下面的库中的vendor目录要被删除掉的,我们只保留顶层vendor。现在我们再来编译c.go就可以顺利编译通过了。

3. 使用dep

对于demo或规模不大、依赖不多的小项目,手工进行vendor还是蛮有效的。一个可行的手工vendor步骤:

  • 在项目顶层创建vendor;
  • 通过go list -json ./…查看项目依赖 “deps”;
  • 逐一下载各个依赖,并确定要使用的版本(tag or branch),将特定版本cp到顶层的vendor目录下,至少要做到vendor所有直接依赖包;
  • 可以在顶层vendor下创建dependencies.list文件,手工记录vendor的依赖包列表以及版本信息。

但是对于稍大一点的项目,手工vendor就会费时费力,有时仅能顾及到“直接依赖包”的vendor,“数不清”的间接依赖/传递依赖会让你头疼不已。这个时候我们会想到使用第三方的包管理工具。在现在这个时间点,如果你再和我提godepglide等,那你就out了,dep是首选。

《初窥dep》一文中,我们对当时的dep进行了较为详细的工作机制分析,如今dep已经演化到0.3.2版本了,并且commandline交互接口已经稳定了。dep init默认采用network mode,即到各个依赖包的upstream上查找版本信息并下载;dep init也支持-gopath模式,即在本地$GOPATH下获取依赖包的元信息并分析。

不过,对于在国内的gopher,dep init的过程依然是一道很难逾越的“坎”。问题多出在:第三方包特别喜欢依赖的golang.org/x下的那些包,常见的包有:net、text、crypto等。golang.org/x/{package_name}仅仅是canonical import path,真正的代码存储在go.googlesource.com上,而在国内get这些包,我们会得到如下错误:

$go get -u golang.org/x/net
package golang.org/x/net: unrecognized import path "golang.org/x/net" (https fetch: Get https://golang.org/x/net?go-get=1: dial tcp 216.239.37.1:443: i/o timeout)

这将导致dep init命令长期阻塞,给国内gopher带来极为糟糕的体验。更为糟糕的是,即便是采用了一些fan qiang方式,有些时候go.googlesource.com依旧无法连接。因此,我一般的作法是在国外的主机上进行dep init,然后将vendor checkin到代码仓库中。这样其他人在得到你的代码后,也不需dep ensure(也要下载依赖包)即可实现reproducable build。

有些朋友可能会将从github.com/golang上下载的net包来代替golang.org/x/net,并使用dep init -v -gopath=true的模式。但这种替换会被dep分析出来,因为dep会尝试去读取代码库的元信息,结果依然会是失败。

二. 非容器化应用的本地日志管理

微服务、容器化大行其道的今天,单个应用的日志处理变得简单化了,应用只需要将要输出的信息输出到stdout、stderr上即可。logging基础设施会收集容器日志,并做后续归档、分析、过滤、查找、展示等处理。但是在非容器环境、在没有统一的logging基础设施的前提下,日志的管理就又交还给应用自身了。浅显的日志管理至少要包含日志的rotate(轮转)、压缩归档以及历史归档文件的处理吧。这里我们就来探讨一下这个问题的几种解决方法。

1. 托管给logrotate

在主流的Linux发行版上都有一个logrotate工具程序,应用程序可以借助该工具对应用输出的日志进行rotate、压缩、归档和删除历史归档日志,这样可大幅简化应用的日志输出逻辑,应用仅需要将日志输出到一个具名文件中即可,其余都交给logrotate处理。

我们建立一个输出log的demo app:

//testlogrotate.go

package main

import (
    "log"
    "os"
    "time"
)

func main() {
    file, err := os.OpenFile("./app.log", os.O_CREATE|os.O_WRONLY|os.O_APPEND, 0666)
    if err != nil {
        log.Fatalln("Failed to open log file:", err)
    }
    defer file.Close()

    logger := log.New(file,
        "APP_LOG_PREFIX: ",
        log.Ldate|log.Ltime|log.Lshortfile)

    for {
        logger.Println("test log")
        time.Sleep(time.Second * 1)
    }
}

该程序每隔1s向app.log文件写入一行日志。

# tail -f app.log
APP_LOG_PREFIX: 2018/01/12 19:14:43 testlogrotate.go:22: test log
APP_LOG_PREFIX: 2018/01/12 19:14:44 testlogrotate.go:22: test log
APP_LOG_PREFIX: 2018/01/12 19:14:45 testlogrotate.go:22: test log
APP_LOG_PREFIX: 2018/01/12 19:14:46 testlogrotate.go:22: test log
APP_LOG_PREFIX: 2018/01/12 19:14:47 testlogrotate.go:22: test log
... ..

接下来,我们就要用logrotate对该app.log文件进行定期的rotate、压缩归档以及历史归档清理了,我们需要为app.log定制一个配置。logrotate读取配置的目录是/etc/logrotate.d,我们在/etc/logrotate.d下面建立applog文件(当然你也可以在任意其他目录下建立配置文件,不过其他目录下的配置文件无法被logrotate的cron任务感知到,不过这样的配置文件可以手工与logrotate程序结合使用),文件内容如下:

# cat /etc/logrotate.d/applog

/data/tonybai/test/go/app.log {
  rotate 7
  daily
  size=10M
  compress
  dateext
  missingok
  copytruncate
}

这个配置的大致含义是:
* 每天rotate一次
* 日志保留7天(rotate=7, daily rotate)
* 归档日志采用压缩形式
* 归档日志带有时间戳
* 当当前日志size > 10M时,会进行一次rotate
* 最重要的是copytruncate这个配置,这个配置的含义是将app.log当前日志copy到一个归档文件后,对app.log进行truncate操作,这样app.log的open file fd并不改变,不会影响到原app继续写日志。当然这个copy的过程中可能会有少量日志lost。

如果你觉得logrotate在时间粒度和精确度上依旧无法满足你的要求,你可以结合crontab自己定时执行logrotate(crontab -e编辑crontab的配置):

# logrotate -f /etc/logrotate.d/applog

下面是rotate时,tail -f中看到的情况:

APP_LOG_PREFIX: 2018/01/12 20:25:59 testlogrotate.go:21: test log
APP_LOG_PREFIX: 2018/01/12 20:26:00 testlogrotate.go:21: test log
tail: app.log: file truncated
APP_LOG_PREFIX: 2018/01/12 20:26:01 testlogrotate.go:21: test log
APP_LOG_PREFIX: 2018/01/12 20:26:02 testlogrotate.go:21: test log
APP_LOG_PREFIX: 2018/01/12 20:26:03 testlogrotate.go:21: test log

可以看到tail可以检测到file truncate事件。

2. 使用自带rotate功能log包

在go技术栈中众多的logging包中,logrus是使用较为广泛的一个包,支持与std库 log API兼容的结构化日志、支持logging level设置、支持安全地并发写日志以及hook等。但logrus自身并不具备auto rotate功能,需要结合其他工具才能实现。这里用nate finchlumberjack,我们来看一个简单的例子:

// testlogrusAndlumberjack.go

package main

import (
    "time"

    "github.com/natefinch/lumberjack"
    log "github.com/sirupsen/logrus"
)

func main() {
    logger := log.New()
    logger.SetLevel(log.DebugLevel)
    logger.Formatter = &log.JSONFormatter{}

    logger.Out = &lumberjack.Logger{
        Filename:   "./app.log",
        MaxSize:    1, // megabytes
        MaxBackups: 3,
        MaxAge:     1,    //days
        Compress:   true, // disabled by default
        LocalTime:  true,
    }

    for {
        logger.Debug("this is an app log")
        time.Sleep(2 * time.Millisecond)
    }
}

从代码里,我们看到:通过设置logger.Out为一个lumberjack.Logger的实例,将真正的Write交给了lumberjack.Logger,而后者实现了log的rotate功能,与logrotate的配置有些类似,这里也包括日志最大size设定、保留几个归档日志、是否压缩、最多保留几天的日志。不过当前lumberjack实现的rotate判断条件仅有一个:MaxSize,而没有定时rotate的功能。

我们执行一下该程序,等待一会,并停止程序。可以看到目录下的日志文件发生了变化:

$ls -lh
-rw-r--r--  1 tony  staff   3.7K Jan 12 21:03 app-2018-01-12T21-03-42.844.log.gz
-rw-r--r--  1 tony  staff   3.7K Jan 12 21:04 app-2018-01-12T21-04-15.017.log.gz
-rw-r--r--  1 tony  staff   457K Jan 12 21:04 app.log

lumberjack每发现app.log大于MaxSize就会rotate一次,这里已经有了两个归档压缩文件,并被lumberjack赋予了时间戳和序号,便于检索和查看。

3. 关于对日志level的支持以及loglevel的热更新

对日志level的支持是logging包选项的一个重要参考要素。logrus支持设置六个log level:

    PanicLevel
    FatalLevel
    ErrorLevel
    WarnLevel
    InfoLevel
    DebugLevel

并且对不同的leve的日志,logrus支持设定hook分别处理,比如:放到不同的日志文件中。通过logrus.Logger.SetLevel方法可以运行时更新logger实例的loglevel,这个特性可以让我们在生产环境上通过临时打开debuglevel日志对程序进行更细致的观察,以定位问题,快速定位bug,非常实用。

结合系统Signal机制,我们可以通过USR1和USR2两个signal来运行时调整程序的日志级别,我们来看一个示例:

img{512x368}

从上面图片可以看到,日志级别从高到低分别为:Panic, Fatal, Error, Warn,Info和Debug。如果要调高log level,我们向程序发送USR1来调高日志级别,相反,发送USR2来调低日志级别:

我们在testlogrusAndlumberjack.go上面做些修改:增加对signal: USR1和USR2的监听处理,同时循环打印各种级别日志,以后续验证日志级别的动态调整:

// testloglevelupdate.go

import (
    log "github.com/sirupsen/logrus"
    ... ...
)

func main() {
    logger := log.New()
    logger.SetLevel(log.DebugLevel)
    logger.Formatter = &log.JSONFormatter{}

    logger.Out = &lumberjack.Logger{
        Filename:   "./app.log",
        MaxSize:    1, // megabytes
        MaxBackups: 3,
        MaxAge:     1,    //days
        Compress:   true, // disabled by default
        LocalTime:  true,
    }

    c := make(chan os.Signal, 1)
    signal.Notify(c, syscall.SIGUSR1, syscall.SIGUSR2)
    go watchAndUpdateLoglevel(c, logger)

    for {
        logger.Debug("it is debug level log")
        logger.Info("it is info level log")
        logger.Warn("it is warning level log")
        logger.Error("it is warning level log")
        time.Sleep(5 * time.Second)
    }
}

watchAndUpdateLoglevel函数用于监听程序收到的系统信号,并根据信号类型调整日志级别:

// testloglevelupdate.go
func watchAndUpdateLoglevel(c chan os.Signal, logger *log.Logger) {
    for {
        select {
        case sig := <-c:
            if sig == syscall.SIGUSR1 {
                level := logger.Level
                if level == log.PanicLevel {
                    fmt.Println("Raise log level: It has been already the most top log level: panic level")
                } else {
                    logger.SetLevel(level - 1)
                    fmt.Println("Raise log level: the current level is", logger.Level)
                }

            } else if sig == syscall.SIGUSR2 {
                level := logger.Level
                if level == log.DebugLevel {
                    fmt.Println("Reduce log level: It has been already the lowest log level: debug level")
                } else {
                    logger.SetLevel(level + 1)
                    fmt.Println("Reduce log level: the current level is", logger.Level)
                }

            } else {
                fmt.Println("receive unknown signal:", sig)
            }
        }
    }
}

运行该程序后,你可以通过如下命令向程序发送信号:

$ kill -s USR1|USR2 程序的进程号

通过日志的输出,可以判断出日志级别调整是否生效,这里就不细说了。

不过这里还要提一点的是logrus目前对于输出的日志中双引号内的一些字符(比如双引号自身)会做转义处理,即在前面加上“反斜杠”,比如:

{"level":"debug","msg":"receive a msg: {\"id\":\"000002\",\"ip\":\"201.108.111.117\"}","time":"2018-01-11T20:42:31+08:00"}

这个问题让日志可读性大幅下降,但这个问题似乎尚处于无解状态

三. json marshal json string时的转义问题

之前写过这样一个function,用于统一marshal内部组件通信的应答消息:

func marshalResponse(code int, msg string, result interface{}) (string, error) {
    m := map[string]interface{}{
        "code":   0,
        "msg":    "ok",
        "result": result,
    }

    b, err := json.Marshal(&m)
    if err != nil {
        return "", err
    }

    return string(b), nil
}

不过当result类型为json string时,这个函数的输出带有转义反斜线:

//testmarshaljsonstring.go
... ...
func main() {
    s, err := marshalResponse(0, "ok", `{"name": "tony", "city": "shenyang"}`)
    if err != nil {
        fmt.Println("marshal response error:", err)
        return
    }
    fmt.Println(s)
}

运行这个程序输出:

{"code":0,"msg":"ok","result":"{\"name\": \"tony\", \"city\": \"shenyang\"}"}

怎么解决掉这个问题呢?json提供了一种RawMessage类型,本质上就是[]byte,我们将json string转换成RawMessage后再传给json.Marshal就可以解决掉这个问题了:

//testmarshaljsonstring.go
func marshalResponse1(code int, msg string, result interface{}) (string, error) {
    s, ok := result.(string)
    var m = map[string]interface{}{
        "code": 0,
        "msg":  "ok",
    }

    if ok {
        rawData := json.RawMessage(s)
        m["result"] = rawData
    } else {
        m["result"] = result
    }

    b, err := json.Marshal(&m)
    if err != nil {
        return "", err
    }

    return string(b), nil
}

func main() {
    s, err = marshalResponse1(0, "ok", `{"name": "tony", "city": "shenyang"}`)
    if err != nil {
        fmt.Println("marshal response1 error:", err)
        return
    }
    fmt.Println(s)
}

再运行这个程序的输出结果就变成了我们想要的结果了:

{"code":0,"msg":"ok","result":{"name":"tony","city":"shenyang"}}

四. 如何在main包之外使用flag.Parse后的命令行flag变量

我们在使用Go开发交互界面不是很复杂的command-line应用时,一般都会使用std中的flag包进行命令行flag解析,并在main包中校验和使用flag.Parse后的flag变量。常见的套路是这样的:

//testflag1.go
package main

import (
    "flag"
    "fmt"
)

var (
    endpoints string
    user      string
    password  string
)

func init() {
    flag.StringVar(&endpoints, "endpoints", "127.0.0.1:2379", "comma-separated list of etcdv3 endpoints")
    flag.StringVar(&user, "user", "", "etcdv3 client user")
    flag.StringVar(&password, "password", "", "etcdv3 client password")
}

func usage() {
    fmt.Println("flagdemo-app is a daemon application which provides xxx service.\n")
    fmt.Println("Usage of flagdemo-app:\n")
    fmt.Println("\t flagdemo-app [options]\n")
    fmt.Println("The options are:\n")

    flag.PrintDefaults()
}

func main() {
    flag.Usage = usage
    flag.Parse()

   // ... ...
   // 这里我们可以使用endpoints、user、password等flag变量了
}

在这样的一个套路中,我们可以在main包中直接使用flag.Parse后的flag变量了。但有些时候,我们需要在main包之外使用这些flag vars(比如这里的:endpoints、user、password),怎么做呢,有几种方法,我们逐一来看看。

1. 全局变量法

我想大部分gopher第一个想法就是使用全局变量,即建立一个config包,包中定义全局变量,并在main中将这些全局变量绑定到flag的Parse中:

$tree globalvars
globalvars
├── config
│   └── config.go
├── etcd
│   └── etcd.go
└── main.go

// flag-demo/globalvars/config/config.go

package config

var (
    Endpoints string
    User      string
    Password  string
)

// flag-demo/globalvars/etcd/etcd.go
package etcd

import (
    "fmt"

    "../config"
)

func EtcdProxy() {
    fmt.Println(config.Endpoints, config.User, config.Password)
    //... ....
}

// flag-demo/globalvars/main.go
package main

import (
    "flag"
    "fmt"
    "time"

    "./config"
    "./etcd"
)

func init() {
    flag.StringVar(&config.Endpoints, "endpoints", "127.0.0.1:2379", "comma-separated list of etcdv3 endpoints")
    flag.StringVar(&config.User, "user", "", "etcdv3 client user")
    flag.StringVar(&config.Password, "password", "", "etcdv3 client password")
}

.... ...

func main() {
    flag.Usage = usage
    flag.Parse()

    go etcd.EtcdProxy()

    time.Sleep(5 * time.Second)
}

可以看到,我们在绑定cmdline flag时使用的是config包中定义的全局变量。并且在另外一个etcd包中,使用了这些变量。

我们运行这个程序:

./main -endpoints 192.168.10.69:2379,10.10.12.36:2378 -user tonybai -password xyz123
192.168.10.69:2379,10.10.12.36:2378 tonybai xyz123

不过这种方法要注意这些全局变量值在Go包初始化过程的顺序,比如:如果在etcd包的init函数中使用这些全局变量,那么你得到的各个变量值将为空值,因为etcd包的init函数在main.init和main.main之前执行,这个时候绑定和Parse都还未执行。

2. 传参法

第二种比较直接的想法就是将Parse后的flag变量以参数的形式、以某种init的方式传给其他要使用这些变量的包。

$tree parampass
parampass
├── etcd
│   └── etcd.go
└── main.go

// flag-demo/parampass/etcd/etcd.go
package etcd
... ...

func EtcdProxy(endpoints, user, password string) {
    fmt.Println(endpoints, user, password)
}

// flag-demo/parampass/main.go
package main

import (
    "flag"
    "fmt"
    "time"

    "./etcd"
)

var (
    endpoints string
    user      string
    password  string
)

func init() {
    flag.StringVar(&endpoints, "endpoints", "127.0.0.1:2379", "comma-separated list of etcdv3 endpoints")
    flag.StringVar(&user, "user", "", "etcdv3 client user")
    flag.StringVar(&password, "password", "", "etcdv3 client password")
}

... ...

func main() {
    flag.Usage = usage
    flag.Parse()

    go etcd.EtcdProxy(endpoints, user, password)

    time.Sleep(5 * time.Second)
}

这种方法非常直观,这里就不解释了。但注意:一旦使用这种方式,一定需要在main包与另外的包之间建立某种依赖关系,至少main包会import那些使用flag变量的包。

3. 配置中心法

全局变量法直观,而且一定程度上解除了其他包与main包的耦合。但是有一个问题,那就是一旦flag变量发生增减,config包就得相应添加或删除变量定义。是否有一种方案可以在flag变量发生变化时,config包不受影响呢?我们可以用配置中心法。所谓的配置中心法,就是实现一个与flag变量类型和值无关的通过配置存储结构,我们在main包中向该结构注入parse后的flag变量,在其他需要flag变量的包中,我们使用该结构得到flag变量的值。

$tree configcenter
configcenter
├── config
│   └── config.go
└── main.go

//flag-demo/configcenter/config/config.go
package config

import (
    "log"
    "sync"
)

var (
    m  map[string]interface{}
    mu sync.RWMutex
)

func init() {
    m = make(map[string]interface{}, 10)
}

func SetString(k, v string) {
    mu.Lock()
    m[k] = v
    mu.Unlock()
}

func SetInt(k string, i int) {
    mu.Lock()
    m[k] = i
    mu.Unlock()
}

func GetString(key string) string {
    mu.RLock()
    defer mu.RUnlock()
    v, ok := m[key]
    if !ok {
        return ""
    }
    return v.(string)
}

func GetInt(key string) int {
    mu.RLock()
    defer mu.RUnlock()
    v, ok := m[key]
    if !ok {
        return 0
    }
    return v.(int)
}

func Dump() {
    log.Println(m)
}

// flag-demo/configcenter/main.go

package main

import (
    "flag"
    "fmt"
    "time"

    "./config"
)

var (
    endpoints string
    user      string
    password  string
)

func init() {
    flag.StringVar(&endpoints, "endpoints", "127.0.0.1:2379", "comma-separated list of etcdv3 endpoints")
    flag.StringVar(&user, "user", "", "etcdv3 client user")
    flag.StringVar(&password, "password", "", "etcdv3 client password")
}
... ...
func main() {
    flag.Usage = usage
    flag.Parse()

    // inject flag vars to config center
    config.SetString("endpoints", endpoints)
    config.SetString("user", user)
    config.SetString("password", password)

    time.Sleep(5 * time.Second)
}

我们在main中使用config的SetString将flag vars注入配置中心。之后,我们在其他包中就可以使用:GetString、GetInt获取这些变量值了,这里就不举例了。

4、“黑魔法”: flag.Lookup

flag包中提供了一种类似上述的”配置中心”的机制,但这种机制不需要我们显示注入“flag vars”了,我们只需按照flag提供的方法在其他package中读取对应flag变量的值即可。

$tree flaglookup
flaglookup
├── etcd
│   └── etcd.go
└── main.go

// flag-demo/flaglookup/main.go
package main

import (
    "flag"
    "fmt"
    "time"

    "./etcd"
)

var (
    endpoints string
    user      string
    password  string
)

func init() {
    flag.StringVar(&endpoints, "endpoints", "127.0.0.1:2379", "comma-separated list of etcdv3 endpoints")
    flag.StringVar(&user, "user", "", "etcdv3 client user")
    flag.StringVar(&password, "password", "", "etcdv3 client password")
}

......

func main() {
    flag.Usage = usage
    flag.Parse()

    go etcd.EtcdProxy()

    time.Sleep(5 * time.Second)
}

// flag-demo/flaglookup/etcd/etcd.go
package etcd

import (
    "flag"
    "fmt"
)

func EtcdProxy() {
    endpoints := flag.Lookup("endpoints").Value.(flag.Getter).Get().(string)
    user := flag.Lookup("user").Value.(flag.Getter).Get().(string)
    password := flag.Lookup("password").Value.(flag.Getter).Get().(string)

    fmt.Println(endpoints, user, password)
}

运行该程序:

$go run main.go -endpoints 192.168.10.69:2379,10.10.12.36:2378 -user tonybai -password xyz123
192.168.10.69:2379,10.10.12.36:2378 tonybai xyz123

输出与我们的预期是一致的。

5、对比

我们用一幅图来对上述几种方法进行对比:

img{512x368}

很显然,经过简单包装后,“黑魔法”flaglookup应该是比较优异的方案。main包、other packages只需import flag即可。

注意:在main包中定义exported的全局flag变量并被其他package import的方法是错误的,很容易造成import cycle问题。并且任何其他package import main包都是不合理的

五. 小结

以上是这段时间遇到的、收集的一些Go问题以及solution。注意:这些solution不一定是最优方案哦!如果您有更好方案,欢迎批评指正和互动交流

本文章中涉及到的所有源码和配置文件在这里可以下载到。


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

微信赞赏:
img{512x368}

TB一周萃选[第4期]

本文是首发于个人微信公众号的文章“TB一周萃选[第4期]”的归档。

img{512x368}

孩子,我要求你读书用功,不是因为我要你跟别人比成绩,而是因为,我希望你将来会拥有选择的权利,选择有意义、有时间的工作,而不是被迫谋生。当你的工作在你心中有意义,你就有成就感。当你的工作给你时间,不剥夺你的生活,你就有尊严。成就感和尊严,给你快乐。——龙应台 《亲爱的安德烈》

这两天中原大地的一场大雪正式宣告了深冬的到来。小寒节气已过,我们即将经历“三九天”的严寒。不过在这种寒冷的天气下,有一群人却不以为然,他们仍然绽放着天真无邪的笑脸,那就是低年级的孩子们,因为寒假来了

寒假意味着孩子们的阶段性“解脱”,因为中国孩子的学习是很辛苦的,而且这种“辛苦程度”丝毫没有减弱的趋势。就在刚才开车回家的路上还碰到一辆高中放学的校车,此时的时间已经指向了晚上20:30。这勾起了我高中时代的回忆,只不过那时我没有校车坐,而是自己骑车披星戴月地上下学。现在的我作为一名家长或多或少还是了解一些小学教育的实际情况的。就拿我家闺女来说吧,(市重点)小学二年级学生,平时还好些,一到期末复习阶段(一般提前一个月课程就学完了),几乎每天都在“刷题”,有时一天能刷五六张“大卷纸”。多么美好的校园童年时光,就在这“题海”中消耗了!

不得不承认,近三十年来,中国教育在硬件设施、教育普及程度是大幅提升了,但教育理念和方式方法依旧落后,甚至原地踏步。我的一种赶脚:中国现在不缺顶尖科学家、不缺顶尖工程师,不缺顶尖的工匠,唯独缺少的是顶尖的、能够影响社会、能够影响领导层决策的教育大家。

寒假即将开始,希望像我闺女一样的众多小朋友们能在这个寒假中开开心心地做一些自己想做的事情。

img{512x368}

一、一周文章精粹

1. C语言当选2017 TIBOE年度编程语言

时间飞逝!大脑中还满满是去年Go语言当选TIBOE年度编程语言的情景。在刚刚公布的2017年TIBOE年度编程语言中,老当益壮的C语言战胜了新秀Kotlin当选年度语言。C语言的当选,一方面反映了其他主流编程语言在2016年的表现不是很给力,另外一方面也说明了快速发展的制造行业、智能机器行业中,C语言的应用十分广泛。

img{512x368}

2. The Why of Go

Travis CI的Infrastructure工程师Carmen Andoh 从编程语言发展演化的角度讲述了Go的诞生的来龙去脉、Go的典型特性(并发、GC等)的设计考量及与其他主流语言的对比,137页的slides,内容很丰富。

原文链接:“The Why of Go”

3. Go 1.10解读

这是Gopher Academy BlogAdvent 2017系列的倒数第二篇文章,由gopherconeu和LondonGophers的联合发起人Florin Pățan(dlsniper)撰文对即将发布的Go 1.10的变化做了详尽说明,有些类似Go 1.10 release notes,但又有不同。

原文链接:“Go 1.10″

4. 使用istio治理微服务入门

做了一年多微服务开发,感受到了微服务的好,也困惑于微服务治理之痛。Service Mesh概念的出现,尤其是istio项目的发布让我眼前一亮。迎着2018年第一缕阳光,我亲自动手验证了如何使用istio治理微服务,虽说还不成熟,但未来可期。

原文链接:“使用istio治理微服务入门”

img{512x368}

5. 2018,关于区块链的18个预测

2017年,比特币价格像坐上了火箭,年底冲破20000美元大关。这让比特币背后的技术-区块链再次成为人们关注的焦点。国外专业人士提出了关于区块链在2018的18个预测,建议大家不妨看看,不要失去下一个风口哦!

原文链接:“18 Blockchain Predictions for 2018”

img{512x368}

6. Kubernetes入门教程

这是由一位Google Cloud Platform的员工编写的Kubernetes入门教程!

原文链接:“Kubernetes 101: Pods, Nodes, Containers, and Clusters”

img{512x368}

二、一周资料分享

1. Conduit官方文档中文版

在istio项目发布之后,service mesh概念的提出者、Buoyant公司的William Morgan在Kubecon 2017 austin大会上宣布发布Conduit项目。Conduit是Buoyant公司继linkerd之后的第二代专门面向Kubernetes的超轻量Service Mesh开源项目,它的控制平台由Go实现,数据平面则由Rust实现。这也是buoyant公司在service mesh针对istio项目的反制措施。servicemesh中文社区对conduit文档做了翻译。

资料分享链接:“Conduit官方文档中文版”

三、一周工具推荐

1. Android上运行linux环境的神器:Termux

Termux是一个Android terminal emulator,可以像那些terminal工具一样,提供基本的shell操作命令;除此之外它还可以提供一套模拟的Linux环境,你可以在无需root、无需root、无需root的情况下,像在PC linux环境下一样进行各种Linux操作,包括使用apt工具进行安装包管理、定制shell、访问网络、编写源码、编译和运行程序,甚至将手机作为反向代理、负载均衡服务器或是Web服务器,又或是做一些羞羞的hack行为等。

工具链接:Termux

img{512x368}

四、一周图书推荐

1. 21本关于开源的必读书单

2017岁尾,Linux Foundation上发表了一篇博客,给出了一份开源项目开发者、爱好者、企业开源程序负责人必读的书单。这些书涵盖开源项目开发、组织、工具使用、开源项目使用、社区维护、商业模式等诸多领域。

书单链接:“The Essential Open Source Reading List: 21 Must-Read Books”


我的联系方式:

微博:http://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats