分类 技术志 下的文章

理解ASCII码

最近在写一个串口程序,设备提供商的通讯协议说明中明确了内部通讯方式为“ASCII码”。其实每个和计算机打交道的人都会天天接触ASCII码,只是ASCII码藏在了幕后,我们很少与之正面打交道罢了,这次机会正好让我有机会到幕后去看看ASCII码的“庐山真面目”。

ASCII码众所周知全称为“美国信息交换标准码,American Standard Code for Information Interchange”。不能不佩服美国人,我这里决不是崇洋媚外,美国人在计算机领域对人类的贡献是绝对应该被我们所牢记的,对现代人来说,这些贡献丝毫不亚于中国人的四大发明。言归正传,个人觉得了解ASCII的由来是理解ASCII码的最好方法。

一、背景
人们发明了计算机,并知道如何使用内存中的0101来表示数和机器码。但是人类最主要的信息展现形式是文本,如何用内存中的bit来表示文本一直困扰着人们,这种情况一直持续到ASCII码发明成功后才被“部分”[注1]解决。说白了ASCII码就是解决了一个以数字形式表示文本的问题。

二、实例
让我们到幕后去看看,看看ASCII码是如何以数字形式表示文本的。举2个例子:
(1) ASCII码'A' — 其内存存储字节2进制表示为"01000001" — 其16进制值为0×41 — 其10进制值为65(这里的值实际上是'A'在ASCII码表中编号);

验证过程:
char c = 'A';
printf("%c\n", c); /* A */
printf("%x\n", c); /* 41 */
printf("%d\n", c); /* 65 */

(2) ASCII码'6' — 其内存存储字节2进制表示为"00110110" — 其16进制值为0×36 — 其10进制值为54(这里的值实际上是'6'在ASCII码表中的编号);

验证过程:
char c = '6';
printf("%c\n", c); /* 6 */
printf("%x\n", c); /* 36 */
printf("%d\n", c); /* 54 */

三、ASCII码通讯
利用ASCII码作为通讯方式到底是一种什么样的通讯方式呢?(FTP协议中有两种通讯方式,其中一种是ASCII码方式,即文本方式)这里也举例说明:比如我们要传送数值123, 123数值用16进制表示为0x7b,以二进制表示为01111011,那么以二进制方式通讯,01111011就是我们真实传送的数据,但是如果以ASCII码方式通讯,则完全不同了,如果你还传送01111011的话,对方那边的得到的将是'{'('{'对应的ASCII码用16进制表示为7b)。那么我们该如何怎么传呢?正确的方式就是将123每位上的数字转化为其相应的ASCII码,然后传送。这里'1'、'2'和'3'对应的ASCII码用16进制表示分别为0×31、0×32和0×33。这样组合起来后要传送的数据应为"001100010011001000110011"。

四、总结
一个字符串在内存中就是按照逐个字符的ASCII码连续存放的,我们在传送字符串时一般无需做特殊转换。

[注1]
尽管ASCII码是计算机世界里最重要的标准,但它并不是完美的。ASCII码的最大问题在于它太倾向于美国!的确, ASCII码即使对那些以英语为主要语言的国家也几乎是不合适的。尽管ASCII码包含有美元符号,但英镑符号呢?还有许多西欧国家语言中用到的重音符号呢?更不用说在欧洲一些国家里使用的非拉丁字母,包括希腊文、阿拉伯文、希伯来文和西里尔文。此外,还有印度及东南亚国家用到的婆罗门教的手迹。而一个7位编码又如何来处理成千上万的中文、日文、韩文笔画以及韩语音节?– 摘自《编码的奥秘

APR源代码分析-内存篇

内存管理一直是让C程序员头痛的问题,作为一个通用接口集,APR当然也提供其自己的内存管理接口–APR Pool。APR Pool作为整个APR的一个基础功能接口,直接影响着APR的设计风格。在这篇Blog中,我们就要和APR Pool来一次“亲密接触”。(还是以Unix平台实现为例)

APR Pool源代码的位置在$(APR_HOME)/memory目录下,本篇blog着重分析unix子目录下的apr_pools.c文件内容,其相应头文件为$(APR_HOME)/include/apr_pools.h;在apr_pools.c中还实现了负责APR内部内存分配的APR allocator的相关操作接口(APR allocator相关头文件为$(APR_HOME)/include/apr_allocator.h)。

一、APR Pool概述
我们平时常用的内存管理方式都是基于“request-style”的,即分配所请求大小的内存,使用之,销毁之。而APR Pool的设计初衷是为Complex Application提供良好的内存管理接口,其使用方式与“request-style”有所不同。在$(APR_HOME)/docs/pool-design.htm文档中,设计者道出了“使用好”APR Pool的几个Rules,同时也从侧面反映出APR Pool的设计。
1、任何Object都不应该有自己的Pool,它应该在其构造函数的调用者的Pool中分配。因为一般调用者知道该Object的生命周期,并通过Pool管理之。也就是说Object无须自己调用"Close" or "Free",这些操作在Object所在Pool被摧毁时会被隐式调用的。
2、函数无须为了他们的行为而去Create/Destroy Pool,它们应该使用它们调用者传给它们的Pool。
3、为了防止内存无限制的增长,APR Pool建议当遇到unbounded iteration时使用sub_pool,标准格式如下:
subpool = apr_poll_create(pool, NULL);
for (i = 0; i < n; ++i) {
  apr_pool_clear(subpool);
  … …
  do_operation(…, subpool);
}
apr_pool_destroy(subpool);

二、深入APR Pool
到目前为止我们已经知道了该如何“很好的”使用APR Pool,接下来我们来深入APR Pool的内部,看究竟有什么“奥秘”。
1、分析apr_pool_initialize
任何使用APR的应用程序一般都会调用apr_app_initalize来初始化APR的内部使用的数据结构,察看一下app_app_initialize的代码,你会发现apr_pool_initialize在被apr_app_initialize调用的apr_initialize中被调用,该函数用来初始化使用Pool所需的内部结构(用户无须直接调用apr_pool_initialize,在apr_app_initialize时它被自动调用,而apr_app_initialize又是APR program调用的第一个function,其在apr_general.h中声明,在misc/unix/start.c中实现)。

apr_pool_initialize的伪码如下(这里先不考虑多线程的情况):
static apr_byte_t apr_pools_initialized = 0;
static apr_pool_t *global_pool = NULL;
static apr_allocator_t *global_allocator = NULL;

apr_pool_initialize
{
 如果(!apr_pools_initialized)
 {
  创建global_allocator; ——(1)
 }
 
 创建global_pool; ——-(2)
 给global_pool起名为"apr_global_pool";
}

(1) Pool和Allocator
每个Pool都有一个allocator相伴,这个allocator可能是Pool自己的,也可能是其Parent Pool的。allocator的结构如下:
/* in apr_pools.c */
struct apr_allocator_t {
    apr_uint32_t        max_index;
    apr_uint32_t        max_free_index;
    apr_uint32_t        current_free_index;
    … …[注1]
    apr_pool_t         *owner;
    apr_memnode_t      *free[MAX_INDEX];
};
在(1)调用后,global_allocator的所有xx_index字段都为0,owner–>NULL,free指针数组中的指针也都–>NULL。这里的index是大小的级别,这里最大级别为20(即MAX_INDEX = 20),free指针数组中free[0]所指的node大小为MIN_ALLOC大小,即8192,即2的13次幂。按此类推free[19]所指的node大小应为2的32次幂,即4G byte。allocator_alloc中是通过index = (size >> BOUNDARY_INDEX) – 1来得到这一index的。allocator维护了一个index不同的memnode池,每一index级别上又有一个memnode list,以后用户调用apr_palloc分配size大小内存时,allocaotr_alloc函数就会在free memnode池中选和要寻找的size的index级别相同的memnode,而不是重新malloc一个size大小的memnode。另外要说明一点的是APR Pool中所有ADT中的xx_index字段都是大小级别的概念。

(2) 创建global_pool
在APR Pool初始化的时候,唯一创建一个Pool — global_pool。apr_pool_t的非Debug版本如下:
/* in apr_pools.c */
struct apr_pool_t {
    apr_pool_t           *parent;
    apr_pool_t           *child;
    apr_pool_t           *sibling;
    apr_pool_t           **ref;
    cleanup_t            *cleanups;
    cleanup_t            *free_cleanups;
    apr_allocator_t      *allocator;
    struct process_chain *subprocesses;
    apr_abortfunc_t       abort_fn;
    apr_hash_t           *user_data;
    const char           *tag;
    apr_memnode_t        *active;
    apr_memnode_t        *self; /* The node containing the pool itself */
    char                 *self_first_avail;
    … …
}
而apr_memnode_t的结构如下:
/* in apr_allocator.h */
struct apr_memnode_t {
    apr_memnode_t *next;            /**< next memnode */
    apr_memnode_t **ref;            /**< reference to self */
    apr_uint32_t   index;           /**< size */
    apr_uint32_t   free_index;      /**< how much free */
    char          *first_avail;     /**< pointer to first free memory */
    char          *endp;            /**< pointer to end of free memory */
};

apr_pool_create_ex首先通过allocator寻找合适的node用于创建Pool,但由于global_allocator尚未分配过任何node,所以global_allocator创建一个新的node,该node大小为MIN_ALLOC(即8192),该node的当前状态如下:
node –>|—————|0
              |                      |
              |                      |
              |                      |
              |—————|APR_MEMNODE_T_SIZE first_avail
              |                      |
              |                      |
              |                      | 
              —————– size(一般为8192) endp
其他属性值如下:
node->next = NULL;
node->index = (APR_UINT32_TRUNC_CAST)index; /* 这里为1 */

创建完node后,我们将在该node上的avail space划分出我们的global_pool来。划分后状态如下(pool与node关系):
node –>|—————|0 self = pool_active
             |                       |
             |                       |
             |—————|APR_MEMNODE_T_SIZE <——– global_pool
            |                        |
            |                       |  
            |—————|APR_MEMNODE_T_SIZE+SIZEOF_POOL_T first_avail = pool->self_first_avail
           |                        |
           |                        |
           —————– size(一般为8192) endp

pool其他一些属性值(pool与pool之间关系)如下:
pool->allocator = global_allocator;
pool->child = NULL;
pool->sibling = NULL;
pool->ref = NULL;

也许现在你仍然不能看清楚APR Pool的结构,无需着急,我们继续往下分析。

2、APR Sub_Pool创建(pool与pool之间关系)
上面我们已经初始化了global_pool,但是global_pool是不能直接拿来就用的,我们需要创建其sub_pool,也就是用户自己的pool。一般创建user的sub_pool我们都使用apr_pool_create宏,它只需要2个参数,并默认sub_pool继承parent_pool的allocator和abort_fn。在apr_pool_create内部调用的还是apr_pool_create_ex函数。我们来看一下创建sub_pool后pool之间的关系:
例:
static apr_pool_t *sub_pool = NULL;
apr_pool_create(&sub_pool, NULL);

这里sub_pool的创建过程与global_pool相似,也是先创建其承载体node,然后设置相关属性,使其成为global_pool的child_pool。创建完后global_pool和该sub_pool的关系如下图:
global_pool    sub_pool
———–              \ /          ————
sibling —>NULL    /——-   parent
———–             /             ————
child ————  /                 sibling —–>NULL
———–                            ————
                                             child  ——>NULL
                                            ————
APR Pool是按照二叉树结构组织的,并采用“child-sibling”的链式存储方式,global_pool作为整个树的Root Node。如果APR Pool中存在多个Pool,其节点结构关系如下:
               /-child–>
              / ——–Pool_level1-a
             / / parent   /|\    |
            /|/_              |     | sibling
global_pool             |     |
            \                  |    \|/
             \-child-> Pool_level1-b
            /|\                  | 
             -parent——

3、从pool中分配内存
上面我们已经拥有了一个sub_pool,我们现在就可以从sub_pool中分配内存了。APR提供了函数apr_palloc来做这件事情。
例如:apr_alloc(sub_pool, wanted_mem_size);
apr_palloc在真正分配内存前会把wanted_mem_size做一下处理。它使用APR_ALIGN_DEFAULT宏处理wanted_mem_size得到一个圆整到8的new_size,然后再在pool中分配new_size大小的内存,也就是说pool中存在的用户内存块的大小都是8的倍数。举个例子来说,如果wanted_mem_size = 30,apr_alloc实际会在pool中划分出32个字节的空间。

apr_palloc的工作流程简单描述是这样的:
a) 如果在pool->active node的avail space足够满足要申请的内存大小size时,则直接返回active->first_avail,并调整active->first_avail = active->first_avail + size;
b) 如果a)不满足,则察看active->next这个node满足与否;如果满足则将返回所要内存,并将该node设为active node,将以前的active node放在新active node的next位置上;
c) 如果b)也不满足,则新创建一个memnode,这个node可能为新创建的,也可能是从allocator的free memnode池中取出的,取决于当时整个Pool的状态。

从上面我们也可以看出node分为2类,一种是作为pool的承载体,但pool结构的空间不足以完全占满一个node,所以也可以用来分配用户内存;另一种就是完全用于分配用户内存的了。每个pool有一个node list,当然这个list中包括它自己所在的node了。

4、apr_pool_clear和apr_pool_destroy
创建和分配结束后,我们需要clear或者destroy掉Pool。
clear和destroy的区别在于clear并不真正free内存,只是清理便于以后alloc时重用,而destroy则是真正的free掉内存了。

三、总结
本文并未说明APR Pool有哪些优点或缺点(除了概述中的一些Rules),仅是把其来龙去脉弄清。

[注1]
在本文中出现的"… …"的符号表示与多线程相关的字段和代码的省略。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats