2017年十一月月 发布的文章

Hello,Termux

程序员或多或少都有一颗Geek(极客)的心^0^。- Tony Bai

折腾开始。

这一切都源于前不久将手机换成了Xiaomi的MIX2。因为青睐开放的系统(相对于水果公司系统的封闭,当然Mac笔记本除外^0^),我长期使用Android平台的手机。但之前被三星Note3手机的“大屏”搞的不是很舒服,这两年一直用5寸及以下的手机,因为单手操作体验良好。MIX2的所谓“全面屏”概念又让我回归到了大屏时代。

除了大屏,现在手机“豪华”的硬件配置也让人惊叹:高通骁龙835,8核,最高主频 2.45GHz;6GB以上的LPDDR4x的双通道大内存,怪不得微软和高通都开始合作生产基于高通ARM处理器的Win10笔记本了,这配置支撑在笔记本上办公+浏览网页绰绰有余。不过对于不怎么玩游戏的我而言,这种配置仅仅用作手机日常功能有些浪费。于是有了“mobile coding”的想法和需求,至少现在是这样想的,冲动也好,伪需求也好,先实现了再说。

一、神器Termux,不仅仅是一个terminal emulator

所谓”mobile coding”不仅仅是要通过手机ssh到服务器端进行coding,还要支持在手机上搭建一个dev环境。dev环境这个需求是以往我安装的ConnectBot等ssh client端工具所无法提供的,而其他一些terminal工具,诸如Terminal Emulator for Android仅仅提供一些shell命令的支持,适合于那些喜爱使用命令行对Android机器进行管理的”administrator”们,但对dev环境的搭建支持有限的。于是神器Termux登场了。

Termux是什么?Termux首先是一个Android terminal emulator,可以像那些terminal工具一样,提供基本的shell操作命令;除此之外更为重要的是它不仅仅是一个terminal emulator。Termux提供了一套模拟的Linux环境,你可以在无需root、无需root、无需root的情况下,像在PC linux环境下一样进行各种Linux操作,包括使用apt工具进行安装包管理、定制shell、访问网络、编写源码、编译和运行程序,甚至将手机作为反向代理、负载均衡服务器或是Web服务器,又或是做一些羞羞的hack行为等。

1、安装

Termux仅支持Android 5.0及以上版本(估计现在绝大多数android机都满足这一条件)。在国内建议使用F-Droid安装Termux(先下载安装F-Droid,再在F-Droid内部搜索Termux,然后点击安装),国内的各种安装助手很少有对这个工具的支持。或是到apk4fun下载Termux的apk包(size非常小)到手机中安装(安装时需要连接着网络)。当前Termux的最新版本为0.54

在桌面点击安装后的Termux图标,我们就启动了一个Termux应用,见下图:

img{512x368}

2、Termux初始环境探索

Mix2手机的Android系统使用的是Android 7.1.1版本,桌面Launcher用的是MIUI 9.1稳定版,默认的shell是bash。通过Termux,我们可以查看Android 7.1.1.使用的Linux内核版本如下:

$uname -a
Linux localhost 4.4.21-perf-g6a9ee37d-06186-g2b2a77b #1 SMP PREEMPT Thu Oct 26 14:55:45 CST 2017 aarch64 Android

可以看出Linux内核是4.4.21,采用的CPU arch family是ARM aarch64

我再来看一下Termux提供的常见目录结构:

Home路径:

$cd ~/
$pwd
/data/data/com.termux/files/home

//或者通过环境变量HOME获取:

$echo $HOME
/data/data/com.termux/files/home

长期使用Linux的朋友可能会发现,这个HOME路径好是奇怪,一般的标准Linux发行版,比如Ubuntu都是在”/home”下放置用户目录,但termux环境中HOME路径却是一个奇怪的位置。在Termux官方Wiki中,我们得到的答案是:Termux是一个prefixed system。

这个prefix的含义我理解颇有些类似于我们在使用configure脚本时指定的–prefix参数的含义。我们在执行configure脚本时,如果不显式地给–prefix传入值,那么make install后,包将被install在标准位置;否则将被install在–prefix值所指定的位置。

prefixed system意味着Termux中所有binaries、libraries、configs都不是放在标准的位置,比如:/usr/bin、/bin、/usr/lib、/etc等下面。Termux expose了一个特殊的环境变量:PREFIX(类似于configure –prefix参数选项):

$echo $PREFIX
/data/data/com.termux/files/usr

$cd $PREFIX
$ls -F
bin/  etc/  include/  lib/  libexec/  share/  tmp/  var/

是不是有些似曾相识?但Termux的$PREFIX路径与标准linux的根路径下的目录结构毕竟还存在差别,但有着对应关系,这种对应关系大致是:

Termux的$PREFIX/bin  <=>  标准Linux环境的 /bin和/usr/bin
Termux的$PREFIX/lib  <=>  标准Linux环境的 /lib和/usr/lib
Termux的$PREFIX/var  <=>  标准Linux环境的 /var
Termux的$PREFIX/etc  <=>  标准Linux环境的 /etc

因此,基本可以认为Termux的$PREFIX/就对应于标准Linux的/路径。

3、更新源和包管理

Termux的牛逼之处在于它基于debian的APT包管理工具进行软件包的安装、管理和卸载,就像我们在Ubuntu下所做的那样,非常方便。

Termux自己维护了一个源,提供各种专门为termux定制的包:

# The main termux repository:
#deb [arch=all,aarch64] http://termux.net stable main

同时,termux-packages项目为开发者和爱好者提供了构建工具和脚本,通过这些工具和脚本,我们可以将自己需要的软件包编译为可以在termux运行的版本,并补充到Termux的源之中。我大致测试了一下官方这个源还是可用的,虽然初始连接的响应很缓慢。

国内清华大学维护了一个Termux的镜像源,你可以通过编辑 /data/data/com.termux/files/usr/etc/apt/sources.list文件或执行apt edit-sources命令编辑源(在Shell配置中添加export EDITOR=vi后,apt edit-sources才能启动编辑器进行编辑):

# The main termux repository:
#deb [arch=all,aarch64] http://termux.net stable main
deb [arch=all,aarch64] http://mirrors.tuna.tsinghua.edu.cn/termux stable main

剩下的操作与Ubuntu上的一模一样,无非apt update后,利用apt install安装你想要的包。目前Termux源中都有哪些包呢?可以通过apt list命令查看:

$apt list
Listing... Done
aapt/stable 7.1.2.33-1 aarch64
abduco/stable 0.6 aarch64
abook/stable 0.6.0pre2-1 aarch64
ack-grep/stable 2.18 all
alpine/stable 2.21 aarch64
angband/stable 4.1.0 aarch64
apache2/stable 2.4.29 aarch64
apache2-dev/stable 2.4.29 aarch64
apksigner/stable 0.4 all
apr/stable 1.6.3 aarch64
apr-dev/stable 1.6.3 aarch64
apr-util/stable 1.6.1 aarch64
apr-util-dev/stable 1.6.1 aarch64
apt/stable,now 1.2.12-3 aarch64 [installed]
apt-transport-https/stable 1.2.12-3 aarch64
... ...
zile/stable 2.4.14 aarch64
zip/stable 3.0-1 aarch64
zsh/stable,now 5.4.2-1 aarch64 [installed]

查看是否有需要更新的包列表:

$apt list --upgradable

以安装golang为例:

$apt install golang
....
$go version
go version go1.9.2 android/arm64

img{512x368}

Termux源中的包似乎更新的很勤奋,Go 1.9.2才发布没多久,这里已经是最新版本了,这点值得赞一个!

二、开发环境搭建

我的目标是mobile coding,需要在Termux上搭建一个dev环境,以Go环境为例。

1、sshd

在搭建和配置阶段,如果直接通过Android上的软键盘操作,即便屏再大,那个体验也是较差的。我们最好通过PC连到termux上去安装和配置,这就需要我们在Termux上搭建一个sshd server。下面是步骤:

$apt install openssh
$sshd

就这么简单,一个sshd的server就在termux的后台启动起来了。由于Termux没有root权限,无法listen数值小于1024的端口,因此termux上sshd默认的listen端口是8022。另外termux上的sshd server不支持用户名+密码的方式进行登录,只能用免密登录的方式,即将PC上的~/.ssh/id_rsa.pub写入termux上的~/.ssh/authorized_keys文件中。关于免密登录的证书生成方法和导入方式,网上资料已经汗牛充栋,这里就不赘述了。导入PC端的id_rsa.pub后,PC就可以通过下面命令登录termux了:

$ssh 10.88.46.79  -p 8022
Welcome to Termux!

Wiki:            https://wiki.termux.com
Community forum: https://termux.com/community
IRC channel:     #termux on freenode
Gitter chat:     https://gitter.im/termux/termux
Mailing list:    termux+subscribe@groups.io

Search packages:   pkg search <query>
Install a package: pkg install <package>
Upgrade packages:  pkg upgrade
Learn more:        pkg help

其中10.88.46.79是手机的wlan0网卡的IP地址,可以在termux中使用ip addr命令获得:

$ip addr show wlan0
34: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 3000
    ... ...
    inet 10.88.46.79/20 brd 10.88.47.255 scope global wlan0
       valid_lft forever preferred_lft forever
    ... ...

2、定制shell

Termux支持多种主流Shell,默认的Shell是Bash。很多开发者喜欢zsh + oh-my-zsh的组合,Termux也是支持的,安装起来也是非常简单的:

$ apt install git
$ apt install zsh
$ git clone git://github.com/robbyrussell/oh-my-zsh.git ~/.oh-my-zsh
$ cp ~/.oh-my-zsh/templates/zshrc.zsh-template ~/.zshrc
$ chsh zsh

与在PC上安装和配置zsh和oh-my-zsh没什么两样,你完全可以按照你在PC上的风格定制zsh的Theme等,我用的就是默认theme,所以也无需做太多变化,顶多定制一下PROMPT(~/.oh-my-zsh/themes/robbyrussell.zsh-theme中的PROMPT变量)的格式^0^。

3、安装vim-go

在terminal内进行Go开发,vim-go是必备之神器。vim-go以及相关自动补齐、snippet插件安装在不同平台上都是大同小异的,之前写过两篇《Golang开发环境搭建-Vim篇》和《vim-go更新小记》,大家可以参考。

不过这里有一个较为关键的问题,那就是Termux官方源中的vim 8.0缺少了对python和lua的支持:

 $vim --version|grep py
+cryptv          +linebreak       -python          +viminfo
+cscope          +lispindent      -python3         +vreplace
$vim --version|grep lua
+dialog_con      -lua             +rightleft       +windows

而一些插件又恰需要这些内置的支持,比如ultisnips需要vim自带py支持;neocomplete又依赖vim的lua支持。这样如果你还想要补齐和snippet特性,你就需要在Termux下面自己编译Vim的源码了(configure时加上对python和lua的支持)。

4、中文支持

无论是PC还是Termux使用的都是UTF8的内码格式,但是在安装完vim-go后,我试着用vim编辑一些简单的源码,发现在vim中输入的中文都是乱码。这里通过一个配置解决了该问题:

//~/.vimrc

添加一行:

set enc=utf8

至于其中的原理,可以参见我N年前写的《也谈VIM字符集编码设置》一文。

三、键盘适配

现阶段,写代码还是需要键盘输入的(憧憬未来^0^)。

1、软键盘

使用原生自带的默认软键盘在terminal中用vim进行coding,那得多执着啊,尤其是在vim大量使用ESC键的情况下(我都没找到原生键盘中ESC键在哪里:()。不过Termux倒是很具包容心,为原生软键盘提供了扩展支持:用两个上下音量键协助你输入一些原生键盘上没有或者难于输入的符号,比如(全部的模拟按键列表参见这里):

清理屏幕:用volume down + L 来模拟 ctrl + L
结束前台程序:用volume down + C 来模拟 ctrl + C
ESC:用volume up + E 来模拟
F1-F9: 用volume up + 1 ~ 9 来模拟

据网友提示:volume up + Q键可以打开扩展键盘键,包括ESC、CTRL、ALT等,感谢。

这样仅能满足临时的需要,要想更有效率的输入,我们需要Hacker’s Keyboard。顾名思义,Hacker’s Keyboard可以理解为专为Coding(无论出于何种目的)的人准备的。和Termux一样,你可以从F-droid安装该工具。启动该app后,app界面上有明确的使用说明,如果依旧不明确,还可以查看这篇图文并茂的文章:《How to Use Hacker’s Keyboard》。默认情况下,横屏时Hacker’s keyboard会使用”Full 5-row layout”,即全键盘,竖屏时,则是4-row layout。你可以通过“系统设置”中的“语言和输入法”配置中对其进行设置,让Hacker’s keyboard无论在横屏还是竖屏都采用全键盘(我们屏幕够大^0^):

img{512x368}
横屏

img{512x368}
竖屏

Hacker’s Keyboard无法支持中文输入,这点是目前的缺憾,不过我个人写代码时绝少使用中文,该问题忽略不计。

2、外接蓝牙键盘

Hacker’s Keyboard虽然一定程度提升了Coding时的输入效率,但也仅是权宜之计,长时间大规模通过软键盘输入依旧不甚可取,外接键盘是必须的。对于手机而言,目前最好的外接连接方式就是蓝牙。蓝牙键盘市面上现在有很多种,我选择了老牌大厂logitechK480。这款键盘缺点是便携性差点、按键有些硬,但按键大小适中;而那些超便携的蓝牙键盘普遍键帽太小,长时间Coding的体验是个问题。

img{512x368}

Termux对外接键盘的支持也是很好的,除了常规输入,通过键盘组合键Ctrl+Alt与其他字母的组合实现各种控制功能,比如:

ctrl + alt + c => 实现创建一个新的session;
ctrl + alt + 上箭头/下箭头 => 实现切换到上一个/下一个session的窗口;
ctrl + alt + f => 全屏
ctrl + alt +v => 粘贴
ctrl + alt + +/- => 实现窗口字体的放大/缩小

不过,外接键盘和Hacker’s keyboard有一个相同的问题,那就是针对Termux无法输入中文。我尝试了百度、搜狗等输入法,无论如何切换(正常在其他应用中,通过【shift + 空格】实现中英文切换)均只是输入英文。

四、存储

到目前为止,我们提到的路径都在termux的私有的内部存储(private internal storage)路径下,这类存储的特点是termux应用内部的、私有的,一旦termux被卸载,这些数据也将不复存在。Android下还有另外两种存储类型:shared internal storage和external storage。所谓shared internal storage是手机上所有App可以共享的存储空间,放在这个空间内的数据不会因为App被卸载掉而被删除掉;而外部存储(external storage)主要是指外部插入的SD Card的存储空间。

默认情况下,Termux只支持private internal storage,意味着你要做好数据备份,否则一旦误卸载termux,数据可就都丢失了;数据可以用git进行管理,并sync到云端。

Termux提供了一个名为termux-setup-storage的工具,可以让你在Termux下访问和使用shared internal storage和external storage;该工具是termux-tools的一部分,你可以通过apt install termux-tools来安装这些工具。

执行termux-setup-storage(注意:这个命令只能在手机上执行才能弹出授权对话框,通过远程ssh登录后执行没有任何效果)时,手机会弹出一个对话框,让你确认授权:

img{512x368}

一旦授权,termux-setup-storage就会在HOME目录下建立一个storage目录,该目录下的结构如下:

➜  /data/data/com.termux/files/home $tree storage
storage
├── dcim -> /storage/emulated/0/DCIM
├── downloads -> /storage/emulated/0/Download
├── movies -> /storage/emulated/0/Movies
├── music -> /storage/emulated/0/Music
├── pictures -> /storage/emulated/0/Pictures
└── shared -> /storage/emulated/0

6 directories, 0 files

我们看到在我的termux下,termux-setup-storage在storage下建立了6个符号链接,其中shared指向shared internal storage的根目录,即/storage/emulated/0;其余几个分别指向shared下的若干功能目录,比如:相册、音乐、电影、下载等。我的手机没有插SD卡,可能也不支持(市面上大多数手机都已经不支持了),如果插了一张SD卡,那么termux-setup-storage还会在storage目录下j建立一个符号链接指向在external storage上的一个termux private folder。

现在你就可以把数据放在shared internal storage和external storage上了,当然你也可以在Termux下自由访问shared internal storage上的数据了。

五、小结

Termux还设计了支持扩展的Addon机制,支持通过各种Addon来丰富Termux功能,提升其能力,这些算是高级功能,在这篇入门文章里就先不提及了。好了,接下来我就可以开始我的mobile coding了,充分利用碎片时间。后续在使用Termux+k480的过程中如果遇到什么具体的问题,我再来做针对性的解析。


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

再谈Docker容器单机网络:利用iptables trace和ebtables log

这大半年一直在搞Kubernetes。每次搭建Kubernetes集群,或多或少都会被Kubernetes的“网络插件们”折腾折腾。因此,要说目前Kubernetes中最难搞的是什么?个人觉得莫过于其Pod网络了,至少也是最难搞的之一。除此之外,以Service和Pod为中心的Kubernetes架构还大量利用iptables规则来实现Service的反向代理和负载均衡,这又与Docker原生容器单机网络实现所基于的linux bridgeiptables规则糅合在一起,让troubleshooting时的难度又增加了一些。

去年曾经花过一段研究Docker网络,但现在看来当时在某些关键环节的理解上还有些模糊,于是花了周末的闲暇时间对Docker容器单机网络做了一次再理解。这次重新认识利用上了iptables的Trace功能以及数据链路层的ebtables,让我可以更清晰地看到单机容器网络的网络数据流流向。同时,有了容器网络理解这个基础,对后续解决K8s Pod网络问题也是大有裨益的。

本文从某个角度来说也可以理解为自我答疑,我不会从最最基础的Docker网络结构说起,对Docker容器单机网络结构不了解的童鞋,可以先看看我之前写的《理解Docker单机容器网络》和《理解Docker容器网络之Linux Network Namespace》两篇文章。

一、实验环境

1、主机环境和工具版本

Docker的默认单机容器网络从最初的版本开始就几乎没有变过,因此理论上下面的分析适用于Docker的大部分版本。我的实验环境如下:

Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-63-generic x86_64)

# docker version
Client:
 Version:      17.09.0-ce
 API version:  1.32
 Go version:   go1.8.3
 Git commit:   afdb6d4
 Built:        Tue Sep 26 22:42:18 2017
 OS/Arch:      linux/amd64

Server:
 Version:      17.09.0-ce
 API version:  1.32 (minimum version 1.12)
 Go version:   go1.8.3
 Git commit:   afdb6d4
 Built:        Tue Sep 26 22:40:56 2017
 OS/Arch:      linux/amd64
 Experimental: false

# iptables --version
iptables v1.6.0
# ebtables --version
ebtables v2.0.10-4 (December 2011)

2、容器网络及拓扑

我们需要制作一个用于实验的容器镜像。因为这里仅用ping包进行测试,这里我们仅基于ubuntu:14.04 base image制作一个简单的安装有必要网络工具的image:

//Dockerfile

From ubuntu:14.04
RUN apt-get update && apt-get install -y curl iptables
ENTRYPOINT ["tail", "-f", "/var/log/bootstrap.log"]

// 制作镜像:

# docker build -t foo:latest ./

启动两个容器:

# docker run --name c1 -d --cap-add=NET_ADMIN foo:latest
7a01a19d9328b39f094c9a9c76340d179baaf93afb52189816bcc79f8319cb64
# docker run --name c2 -d --cap-add=NET_ADMIN foo:latest
94a2f1841f6d95fd0682299b17c0aedb60c1047786c8e75b0f1ab7316a995409

容器启动后的网络信息汇总如下:

# ifconfig -a
docker0   Link encap:Ethernet  HWaddr 02:42:ff:27:17:4d
          inet addr:192.168.0.1  Bcast:0.0.0.0  Mask:255.255.240.0
          ... ...

eth0      Link encap:Ethernet  HWaddr 00:16:3e:06:3a:3a
          inet addr:10.171.77.0  Bcast:10.171.79.255  Mask:255.255.248.0
          ... ...

lo        Link encap:Local Loopback
          inet addr:127.0.0.1  Mask:255.0.0.0
          ... ...

veth0594f4b Link encap:Ethernet  HWaddr 96:5b:d4:80:73:5f
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          ... ...

veth57a3dec Link encap:Ethernet  HWaddr 02:52:e9:60:ea:b1
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          ... ...

为了方便大家理解,这里附上一幅简易的容器网络拓扑:

img{512x368}

二、调试工具配置

Docker单机容器网络默认使用的是桥接网络,所有启动的容器均桥接在Docker引擎创建的docker0 linux bridge上,因此内核对Linux bridge的处理逻辑是理解Docker容器网络的关键。

与硬件网桥/交换机不同的是,Linux Bridge还具备三层网络,即IP层的功能,也就是docker0既是一个网桥也是一个具备三层转发功能的网卡设备。传统意义上,按照iso网络七层规范,iptables工作在三层,而网桥是一个二层(数据链路层)设备,但Linux协议栈针对网桥设备的实现却在网络层的规则链(ebtables)中串接了iptables的规则链处理,即在二层也可以处理ip包,这是为了实现桥接透明防火墙的需要。但实现也会保证每个packet数据包仅会走一次iptable的某个chain,要么在linker layer走,要么在network layer走,不会出现在linker layer走一次,又在network layer重复走一次的情况。关于这种基于linux bridge的ebtables和iptables的交互规则,在netfilter官网的一篇名为《ebtables/iptables interaction on a Linux-based bridge》文档中有详细说明,这篇文章也是后续分析的一个重要参考。下面这幅图也是文章中提到的那幅netfilter数据流全图,后续在分析时会反复回到这幅图(后续简称为:全图):

img{512x368}
建议:右键在新标签中打开图片看大图

关于数据包在iptables的各条chain的流经图可以参见下面:

img{512x368}

1、iptables TRACE target的设置

在本次实验中,我们主要需要查看数据包的流转路径,因此我们需要针对iptables的data flow进行跟踪。之前,我曾使用过iptables提供的LOG target或mark set&match方式来跟踪iptables中的数据流,但这两种方式都不理想,需要针对特定流程插入LOG target或match在入口包设定好的mark,对iptables规则的侵入较大,调试和观察也较为复杂;iptables自身提供了TRACE功能,一旦设定,当数据包匹配到任意chain上任意table的处理规则时,iptables会在系统日志(/var/log/syslog)中自动输出此时的数据包状态日志。

我们来为iptables规则添加TRACE,TRACE target只能在iptables的raw表中添加,raw表中有两条iptables built-in chain: PREROUTING和OUTPUT,分别代表网卡数据入口和本地进程下推数据的出口。TRACE target就添加在这两条chain上,步骤如下:

# iptables -t raw -A OUTPUT -p icmp -j TRACE
# iptables -t raw -A PREROUTING -p icmp -j TRACE

注意:我们采用icmp协议(ping协议)进行测试,因此我们只TRACE icmp协议的请求和应答包。

2、ebtables的调试设置

我们的重点在iptables,为ebtables只是辅助,帮助我们看清数据包到底是在哪一层被hook进iptables的规则链中进行处理的。因此我们在全图中的每个ebtables的built-in chain上都加上LOG(ebtables目前还不支持TRACE):

# ebtables -t broute -A BROUTING -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:broute:BROUTING" -j ACCEPT
# ebtables -t nat -A OUTPUT -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:nat:OUTPUT"  -j ACCEPT
# ebtables -t nat -A PREROUTING -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:nat:PREROUTING" -j ACCEPT
# ebtables -t filter -A INPUT -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:filter:INPUT" -j ACCEPT
# ebtables -t filter -A FORWARD -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:filter:FORWARD" -j ACCEPT
# ebtables -t filter -A OUTPUT -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:filter:OUTPUT" -j ACCEPT
# ebtables -t nat -A POSTROUTING -p ipv4 --ip-proto 1 --log-level 6 --log-ip --log-prefix "TRACE: eb:nat:POSTROUTING" -j ACCEPT

注意:这里--ip-proto 1 表示仅match icmp packet。

3、iptables和ebtables规则全文

启动两个容器并添加上述规则后,当前的的iptables规则如下:(通过iptables-save输出的按table组织的rules)

# iptables-save
# Generated by iptables-save v1.6.0 on Sun Nov  5 14:50:46 2017
*raw

: PREROUTING ACCEPT [1564539:108837380]
:OUTPUT ACCEPT [1504962:130805835]
-A PREROUTING -p icmp -j TRACE
-A OUTPUT -p icmp -j TRACE
COMMIT
# Completed on Sun Nov  5 14:50:46 2017
# Generated by iptables-save v1.6.0 on Sun Nov  5 14:50:46 2017
*filter
:INPUT ACCEPT [1564535:108837044]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [1504968:130806627]

: DOCKER - [0:0]

: DOCKER-ISOLATION - [0:0]

: DOCKER-USER - [0:0]

-A FORWARD -j DOCKER-USER
-A FORWARD -j DOCKER-ISOLATION
-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -o docker0 -j DOCKER
-A FORWARD -i docker0 ! -o docker0 -j ACCEPT
-A FORWARD -i docker0 -o docker0 -j ACCEPT
-A DOCKER-ISOLATION -j RETURN
-A DOCKER-USER -j RETURN
COMMIT
# Completed on Sun Nov  5 14:50:46 2017
# Generated by iptables-save v1.6.0 on Sun Nov  5 14:50:46 2017
*nat

: PREROUTING ACCEPT [280:14819]
:INPUT ACCEPT [278:14651]
:OUTPUT ACCEPT [639340:38370263]

: POSTROUTING ACCEPT [639342:38370431]

: DOCKER - [0:0]

-A PREROUTING -m addrtype --dst-type LOCAL -j DOCKER
-A OUTPUT ! -d 127.0.0.0/8 -m addrtype --dst-type LOCAL -j DOCKER
-A POSTROUTING -s 192.168.0.0/20 ! -o docker0 -j MASQUERADE
-A DOCKER -i docker0 -j RETURN
COMMIT
# Completed on Sun Nov  5 14:50:46 2017

而ebtables的规则如下:

# ebtables-save
# Generated by ebtables-save v1.0 on Sun Nov  5 16:51:50 CST 2017
*nat
: PREROUTING ACCEPT
:OUTPUT ACCEPT
: POSTROUTING ACCEPT
-A PREROUTING -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:nat:PREROUTING" --log-ip -j ACCEPT
-A OUTPUT -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:nat:OUTPUT" --log-ip -j ACCEPT
-A POSTROUTING -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:nat:POSTROUTING" --log-ip -j ACCEPT

*broute
:BROUTING ACCEPT
-A BROUTING -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:broute:BROUTING" --log-ip -j ACCEPT

*filter
:INPUT ACCEPT
:FORWARD ACCEPT
:OUTPUT ACCEPT
-A INPUT -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:filter:INPUT" --log-ip -j ACCEPT
-A FORWARD -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:filter:FORWARD" --log-ip -j ACCEPT
-A OUTPUT -p IPv4 --ip-proto icmp --log-level info --log-prefix "TRACE: eb:filter:OUTPUT" --log-ip -j ACCEPT

对于iptables,我们还可以通过iptables命令输出另外一种组织形式的规则列表,我们这里列出filter和nat这两个重要的table的规则(输出规则number,便于后续match分析时查看):

# iptables -nL --line-numbers -v -t filter
Chain INPUT (policy ACCEPT 2558K packets, 178M bytes)
num   pkts bytes target     prot opt in     out     source               destination

Chain FORWARD (policy DROP 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination
1       10   840 DOCKER-USER  all  --  *      *       0.0.0.0/0            0.0.0.0/0
2       10   840 DOCKER-ISOLATION  all  --  *      *       0.0.0.0/0            0.0.0.0/0
3        7   588 ACCEPT     all  --  *      docker0  0.0.0.0/0            0.0.0.0/0            ctstate RELATED,ESTABLISHED
4        3   252 DOCKER     all  --  *      docker0  0.0.0.0/0            0.0.0.0/0
5        0     0 ACCEPT     all  --  docker0 !docker0  0.0.0.0/0            0.0.0.0/0
6        3   252 ACCEPT     all  --  docker0 docker0  0.0.0.0/0            0.0.0.0/0

Chain OUTPUT (policy ACCEPT 2460K packets, 214M bytes)
num   pkts bytes target     prot opt in     out     source               destination

Chain DOCKER (1 references)
num   pkts bytes target     prot opt in     out     source               destination

Chain DOCKER-ISOLATION (1 references)
num   pkts bytes target     prot opt in     out     source               destination
1       10   840 RETURN     all  --  *      *       0.0.0.0/0            0.0.0.0/0

Chain DOCKER-USER (1 references)
num   pkts bytes target     prot opt in     out     source               destination
1       10   840 RETURN     all  --  *      *       0.0.0.0/0            0.0.0.0/0

# iptables -nL --line-numbers -v -t nat
Chain PREROUTING (policy ACCEPT 884 packets, 46522 bytes)
num   pkts bytes target     prot opt in     out     source               destination
1      881 46270 DOCKER     all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCAL

Chain INPUT (policy ACCEPT 881 packets, 46270 bytes)
num   pkts bytes target     prot opt in     out     source               destination

Chain OUTPUT (policy ACCEPT 1048K packets, 63M bytes)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 DOCKER     all  --  *      *       0.0.0.0/0           !127.0.0.0/8          ADDRTYPE match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT 1048K packets, 63M bytes)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 MASQUERADE  all  --  *      !docker0  192.168.0.0/20       0.0.0.0/0

Chain DOCKER (2 references)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 RETURN     all  --  docker0 *       0.0.0.0/0            0.0.0.0/0

三、Container to Container

下面,我们分三种情况来看看容器网络的数据包是如何流动的,首先是Container to Container。

img{512x368}

我们在容器C1中执行ping 3次 C2的命令:

# docker exec c1 ping -c 3 192.168.0.3
PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.
64 bytes from 192.168.0.3: icmp_seq=1 ttl=64 time=0.226 ms
64 bytes from 192.168.0.3: icmp_seq=2 ttl=64 time=0.159 ms
64 bytes from 192.168.0.3: icmp_seq=3 ttl=64 time=0.185 ms

--- 192.168.0.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.159/0.190/0.226/0.027 ms

在容器c1(192.168.0.2)中,icmp request由ping程序(c1 namespace中的local process)发出。c1 network namespace中的路由表如下:

# docker exec c1 netstat -rn
Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
0.0.0.0         192.168.0.1     0.0.0.0         UG        0 0          0 eth0
192.168.0.0     0.0.0.0         255.255.240.0   U         0 0          0 eth0

由于目标容器地址为192.168.0.3,在容器c1的直连网络上,走第二条直连路由(非默认路由),数据包通过eth0发出。

由于c1 namespace中的eth0通过veth机制连接在host namespace的docker0 bridge的一个Slave port上,因此上述数据包通过docker0 bridge的slave port: veth0594f4b流入docker0 bridge。

这里再强调一下linux bridge设备。Linux下的Bridge是一种虚拟设备,它依赖于一个或多个从设备。它不是内核虚拟出的和从设备同一层次的镜像设备,而是内核虚拟出的一个高一层次的设备,并把从设备虚拟化为端口port,同时处理各个从设备的数据收发及转发。bridge设备是建立在从设备之上的(这些从设备可以是实际设备,也可以是vlan设备等),并且我们可以为bridge准备一个IP(bridge设备的MAC地址是它所有从设备中最小的MAC地址),这样该主机就可以通过这个bridge设备与网络中的其它主机通信了。另外一旦某个网络设备被“插到”linux bridge上,这个网络设备将会变为bridge的从设备,被虚拟化为端口port,从设备的IP及MAC都不再可用,好似被bridge剥夺了被内核网络栈处理的资格;它们被设置为接收任何包,对其流入的数据包的处理交由bridge完成,并最终由bridge设备来决定数据包的去向:接收到本机、转发或丢弃。

因此,位于host namespace的docker0 bridge从slave port: veth0594f4b收到icmp request后,我们不会看到veth0594f4b这一netdev被内核网络栈程序单独处理(比如:单独走一遍ebtables和iptables chains),而是进入bridge处理逻辑(此时可以回顾一下上面的全图)。由于数据包已经进入到了host namespace,因此我们可以通过ebtables和iptables输出的Trace和log来跟踪数据包流转的路径了:

1、start -> bridgecheck -> linker layer

TRACE: eb:broute:BROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1
TRACE: eb:nat:PREROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1

从最初的trace log来看,在bridge check之后(发现it is a linux bridge),数据包进入到linker layer中;并且在linker layer的BROUTING built-in chain之后,数据包没有被转移到上面的network layer,而是继续linker layer的行程:进入linker layer的nat:PREROUTING中。

2、call iptables chain rules in linker layer

结合全图中的图示和日志输出,在linker layer的nat:PREROUTING之后,linker layer调用了上层iptables的处理规则:raw:PREROUTING和nat:PREROUTING:

TRACE: raw:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: nat:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1

Trace target在数据包match table、chains的policy或rules时会输出日志,日志格式:”TRACE:tablename:chainname:type:rulenum”。当匹配到的是普通rules时,type=”rule”;当碰到一个user-defined chain的return target时,type=”return”;当匹配到built-in chain(比如:PREROUTING、INPUT、OUTPUT、FORWARD和POSTROUTING)的default policy时,type=”policy”。

从上面的日志输出来看,似乎PREROUTING chain的raw table中的Trace target不能被trace自身match,因此trace log输出的是匹配raw table built-in chain: PREROUTING的default policy: ACCEPT,num=2(policy和rules整体排序后的序号);在PREROUTING chain的nat表中匹配时,Trace也仅匹配到了default policy,rule 1(target: Docker)没有匹配上;

这里有一点奇怪的是mangle table没有任何输出,即便是default policy的也没有,原因暂不明。

3、bridge decision

根据全图和后续的日志,我们得到了bridge decision的结果:继续在linker layer上处理数据包,一路向右。不过在处理的路径上依旧调用了iptables的rules:

TRACE: eb:filter:FORWARD IN=veth0594f4b OUT=veth57a3dec MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1
TRACE: filter:FORWARD:rule:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: filter:DOCKER-USER:return:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: filter:FORWARD:rule:2 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: filter:DOCKER-ISOLATION:return:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: filter:FORWARD:rule:4 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: filter:DOCKER:return:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1
TRACE: filter:FORWARD:rule:6 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1

bridge decision决定的依据或则规则是什么呢?《ebtables/iptables interaction on a Linux-based bridge》一文给了我们一些答案:

The bridge's decision for a frame can be one of these:

* bridge it, if the destination MAC address is on another side of the bridge;
* flood it over all the forwarding bridge ports, if the position of the box with the destination MAC is unknown to the bridge;
* pass it to the higher protocol code (the IP code), if the destination MAC address is that of the bridge or of one of its ports;
* ignore it, if the destination MAC address is located on the same side of the bridge.

不过即便按照这几条规则,我依然有一定困惑,那就是真实的处理是:依旧在linker layer,但掺杂了上层网络层的处理规则。

另外,你可能会发现iptables log里MAC值的格式很怪异(比如:MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00),非常long。其实这个MAC值是一个组合:Souce MAC, Destination MAC和 frame type的组合。

02:42:c0:a8:00:03: Destination MAC=00:60:dd:45:67:ea
02:42:c0:a8:00:02: Source MAC=00:60:dd:45:4c:92
08:00 : Type=08:00 (ethernet frame carried an IPv4 datagram)

4、eb:nat:POSTROUTING -> nat:POSTROUTING -> egress(qdisc)

最后packet进入linker layer的POSTROUTING built-in chain:

TRACE: eb:nat:POSTROUTING IN= OUT=veth57a3dec MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1
TRACE: nat:POSTROUTING:policy:2 IN= OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47066 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=1

iptables nat:POSTROUTING没有匹配上docker引擎增加的那条target为DOCKER的rule,于是输出了default policy的日志。

进入到egress(qdisc)后,相当于数据包到了bridge上的另一个slave port(veth57a3dec)上,此时数据包必须被送回网络上,于是进入到容器C2的eth0中。离开了host namespace,我们的日志便追踪不到了。

容器c2因为所在的network namespace是独立于host namespace的,因此有自己的iptables规则(如果未设置,均为默认accept),不受host namespace中的iptables的影响。

5、”消失”的iptable的nat:PREROUTING和nat:POSTROUTING

C2容器回复ping response的路径与request甚为相似,这里一次性将全部日志列出:

TRACE: eb:broute:BROUTING IN=veth57a3dec OUT= MAC source = 02:42:c0:a8:00:03 MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.3 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:nat:PREROUTING IN=veth57a3dec OUT= MAC source = 02:42:c0:a8:00:03 MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.3 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: raw:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth57a3dec MAC=02:42:c0:a8:00:02:02:42:c0:a8:00:03:08:00 SRC=192.168.0.3 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=5962 PROTO=ICMP TYPE=0 CODE=0 ID=90 SEQ=1

TRACE: eb:filter:FORWARD IN=veth57a3dec OUT=veth0594f4b MAC source = 02:42:c0:a8:00:03 MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.3 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: filter:FORWARD:rule:1 IN=docker0 OUT=docker0 PHYSIN=veth57a3dec PHYSOUT=veth0594f4b MAC=02:42:c0:a8:00:02:02:42:c0:a8:00:03:08:00 SRC=192.168.0.3 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=5962 PROTO=ICMP TYPE=0 CODE=0 ID=90 SEQ=1
TRACE: filter:DOCKER-USER:return:1 IN=docker0 OUT=docker0 PHYSIN=veth57a3dec PHYSOUT=veth0594f4b MAC=02:42:c0:a8:00:02:02:42:c0:a8:00:03:08:00 SRC=192.168.0.3 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=5962 PROTO=ICMP TYPE=0 CODE=0 ID=90 SEQ=1
TRACE: filter:FORWARD:rule:2 IN=docker0 OUT=docker0 PHYSIN=veth57a3dec PHYSOUT=veth0594f4b MAC=02:42:c0:a8:00:02:02:42:c0:a8:00:03:08:00 SRC=192.168.0.3 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=5962 PROTO=ICMP TYPE=0 CODE=0 ID=90 SEQ=1
TRACE: filter:DOCKER-ISOLATION:return:1 IN=docker0 OUT=docker0 PHYSIN=veth57a3dec PHYSOUT=veth0594f4b MAC=02:42:c0:a8:00:02:02:42:c0:a8:00:03:08:00 SRC=192.168.0.3 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=5962 PROTO=ICMP TYPE=0 CODE=0 ID=90 SEQ=1
TRACE: filter:FORWARD:rule:3 IN=docker0 OUT=docker0 PHYSIN=veth57a3dec PHYSOUT=veth0594f4b MAC=02:42:c0:a8:00:02:02:42:c0:a8:00:03:08:00 SRC=192.168.0.3 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=5962 PROTO=ICMP TYPE=0 CODE=0 ID=90 SEQ=1

TRACE: eb:nat:POSTROUTING IN= OUT=veth0594f4b MAC source = 02:42:c0:a8:00:03 MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.3 IP DST=192.168.0.2, IP tos=0x00, IP proto=1

仔细观察,我们发现虽然与request的路径类似,但依旧有不同:iptable的nat:PREROUTING和nat:POSTROUTING消失了。Why?iptables就是这么设计的。iptables会跟踪connection的state,当一个connection的首个包经过一次后,connection的state由NEW变成了ESTABLISHED;对于ESTABLISHED的connection的后续packets,内核会自动按照该connection的首个包在nat:PREROUTING和nat:POSTROUTING环节的处理方式进行处理,而不再流经这两个链中的nat表逻辑。而ebtables中似乎没有这个逻辑。

后续的ping的第二个、第三个流程也印证了上述设计,这里仅列出ping request packet 2:

TRACE: eb:broute:BROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1
TRACE: eb:nat:PREROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1
TRACE: raw:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47310 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=2
TRACE: eb:filter:FORWARD IN=veth0594f4b OUT=veth57a3dec MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1
TRACE: filter:FORWARD:rule:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47310 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=2
TRACE: filter:DOCKER-USER:return:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47310 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=2
TRACE: filter:FORWARD:rule:2 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47310 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=2
TRACE: filter:DOCKER-ISOLATION:return:1 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47310 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=2
TRACE: filter:FORWARD:rule:3 IN=docker0 OUT=docker0 PHYSIN=veth0594f4b PHYSOUT=veth57a3dec MAC=02:42:c0:a8:00:03:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.3 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=47310 DF PROTO=ICMP TYPE=8 CODE=0 ID=90 SEQ=2
TRACE: eb:nat:POSTROUTING IN= OUT=veth57a3dec MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:c0:a8:00:03 proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.3, IP tos=0x00, IP proto=1

全部日志内容请参见:docker-bridge-network-demo-iptables-trace-log.txt文件,这里不赘述。

四、Local Process to Container

img{512x368}

很多”疑难”环节在上面的container to container数据流分析时已经做了解惑,因此后续local process to container和container to external流程将不会再细致描述,说明会略微泛泛一些,不那么细致。

我们在host上执行ping C1三次:

# ping -c 3 192.168.0.2
PING 192.168.0.2 (192.168.0.2) 56(84) bytes of data.
64 bytes from 192.168.0.2: icmp_seq=1 ttl=64 time=0.160 ms
64 bytes from 192.168.0.2: icmp_seq=2 ttl=64 time=0.105 ms
64 bytes from 192.168.0.2: icmp_seq=3 ttl=64 time=0.131 ms

--- 192.168.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.105/0.132/0.160/0.022 ms

1、local process -> routing decision -> iptables OUTPUT chain

ping request数据包从本地的ping process发出,根据目的地址路由后,选择docker0作为OUT设备:

TRACE: raw:OUTPUT:policy:2 IN= OUT=docker0 SRC=192.168.0.1 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=18692 DF PROTO=ICMP TYPE=8 CODE=0 ID=30245 SEQ=1 UID=0 GID=0
TRACE: mangle:OUTPUT:policy:1 IN= OUT=docker0 SRC=192.168.0.1 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=18692 DF PROTO=ICMP TYPE=8 CODE=0 ID=30245 SEQ=1 UID=0 GID=0
TRACE: nat:OUTPUT:policy:2 IN= OUT=docker0 SRC=192.168.0.1 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=18692 DF PROTO=ICMP TYPE=8 CODE=0 ID=30245 SEQ=1 UID=0 GID=0
TRACE: filter:OUTPUT:policy:1 IN= OUT=docker0 SRC=192.168.0.1 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=18692 DF PROTO=ICMP TYPE=8 CODE=0 ID=30245 SEQ=1 UID=0 GID=0

奇怪的是这次mangle chain居然有trace log输出:(。

2、进入linker layer:iptables POSTROUTING -> ebtables OUTPUT -> ebtables POSTROUTING

由于是OUT是bridge设备,因此要进入到ebtable中走一遭:

TRACE: mangle:POSTROUTING:policy:1 IN= OUT=docker0 SRC=192.168.0.1 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=18692 DF PROTO=ICMP TYPE=8 CODE=0 ID=30245 SEQ=1 UID=0 GID=0
TRACE: nat:POSTROUTING:policy:2 IN= OUT=docker0 SRC=192.168.0.1 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=18692 DF PROTO=ICMP TYPE=8 CODE=0 ID=30245 SEQ=1 UID=0 GID=0
TRACE: eb:nat:OUTPUT IN= OUT=veth57a3dec MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.1 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:filter:OUTPUT IN= OUT=veth57a3dec MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.1 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:nat:POSTROUTING IN= OUT=veth57a3dec MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.1 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:nat:OUTPUT IN= OUT=veth0594f4b MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.1 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:filter:OUTPUT IN= OUT=veth0594f4b MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.1 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:nat:POSTROUTING IN= OUT=veth0594f4b MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=192.168.0.1 IP DST=192.168.0.2, IP tos=0x00, IP proto=1

icmp的response和container to container类似,入口走的是linker layer(由于是桥设备),在bridge decision后,走到INPUT chain:

TRACE: eb:broute:BROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:ff:27:17:4d proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.1, IP tos=0x00, IP proto=1
TRACE: eb:nat:PREROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:ff:27:17:4d proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.1, IP tos=0x00, IP proto=1
TRACE: raw:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=56535 PROTO=ICMP TYPE=0 CODE=0 ID=30245 SEQ=1
TRACE: mangle:PREROUTING:policy:1 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=56535 PROTO=ICMP TYPE=0 CODE=0 ID=30245 SEQ=1
TRACE: eb:filter:INPUT IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:ff:27:17:4d proto = 0x0800 IP SRC=192.168.0.2 IP DST=192.168.0.1, IP tos=0x00, IP proto=1
TRACE: mangle:INPUT:policy:1 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=56535 PROTO=ICMP TYPE=0 CODE=0 ID=30245 SEQ=1
TRACE: filter:INPUT:policy:1 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=192.168.0.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=56535 PROTO=ICMP TYPE=0 CODE=0 ID=30245 SEQ=1

以上我们可以与到非桥设备的ping做比对,我们在host上ping 另外一个LAN中的host:

# ping -c 1 10.28.61.30
PING 10.28.61.30 (10.28.61.30) 56(84) bytes of data.
64 bytes from 10.28.61.30: icmp_seq=1 ttl=57 time=1.09 ms

--- 10.28.61.30 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.093/1.093/1.093/0.000 ms

得到的trace log如下:

icmp request:

TRACE: raw:OUTPUT:policy:2 IN= OUT=eth0 SRC=10.171.77.0 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4494 DF PROTO=ICMP TYPE=8 CODE=0 ID=30426 SEQ=1 UID=0 GID=0
TRACE: mangle:OUTPUT:policy:1 IN= OUT=eth0 SRC=10.171.77.0 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4494 DF PROTO=ICMP TYPE=8 CODE=0 ID=30426 SEQ=1 UID=0 GID=0
TRACE: nat:OUTPUT:policy:2 IN= OUT=eth0 SRC=10.171.77.0 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4494 DF PROTO=ICMP TYPE=8 CODE=0 ID=30426 SEQ=1 UID=0 GID=0
TRACE: filter:OUTPUT:policy:1 IN= OUT=eth0 SRC=10.171.77.0 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4494 DF PROTO=ICMP TYPE=8 CODE=0 ID=30426 SEQ=1 UID=0 GID=0
TRACE: mangle:POSTROUTING:policy:1 IN= OUT=eth0 SRC=10.171.77.0 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4494 DF PROTO=ICMP TYPE=8 CODE=0 ID=30426 SEQ=1 UID=0 GID=0
TRACE: nat:POSTROUTING:policy:2 IN= OUT=eth0 SRC=10.171.77.0 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=4494 DF PROTO=ICMP TYPE=8 CODE=0 ID=30426 SEQ=1 UID=0 GID=0

icmp response:

TRACE: raw:PREROUTING:policy:2 IN=eth0 OUT= MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=10.171.77.0 LEN=84 TOS=0x00 PREC=0x00 TTL=57 ID=61118 PROTO=ICMP TYPE=0 CODE=0 ID=30426 SEQ=1
TRACE: mangle:PREROUTING:policy:1 IN=eth0 OUT= MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=10.171.77.0 LEN=84 TOS=0x00 PREC=0x00 TTL=57 ID=61118 PROTO=ICMP TYPE=0 CODE=0 ID=30426 SEQ=1
TRACE: mangle:INPUT:policy:1 IN=eth0 OUT= MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=10.171.77.0 LEN=84 TOS=0x00 PREC=0x00 TTL=57 ID=61118 PROTO=ICMP TYPE=0 CODE=0 ID=30426 SEQ=1
TRACE: filter:INPUT:policy:1 IN=eth0 OUT= MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=10.171.77.0 LEN=84 TOS=0x00 PREC=0x00 TTL=57 ID=61118 PROTO=ICMP TYPE=0 CODE=0 ID=30426 SEQ=1

可以对照着全图看出在request出去时,发现OUT设备不是bridge,直接走network layer的iptables rules,并从xfrm lookup出去,走到egress(qdisc); response回来时,进行bridge check后,发现IN设备eth0不是bridge,因此直接上到network layer,走iptable chain rules到local process。ebtable的log一行也没有输出。

后续的两个icmp request&response大致相同,并且依旧不走nat PREROUTING和nat POSTROUTING,因为不再是NEW connection。

五、Container to External

img{512x368}

我们在c1 容器中ping 外部的一个节点三次:

# docker exec c1 ping -c 3 10.28.61.30
PING 10.28.61.30 (10.28.61.30) 56(84) bytes of data.
64 bytes from 10.28.61.30: icmp_seq=1 ttl=56 time=1.32 ms
64 bytes from 10.28.61.30: icmp_seq=2 ttl=56 time=1.30 ms
64 bytes from 10.28.61.30: icmp_seq=3 ttl=56 time=1.21 ms

--- 10.28.61.30 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 1.219/1.280/1.323/0.060 ms

1、start -> bridgecheck -> linker layer

和Container to Container的开端很类似,在bridge check后,数据流进入linker layer(docker0 is a bridge),并在该层进行iptables PREROUTING rules的处理,直到bridge decision之前:

TRACE: eb:broute:BROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:ff:27:17:4d proto = 0x0800 IP SRC=192.168.0.2 IP DST=10.28.61.30, IP tos=0x00, IP proto=1
TRACE: eb:nat:PREROUTING IN=veth0594f4b OUT= MAC source = 02:42:c0:a8:00:02 MAC dest = 02:42:ff:27:17:4d proto = 0x0800 IP SRC=192.168.0.2 IP DST=10.28.61.30, IP tos=0x00, IP proto=1
TRACE: raw:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: mangle:PREROUTING:policy:1 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: nat:PREROUTING:policy:2 IN=docker0 OUT= PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1

2、ebtable filter:INPUT -> routing decision -> iptables FORWARD

目的地址为外部host ip,需要三层介入转发,于是数据包经由eb:filter:INPUT向上走到达network layer的routing decision,根据路由表,将包转发到eth0:

TRACE: mangle:FORWARD:policy:1 IN=docker0 OUT=eth0 PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: filter:FORWARD:rule:1 IN=docker0 OUT=eth0 PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: filter:DOCKER-USER:return:1 IN=docker0 OUT=eth0 PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: filter:FORWARD:rule:2 IN=docker0 OUT=eth0 PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: filter:DOCKER-ISOLATION:return:1 IN=docker0 OUT=eth0 PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: filter:FORWARD:rule:5 IN=docker0 OUT=eth0 PHYSIN=veth0594f4b MAC=02:42:ff:27:17:4d:02:42:c0:a8:00:02:08:00 SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1

3、iptables nat:POSTROUTING match rule 1

由于要流出到主机外,因此在最后iptables nat:POSTROUTING中,数据包匹配到rule 1,即做MASQUERADE,将数据包源地址更换为host ip:10.171.77.0。

TRACE: mangle:POSTROUTING:policy:1 IN= OUT=eth0 PHYSIN=veth0594f4b SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1
TRACE: nat:POSTROUTING:rule:1 IN= OUT=eth0 PHYSIN=veth0594f4b SRC=192.168.0.2 DST=10.28.61.30 LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=57351 DF PROTO=ICMP TYPE=8 CODE=0 ID=94 SEQ=1

4、iptables prerouting、forward、postrouting -> ebtabls output、postrouting

返回的应答由于IN设备为eth0,因此直接上到network layer进行iptable chain的处理。在路由后,OUT设备为docker0(bridge设备),因此在最后的环节需要下降到linker layer做output和postrouting处理:

TRACE: raw:PREROUTING:policy:2 IN=eth0 OUT= MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=10.171.77.0 LEN=84 TOS=0x00 PREC=0x00 TTL=57 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: mangle:PREROUTING:policy:1 IN=eth0 OUT= MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=10.171.77.0 LEN=84 TOS=0x00 PREC=0x00 TTL=57 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: mangle:FORWARD:policy:1 IN=eth0 OUT=docker0 MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: filter:FORWARD:rule:1 IN=eth0 OUT=docker0 MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: filter:DOCKER-USER:return:1 IN=eth0 OUT=docker0 MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: filter:FORWARD:rule:2 IN=eth0 OUT=docker0 MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: filter:DOCKER-ISOLATION:return:1 IN=eth0 OUT=docker0 MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: filter:FORWARD:rule:3 IN=eth0 OUT=docker0 MAC=00:16:3e:06:3a:3a:00:2a:6a:aa:12:7c:08:00 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: mangle:POSTROUTING:policy:1 IN= OUT=docker0 SRC=10.28.61.30 DST=192.168.0.2 LEN=84 TOS=0x00 PREC=0x00 TTL=56 ID=58706 PROTO=ICMP TYPE=0 CODE=0 ID=94 SEQ=1
TRACE: eb:nat:OUTPUT IN= OUT=veth0594f4b MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=10.28.61.30 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:filter:OUTPUT IN= OUT=veth0594f4b MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=10.28.61.30 IP DST=192.168.0.2, IP tos=0x00, IP proto=1
TRACE: eb:nat:POSTROUTING IN= OUT=veth0594f4b MAC source = 02:42:ff:27:17:4d MAC dest = 02:42:c0:a8:00:02 proto = 0x0800 IP SRC=10.28.61.30 IP DST=192.168.0.2, IP tos=0x00, IP proto=1

后续的请求和应答基本类似,少的还是nat PREROUTING和nat POSTROUTING,因为不再是NEW connection。

六、小结

个人赶脚:iptables的规则还是太复杂了,再加上bridge的ebtable规则,让人有些眼花缭乱。尤其是kube-proxy的规则又与docker的规则鞣合在一起,iptables的rules列表就显得更为冗长和复杂了。但目前kube-proxy稳定版依然以iptables为主要实现机制,不过kube-proxy对ipvs的支持也已经在路上了(kubernetes 1.8中ipvs处于alpha阶段),希望后续我们能有更多的选择。

此次实验全部日志内容参见:docker-bridge-network-demo-iptables-trace-log.txt文件

七、参考资料


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats