今天在浏览网友huangz编写的“Redis源码分析”时,看到如下redis中的代码:

struct sdshdr {
    int len;
    int free;
    char buf[];
};

说实话,这类代码我见过很多,但直到这次我才知道这种coding trick的真实英文称谓是:Struct Hack。

到底什么是Struct Hack?其实倒也没有什么明确定义。首先它是一种coding trick;其次一定是与struct相关的;关键是struct中要仅有一个变长的字段,且该字段是struct中最后的一个字段,就像上面 sdshdr中的buf那样。这样的coding trick到底有何作用呢?

我们来看看redis中是如何利用这种coding trick的。sds是redis string的一种实现,全称是Simple Dynamic Strings,从字面意义来看,这是一种动态字符串,是可以在运行时确定其大小并创建的。我们来看看其创建代码:

typedef char *sds;

sds sdsnewlen(const void *init, size_t initlen) {
    struct sdshdr *sh;

    if (init) {
        sh = zmalloc(sizeof(struct sdshdr)+initlen+1);
    } else {
        sh = zcalloc(sizeof(struct sdshdr)+initlen+1);
    }

    if (sh == NULL) return NULL;

    sh->len = initlen;
    sh->free = 0;

    if (initlen && init)
        memcpy(sh->buf, init, initlen);
    sh->buf[initlen] = '\0';

    return (char*)sh->buf;
}

sdsnewlen在分配内存时,一次分配的内存大小不仅仅是sizeof(struct sdshdr),而是加上了真正存储字符串的buf的大小,并将buf作为返回值返回,sds就是buf,buf就是sds。这样通过sdshdr实例, 我们可以直接获得其对应的sds,也就是buf。更为关键的一点是,如果我已知sds,我们还可以获得其对应的sdshdr(huangz在文中称 sdshdr是sds handler的缩写,我倒是觉得hdr更像是header的缩写),见下面代码:

static inline size_t sdslen(const sds s) {
    struct sdshdr *sh = (void*)(s-(sizeof(struct sdshdr)));
    return sh->len;
}

这种trick给代码带来的极大的效率。想象一下如果redis的sdshdr定义是这样的:

struct sdshdr {
    int len;
    int free;
    char *buf;
};

/*  sdsnewlen */
struct sdshdr *sh;
sh = zmalloc(sizeof(struct sdshdr));
memset(sh, 0, sizeof(*sh));
sh->buf = zmalloc(initlen+1);

看起来似乎也能在运行时实现buf的动态size指定,但sdshdr与sds之间的纽带就被彻底割裂了(当然你也可以在 malloc sh时将buf内存也一并分配出来,然后手工将buf指向struct外的内存首地址,不过一旦这么做,就显得不那么tricky了)。

另外这里要探讨的是最后那个字段buf,是声明为buf[]好,还是buf[0]好,又或是buf[1]呢?redis使用的是buf[],在C99中这 是绝对合法的,这种定义被称为variable-length arrays(变长数组)。由于下标为空,这里的buf就好像是一个占位符,只有符号意义,但却并不实际占用空间。32bit平台下 sizeof(struct sdshdr) = 8,显然没有buf的份儿。不过在C99以前的标准中,是不允许变长数组出现的,你的Gcc很可能出现如下警告:“ISO C90 不允许可变数组成员”。不过C99以前很多编译器的扩展默认都是支持变长数组的,这也是这种trick之前就大行其道的原因之一,只不过是在C99之后变 得名正言顺了罢了。

如果将buf[]改为buf[0]呢?在C99以及支持变长数组扩展的编译器下也都是等同于buf[]的,不过C99以前的标准编译器还是会警告:ISO C 不允许大小为 0 的数组‘buf’ [-pedantic]。

用buf[1]替代buf[]则是一个兼容性最好的方案。在一些其他开源代码中,你也会常见buf[1]这种情形,如果以redis hds代码为例,我们用buf[1]替代buf[0]:

struct sdshdr {
    int len;
    int free;
    char buf[1];
};

相应的,sdsnewlen的代码以及sdslen中通过sds获取sdshdr的代码就应该做相应的修改了,简要修改如下:

/* sdsnewlen */

sds sdsnewlen(const void *init, size_t initlen) {
    struct sdshdr *sh;

    if (init) {
        sh = zmalloc(sizeof(struct sdshdr) – 1 + initlen + 1);
    } else {
        sh = zcalloc(sizeof(struct sdshdr) – 1 + initlen + 1);
    }

    if (sh == NULL) return NULL;

    sh->len = initlen;
    sh->free = 0;

    if (initlen && init)
        memcpy(sh->buf, init, initlen);
    sh->buf[initlen] = '\0';

    return (char*)sh->buf;
}


static inline size_t sdslen(const sds s) {
    struct sdshdr *sh = (void*)(s-(offsetof(struct sdshdr, buf)));
    return sh->len;
}

注意:使用这种coding trick为的就是获得一种运行时的动态行为,struct的大小也是动态的(这种struct的声明是一种incomplete type),所以这种struct都是在堆上分配内存的,在栈上分配显然是没有标准可移植的方法的;同样,由于是size不确定的incomplete type,这种struct一般不用于声明struct数组。

© 2013, bigwhite. 版权所有.

Related posts:

  1. Strategy模式的C实现
  2. State模式的C实现
  3. Go defer的C实现
  4. Transaction模式的C实现
  5. 使用svn pre-commit hook