It is time for ‘setup.S’ to show its power. The ‘setup.S’ is loaded by the bootloader and virtually it belongs to neither the ‘bootstrap’ routine nor the kernel program, although it is a portion of the kernel image. The source of the ‘setup.S’ is kinda ‘big’ and what it does can be summarized into one word: "the ‘setup.S’ is responsible to establish the environment for the execution of the kernel program".

Since we begin ‘setup.S’, the bootloader, which loaded the ‘setup.S into memory, has lost its meaning and the space it took up is now available. The ‘setup.S’ consists of setup header and setup body. The setup header is a part of ‘Real-mode kernel header’, which must follow some layout pattern described in ‘$(Linux-’. Details as follows:
The ‘Real-mode kernel header’ looks like:

Offset Proto Name  Meaning

01F1/1 ALL(1 setup_sects The size of the setup in sectors
01F2/2 ALL root_flags If set, the root is mounted readonly
01F4/4 2.04+(2 syssize  The size of the 32-bit code in 16-byte paras
01F8/2 ALL ram_size DO NOT USE – for bootsect.S use only
01FA/2 ALL vid_mode Video mode control
01FC/2 ALL root_dev Default root device number
01FE/2 ALL boot_flag 0xAA55 magic number
0200/2 2.00+ jump  Jump instruction
0202/4 2.00+ header  Magic signature "HdrS"
0206/2 2.00+ version  Boot protocol version supported
0208/4 2.00+ realmode_swtch Boot loader hook (see below)
020C/2 2.00+ start_sys The load-low segment (0×1000) (obsolete)
020E/2 2.00+ kernel_version Pointer to kernel version string
0210/1 2.00+ type_of_loader Boot loader identifier
0211/1 2.00+ loadflags Boot protocol option flags
0212/2 2.00+ setup_move_size Move to high memory size (used with hooks)
0214/4 2.00+ code32_start Boot loader hook (see below)
0218/4 2.00+ ramdisk_image initrd load address (set by boot loader)
021C/4 2.00+ ramdisk_size initrd size (set by boot loader)
0220/4 2.00+ bootsect_kludge DO NOT USE – for bootsect.S use only
0224/2 2.01+ heap_end_ptr Free memory after setup end
0226/2 N/A pad1  Unused
0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line
022C/4 2.03+ initrd_addr_max Highest legal initrd address

The ‘Real-mode kernel header’ used to be checked by the bootloader and the setup routine. The setup won’t go well unless all the data of the header are valid. The label ‘start’ is the main entry of the ‘setup.S’, from which the setup process starts. A jump instruction will be executed first there and the ‘label’ start_of_setup, which is exactly after the ‘setup header’, is the destination of this jump. Our analysis also starts from this label. The codes in ‘setup.S’ perform some operations as follows:

1. Check code integrity
Since the ‘setup.S’ code may not be contiguously loaded, we have to check code integrity first.

 * ! Get the disk type – Int 13H & AH = 0×15
 * ! I wonder why to do so.
# Bootlin depends on this being done early
 movw $0×01500, %ax
 movb $0×81, %dl
 int $0×13

/* ! Reset the disk system -  Int 13H & AH = 0×00 */
# Reset the disk controller.
 movw $0×0000, %ax
 movb $0×80, %dl
 int $0×13

# Set %ds = %cs, we know that SETUPSEG = %cs at this point
 movw %cs, %ax  # aka SETUPSEG
 movw %ax, %ds

  * ! if ((setup_sig1 != SIG1) || (setup_sig2 != SIG2)) {
  * !   goto bad_sig;
  * ! }
  * ! goto good_sig1;
  * ! If the image is loaded by ‘bootsect-loader’,
  * ! ‘bad_sig’ routine won’t happen, since ‘bootsect-loader’
  * ! loaded the image contiguously.   
# Check signature at end of setup
 cmpw $SIG1, setup_sig1
 jne bad_sig

 cmpw $SIG2, setup_sig2
 jne bad_sig

 jmp good_sig1

Here let us have a look at how to find the rest of the setup code and data.

 movw %cs, %ax   # SETUPSEG
 movw %ax, %ds
 xorb %bh, %bh

  * ! ds:[497] <=> 0×9000:[497] -> %bl
  * ! rest code in words <=> (%bx – 4) << 8 -> %cx
  * ! (%bx >> 3) + SYSSEG -> start_sys_seg
 movb (497), %bl   # get setup sect from bootsect
 subw $4, %bx    # LILO loads 4 sectors of setup
 shlw $8, %bx    # convert to words (1sect=2^8 words)
 movw %bx, %cx
 shrw $3, %bx    # convert to segment
 addw $SYSSEG, %bx
 movw %bx, %cs:start_sys_seg

# Move rest of setup code/data to here
  * ! move %ds:%si to %es:%di (%cx words) <=>
  * ! move SYSSEG:0 to cs:0800 (%cx*2 bytes)
  * ! with the instruction ‘rep’
 movw $2048, %di   # four sectors loaded by LILO
 subw %si, %si
 pushw %cs
 popw %es
 movw $SYSSEG, %ax
 movw %ax, %ds
 movw %cs, %ax   # aka SETUPSEG
 movw %ax, %ds
 cmpw $SIG1, setup_sig1
 jne no_sig

 cmpw $SIG2, setup_sig2
 jne no_sig

 jmp good_sig

Now variable start_sys_seg points to where real system code starts. If "bad_sig" does not happen, start_sys_seg will remain SYSSEG as it used to be.

2. Check bootloader type
The lable ‘good_sig’ used to check if loader is compatible with image.

 * ! if ((loadflags & LOADHIGH) && !type_of_loader)
 * !  goto no_sig_loop
 movw %cs, %ax   # aka SETUPSEG
 subw $DELTA_INITSEG, %ax   # aka INITSEG
 movw %ax, %ds
# Check if an old loader tries to load a big-kernel
 testb $LOADED_HIGH, %cs:loadflags # Do we have a big kernel?
 jz loader_ok   # No, no danger for old loaders.

 cmpb $0, %cs:type_of_loader   # Do we have a loader that
      # can deal with us?
 jnz loader_ok   # Yes, continue.

 pushw %cs    # No, we have an old loader,
 popw %ds    # die. ! %ds = %cs now
 lea loader_panic_mess, %si
 call prtstr

 jmp no_sig_loop

3. Get memory size
The comments of the code told us they try three different memory detection schemes to get the extended memory size (above 1M) in KB. First, try e820h, which lets us assemble a memory map; then try e801h, which returns a 32-bit memory size; and finally 88h, which returns 0-64M.

4. Hardware support
Several hardware devices are checked and some of them are reseted here. Although the BIOS already initialized most hardware devices, Linux does not rely on it, but reinitializes the devices in its own manner to enhance portability and robustness.
(1) Keyboard
Call int $0×16 to set the keyboard repeat rate
to the max.

(2) Video adapter
The video() code in ‘$(Linux-’ has done the job.

(3) Hard disk
The codes here separately copy hd0 data to INIT_SEG:0080(16 bytes) and copy hd1 data to INIT_SEG:0090(16 bytes). After that it checks if hd1 exists with ‘Int 13H/AH=0×15′, which has been called once before.

(4) Micro Channel (MCA) bus
(5) ROM configuration table
(6) PS/2 pointing device

5. Advanced Power Management(APM) BIOS support
Nothing to say.

6. Enhanced Disk Drive(EDD)
It is in another file ‘$(Linux-’. it is to build a table in RAM describing the hard disks available in the system with some proper BIOS procedure. If you are interested in it, you can go deep into these code.

7. Prepare for protected mode
(1) Disable interrput and close NMI

# This is the default real mode switch routine.
# to be called just before protected mode transition
 cli     # no interrupts allowed !
 movb $0×80, %al   # disable NMI for bootup
      # sequence
 outb %al, $0×70

(2) Relocate the code
 * ! Do (long)code32 = code32_start, since the code32
 * ! may changed by loader.
# we get the code32 start address and modify the below ‘jmpi’
# (loader may have changed it)
 movl %cs:code32_start, %eax
 movl %eax, %cs:code32

code32_start is initialized to 0×1000 for zImage or 0×100000 for bzImage. This value will be used in passing control to ‘$(Linux-’.

The code next is to move the system to its rightful place if we detected that the loaded kernel is a zImage. If we boot up zImage, it relocates vmlinux to 0100:0; If we boot up bzImage, bvmlinux remains at start_sys_seg:0. Then it will relocate code from CS-DELTA_INITSEG:0 (bbootsect and bsetup) to INITSEG:0, if necessary (whether to be downward compatible with version <=201).

8. Enable A20
Everybody hates A20 and really nobody wants it, but it continues to haunt us. Here says nothing about it.

9. Switch to protected mode
Following ‘IA-32 Intel Architecture Software Developer’s Manual’, several operations should be done during the switching:
(1) Prepare GDT with a null descriptor in the first GDT entry, one code and one data segment descriptor;
(2) Disable interrupts, including maskable hardware interrupts and NMI (this has been done);
(3) Load the base address and limit of the GDT to GDTR register, using LGDT instruction;
(4) Set PE flag in CR0 register, using MOV CR0 (Intel386 and up) or LMSW instruction (for compatibility with Intel 286);
(5) Immediately execute a far JMP or a far CALL instruction.

# jump to startup_32 in arch/i386/boot/compressed/head.S

# NOTE: For high loaded big kernels we need a
# jmpi    0×100000,__BOOT_CS
# but we yet haven’t reloaded the CS register, so the default size
# of the target offset still is 16 bit.
# However, using an operand prefix (0×66), the CPU will properly
# take our 48 bit far pointer. (INTeL 80386 Programmer’s Reference
# Manual, Mixing 16-bit and 32-bit code, page 16-6)

  * ! 0xea – jmp instruction
  * !
 .byte 0×66, 0xea   # prefix + jmpi-opcode
The far jmp instruction (0xea) updates CS register. The contents of the remaining segment registers (DS, SS, ES, FS and GS) should be reloaded later. Now control is passed to ‘$(Linux-′. For zImage, it is at address 0×1000; For bzImage, it is 0×100000.

Supporting functions and variables exist in the tail of ‘setup.S’.

© 2006, bigwhite. 版权所有.

Related posts:

  1. Retired 'bootsect.S'
  2. Goto 'Bootstrap'
  3. Inside the 'i386'
  4. 深入Java底层
  5. APR源代码分析-设计篇