标签 iso 下的文章

Go程序员拥抱C语言简明指南

本文永久链接 – https://tonybai.com/2022/05/16/the-short-guide-of-embracing-c-lang-for-gopher

本文是为于航老师的极客时间专栏《深入C语言和程序运行原理》写的加餐文章《Tony Bai:Go程序员拥抱C语言简明指南》,这里分享给大家,尤其是那些想学习C语言的Gopher们。


你好,我是Tony Bai。

也许有同学对我比较熟悉,看过我在极客时间上的专栏《Tony Bai ·Go语言第一课》,或者是关注了我的博客。那么,作为一个Gopher,我怎么跑到这个C语言专栏做分享了呢?其实,在学习Go语言并成为一名Go程序员之前,我也曾是一名地地道道的C语言程序员。

大学毕业后,我就开始从事C语言后端服务开发工作,在电信增值领域摸爬滚打了十多年。不信的话,你可以去翻翻我的博客,数一数我发的C语言相关文章是不是比关于Go的还多。一直到近几年,我才将工作中的主力语言从C切换到了Go。不过这并不是C语言的问题,主要原因是我转换赛道了。我目前在智能网联汽车领域从事面向云原生平台的先行研发,而在云原生方面,新生代的Go语言有着更好的生态。

不过作为资深C程序员,C语言已经在我身上打下了深深的烙印。虽然Go是我现在工作中的主力语言,但我仍然会每天阅读一些C开源项目的源码,每周还会写下数百行的C代码。在一些工作场景中,特别是在我参与先行研发一些车端中间件时,C语言有着资源占用小、性能高的优势,这一点是Go目前还无法匹敌的。

正因为我有着C程序员和Go程序员的双重身份,接到这个加餐邀请时,我就想到了一个很适合聊的话题——在 Gopher(泛指Go程序员)与C语言之间“牵线搭桥”。在这门课的评论区里,我看到一些同学说,“正是因为学了Go,所以我想学好C”。如果你也对Go比较熟悉,那么恭喜你,这篇加餐简直是为你量身定制的:一个熟悉Go的程序员在学习C时需要注意的问题,还有可能会遇到的坑,我都替你总结好了。

当然,我知道还有一些对Go了解不多的同学,看到这里也别急着退出去。因为C和Go这两门语言的比较,本身就是一个很有意思的话题。今天的加餐,会涉及这两门语言的异同点,通过对C与Go语言特性的比较,你就能更好地理解“C 语言为什么设计成现在这样”。

一. C语言是现代IT工业的根基

在比较C和Go之前,先说说我推荐Gopher学C的最重要原因吧:用一句话总结,C语言在IT工业中的根基地位,是Go和其他语言目前都无法动摇的

C语言是由美国贝尔实验室的丹尼斯·里奇(Dennis Ritchie)以Unix发明人肯·汤普森(Ken Thompson)设计的B语言为基础而创建的高级编程语言。诞生于上个世纪(精确来说是1972年)的它,到今年(2022年)已到了“知天命”的半百年纪。 年纪大、设计久远一直是“C语言过时论”兴起的根源,但如果你相信这一论断,那就大错特错了。下面,我来为你分析下个中缘由。

首先,我们说说C语言本身:C语言一直在演进,从未停下过脚步

虽然C语言之父丹尼斯·里奇不幸于2011年永远地离开了我们,但C语言早已成为ANSI(美国国家标准学会)标准以及ISO/IEC(国际标准化组织和国际电工委员会)标准,因此其演进也早已由标准委员会负责。我们来简单回顾一下C语言标准的演进过程:

  • 1989年,ANSI发布了首个C语言标准,被称为C89,又称ANSI C。次年,ISO和IEC把ANSI C89标准定为C语言的国际标准(ISO/IEC 9899:1990),又称C90,它也是C语言的第一个官方版本;
  • 1999年,ISO和IEC发布了C99标准(ISO/IEC 9899:1999),它是C语言的第二个官方版本;
  • 2011年,ISO和IEC发布了C11标准(ISO/IEC 9899:2011),它是C语言的第三个官方版本;
  • 2018年,ISO和IEC发布了C18标准(ISO/IEC 9899:2018),它是C语言的第四个官方版本。
    目前,ISO/IEC标准化委员会正在致力于C2x标准的改进与制定,预计它会在2023年发布。

其次,时至今日,C语言的流行度仍然非常高

著名编程语言排行榜TIOBE的数据显示,各大编程语言年度平均排名的总位次,C语言多年来高居第一,如下图(图片来自TIOBE)所示:

这说明,无论是在过去还是现在,C语言都是一门被广泛应用的工业级编程语言。

最后,也是最重要的一点是:C语言是现代IT工业的根基,我们说C永远不会退出IT行业舞台也不为过。

如今,无论是普通消费者端的Windows、macOS、Android、苹果iOS,还是服务器端的Linux、Unix等操作系统,亦或是各个工业嵌入式领域的操作系统,其内核实现语言都是C语言。互联网时代所使用的主流Web服务器,比如 Nginx、Apache,以及主流数据库,比如MySQL、Oracle、PostgreSQL等,也都是使用C语言开发的杰作。可以说,现代人类每天都在跟由C语言实现的系统亲密接触,并且已经离不开这些系统了。回到我们程序员的日常,Git、SVN等我们时刻在用的源码版本控制软件也都是由C语言实现的。

可以说,C语言在IT工业中的根基地位,不光Go语言替代不了,C++、Rust等系统编程语言也无法动摇,而且不仅短期如此,长期来看也是如此。

总之,C语言具有紧凑、高效、移植性好、对内存的精细控制等优秀特性,这使得我们在任何时候学习它都不会过时。不过,我在这里推荐Gopher去了解和系统学习C语言,其实还有另一个原因。我们继续往下看。

二. C与Go的相通之处:Gopher拥抱C语言的“先天优势”

众所周知,Go 是在C语言的基础上衍生而来的,二者之间有很多相通之处,因此 Gopher 在学习C语言时是有“先天优势”的。接下来,我们具体看看C和Go的相通之处有哪些。

1. 简单且语法同源

Go语言以简单著称,而作为Go先祖的C语言,入门门槛同样不高:Go有25个关键字,C有32个关键字(C89标准),简洁程度在伯仲之间。C语言曾长期作为高校计算机编程教育的首选编程语言,这与C的简单也不无关系。

和Go不同的是,C语言是一个小内核、大外延的编程语言,其简单主要体现在小内核上了。这个“小内核”包括C基本语法与其标准库,我们可以快速掌握它。但需要注意的是,与Go语言“开箱即用、内容丰富”的标准库不同,C标准库非常小(在C11标准之前甚至连thread库都不包含),所以掌握“小内核”后,在LeetCode平台上刷题是没有任何问题的,但要写出某一领域的工业级生产程序,我们还有很多外延知识技能要学习,比如并发原语、操作系统的系统调用,以及进程间通信等。

C语言的这种简单很容易获得Gopher们的认同感。当年Go语言之父们在设计Go语言时,也是主要借鉴了C语言的语法。当然,这与他们深厚的C语言背景不无关系:肯·汤普森(Ken Thompson)是Unix之父,与丹尼斯·里奇共同设计了C语言;罗博·派克(Rob Pike)是贝尔实验室的资深研究员,参与了Unix系统的演进、Plan9操作系统的开发,还是UTF-8编码的发明人;罗伯特·格瑞史莫(Robert Griesemer)也是用C语言手写Java虚拟机的大神级人物。

Go的第一版编译器就是由肯·汤普森(Ken Thompson)用C语言实现的。并且,Go语言的早期版本中,C代码的比例还不小。以Go语言发布的第一个版本,Go 1.0版本为例,我们通过loccount工具对其进行分析,会得到下面的结果:

$loccount .
all          SLOC=460992  (100.00%) LLOC=193045  in 2746 files
Go           SLOC=256321  (55.60%)  LLOC=109763  in 1983 files
C            SLOC=148001  (32.10%)  LLOC=73458   in 368 files
HTML         SLOC=25080   (5.44%)   LLOC=0       in 57 files
asm          SLOC=10109   (2.19%)   LLOC=0       in 133 files
... ...

这里我们看到,在1.0版本中,C语言代码行数占据了32.10%的份额,这一份额直至Go 1.5版本实现自举后,才下降为不到1%。

我当初对Go“一见钟情”,其中一个主要原因就是Go与C语言的语法同源。相对应地,相信这种同源的语法也会让Gopher们喜欢上C语言。

2. 静态编译且基础范式相同

除了语法同源,C语言与Go语言的另一个相同点是,它们都是静态编译型语言。这意味着它们都有如下的语法特性:

  • 变量与函数都要先声明后才能使用;
  • 所有分配的内存块都要有对应的类型信息,并且在确定其类型信息后才能操作;
  • 源码需要先编译链接后才能运行。

相似的编程逻辑与构建过程,让学习C语言的Gopher可以做到无缝衔接。

除此之外,Go 和C的基础编程范式都是命令式编程(imperative programming),即面向算法过程,由程序员通过编程告诉计算机应采取的动作。然后,计算机按程序指令执行一系列流程,生成特定的结果,就像菜谱指定了厨师做蛋糕时应遵循的一系列步骤一样。

从Go看 C,没有面向对象,没有函数式编程,没有泛型(Go 1.18已加入),满眼都是类型与函数,可以说是相当亲切了。

3. 错误处理机制如出一辙

对于后端编程语言来说,错误处理机制十分重要。如果两种语言的错误处理机制不同,那么这两种语言的代码整体语法风格很可能大不相同。

在C语言中,我们通常用一个类型为整型的函数返回值作为错误状态标识,函数调用者基于值比较的方式,对这一代表错误状态的返回值进行检视。通常,当这个返回值为0时,代表函数调用成功;当这个返回值为其他值时,代表函数调用出现错误。函数调用者需根据该返回值所代表的错误状态,来决定后续执行哪条错误处理路径上的代码。

C语言这种简单的基于错误值比较的错误处理机制,让每个开发人员必须显式地去关注和处理每个错误。经过显式错误处理的代码会更为健壮,也会让开发人员对这些代码更有信心。另外,这些错误就是普通的值,我们不需要额外的语言机制去处理它们,只需利用已有的语言机制,像处理其他普通类型值那样去处理错误就可以了。这让代码更容易调试,我们也更容易针对每个错误处理的决策分支进行测试覆盖。

C语言错误处理机制的这种简单与显式,跟Go语言的设计哲学十分契合,于是Go语言设计者决定继承这种错误处理机制。因此,当Gopher们来到C语言的世界时,无需对自己的错误处理思维做出很大的改变,就可以很容易地适应C语言的风格。

三. 知己知彼,来看看C与Go的差异

虽说 Gopher 学习C语言有“先天优势”,但是不经过脚踏实地的学习与实践就想掌握和精通C语言,也是不可能的。而且,C 和Go还是有很大差异的,Gopher 们只有清楚这些差异,做到“知己知彼”,才能在学习过程中分清轻重,有的放矢。俗话说,“磨刀不误砍柴功”,下面我们就一起看看C与Go有哪些不同。

1. 设计哲学

在人类自然语言学界,有一个很著名的假说——“萨丕尔-沃夫假说”。这个假说的内容是这样的:语言影响或决定人类的思维方式。对我来说,编程语言也不仅仅是一门工具,它还影响着程序员的思维方式。每次开始学习一门新的编程语言时,我都会先了解这门编程语言的设计哲学。

每种编程语言都有自己的设计哲学,即便这门语言的设计者没有将其显式地总结出来,它也真真切切地存在,并影响着这门语言的后续演进,以及这门语言程序员的思维方式。我在《Tony Bai · Go语言第一课》专栏里,将Go语言的设计哲学总结成了5点,分别是简单、显式、组合、并发和面向工程

那么C语言的设计哲学又是什么呢?从表面上看,简单紧凑、性能至上、极致资源、全面移植,这些都可以作为C的设计哲学,但我倾向于一种更有人文气息的说法:满足和相信程序员

在这样的设计哲学下,一方面,C语言提供了几乎所有可以帮助程序员表达自己意图的语法手段,比如宏、指针与指针运算、位操作、pragma指示符、goto语句,以及跳转能力更为强大的longjmp等;另一方面,C语言对程序员的行为并没有做特别严格的限定与约束,C程序员可以利用语言提供的这些语法手段,进行天马行空的发挥:访问硬件、利用指针访问内存中的任一字节、操控任意字节中的每个位(bit)等。总之,C语言假定程序员知道他们在做什么,并选择相信程序员。

C语言给了程序员足够的自由,可以说,在C语言世界,你几乎可以“为所欲为”。但这种哲学也是有代价的,那就是你可能会犯一些莫名其妙的错误,比如悬挂指针,而这些错误很少或不可能在其他语言中出现。

这里再用一个比喻来更为形象地表达下:从Go世界到C世界,就好比在动物园中饲养已久的动物被放归到野生自然保护区,有了更多自由,但周围也暗藏着很多未曾遇到过的危险。因此,学习C语言的Gopher们要有足够的心理准备。

2. 内存管理

接下来我们来看C与Go在内存管理方面的不同。我把这一点放在第二位,是因为这两种语言在内存管理上有很大的差异,而且这一差异会给程序员的日常编码带来巨大影响。

我们知道,Go是带有垃圾回收机制(俗称GC)的静态编程语言。使用Go编程时,内存申请与释放,在栈上还是在堆上分配,以及新内存块的清零等等,这一切都是自动的,且对程序员透明。

但在C语言中,上面说的这些都是程序员的责任。手工内存管理在带来灵活性的同时,也带来了极大的风险,其中最常见的就是内存泄露(memory leak)与悬挂指针(dangling pointer)问题。

内存泄露主要指的是程序员手工在堆上分配的内存在使用后没有被释放(free),进而导致的堆内存持续增加。而悬挂指针的意思是指针指向了非法的内存地址,未初始化的指针、指针所指对象已经被释放等,都是导致悬挂指针的主要原因。针对悬挂指针进行解引用(dereference)操作将会导致运行时错误,从而导致程序异常退出的严重后果。

Go语言带有GC,而C语言不带GC,这都是由各自语言设计哲学所决定的。GC是不符合C语言的设计哲学的,因为一旦有了GC,程序员就远离了机器,程序员直面机器的需求就无法得到满足了。并且,一旦有了GC,无论是在性能上还是在资源占用上,都不可能做到极致了。

在C中,手工管理内存到底是一种什么感觉呢?作为一名有着十多年C开发经验的资深C程序员,我只能告诉你:与内存斗,其乐无穷!这是在带GC的编程语言中无法体会到的。

3. 语法形式

虽然C语言是Go的先祖,并且Go也继承了很多C语言的语法元素,但在变量/函数声明、行尾分号、代码块是否用括号括起、标识符作用域,以及控制语句语义等方面,二者仍有较大差异。因此,对Go已经很熟悉的程序员在初学C时,受之前编码习惯的影响,往往会踩一些“坑”。基于此,我总结了Gopher学习C语言时需要特别注意的几点,接下来我们具体看看。

第一,注意声明变量时类型与变量名的顺序

前面说过,Go与C都是静态编译型语言,这就要求我们在使用任何变量之前,需要先声明这个变量。但Go采用的变量声明语法颇似Pascal语言,即变量名在前,变量类型在后,这与C语言恰好相反,如下所示:

Go:

var a, b int
var p, q *int

vs.

C:
int a, b;
int *p, *q;

此外,Go支持短变量声明,并且由于短变量声明更短小,无需显式提供变量类型,Go编译器会根据赋值操作符后面的初始化表达式的结果,自动为变量赋予适当类型。因此,它成为了Gopher们喜爱和重度使用的语法。但短声明在C中却不是合法的语法元素:

int main() {
    a := 5; //  error: expected expression
    printf("a = %d\n", a);
}

不过,和上面的变量类型与变量名声明的顺序问题一样,C编译器会发现并告知我们这个问题,并不会给程序带来实质性的伤害。

第二,注意函数声明无需关键字前缀

无论是C语言还是Go语言,函数都是基本功能逻辑单元,我们也可以说C程序就是一组函数的集合。实际上,我们日常的C代码编写大多集中在实现某个函数上。

和变量一样,函数在两种语言中都需要先声明才能使用。Go语言使用func关键字作为函数声明的前缀,并且函数返回值列表放在函数声明的最后。但在C语言中,函数声明无需任何关键字作为前缀,函数只支持单一返回值,并且返回值类型放在函数名的前面,如下所示:

Go:
func Add(a, b int) int {
    return a+b
}

vs.

C:
int Add(int a, int b) {
    return a+b;
}

第三,记得加上代码行结尾的分号

我们日常编写Go代码时,极少手写分号。这是因为,Go设计者当初为了简化代码编写,提高代码可读性,选择了由编译器在词法分析阶段自动在适当位置插入分号的技术路线。如果你是一个被Go编译器惯坏了的Gopher,来到C语言的世界后,一定不要忘记代码行尾的分号。比如上面例子中的C语言Add函数实现,在return语句后面记得要手动加上分号。

第四,补上“省略”的括号

同样是出于简化代码、增加可读性的考虑,Go设计者最初就取消掉了条件分支语句(if)、选择分支语句(switch)和循环控制语句(for)中条件表达式外围的小括号:

// Go代码
func f() int {
    return 5
}
func main() {
    a := 1
    if a == 1 { // 无需小括号包裹条件表达式
        fmt.Println(a)
    }

    switch b := f(); b { // 无需小括号包裹条件表达式
    case 4:
        fmt.Println("b = 4")
    case 5:
        fmt.Println("b = 5")
    default:
        fmt.Println("b = n/a")
    }

    for i := 1; i < 10; i++ { // 无需小括号包裹循环语句的循环表达式
        a += i
    }
    fmt.Println(a)
}

这一点恰恰与C语言“背道而驰”。因此,我们在使用C语言编写代码时,务必要想着补上这些括号:

// C代码
int f() {
        return 5;
}

int main() {
    int a = 1;
    if (a == 1) { // 需用小括号包裹条件表达式
        printf("%d\n", a);
    }

    int b = f();
    switch (b) { // 需用小括号包裹条件表达式
    case 4:
        printf("b = 4\n");
        break;
    case 5:
        printf("b = 5\n");
        break;
    default:
        printf("b = n/a\n");
    }

    int i = 0;
    for (i = 1; i < 10; i++) { // 需用小括号包裹循环语句的循环表达式
        a += i;
    }
    printf("%d\n", a);
}

第五,留意C与Go导出符号的不同机制

C语言通过头文件来声明对外可见的符号,所以我们不用管符号是不是首字母大写的。但在Go中,只有首字母大写的包级变量、常量、类型、函数、方法才是可导出的,即对外部包可见。反之,首字母小写的则为包私有的,仅在包内使用。Gopher一旦习惯了这样的规则,在切换到C语言时,就会产生“心理后遗症”:遇到在其他头文件中定义的首字母小写的函数时,总以为不能直接使用。

第六,记得在switch case语句中添加break

C 语言与Go语言在选择分支语句的语义方面有所不同:C语言的 case 语句中,如果没有显式加入break语句,那么代码将向下自动掉落执行。而Go在最初设计时就重新规定了switch case的语义,默认不自动掉落(fallthrough),除非开发者显式使用fallthrough关键字。

适应了Go的switch case语句的语义后再回来写C代码,就会存在潜在的“风险”。我们来看一个例子:

// C代码:
int main() {
    int a = 1;
    switch(a) {
        case 1:printf("a = 1\n");
        case 2:printf("a = 2\n");
        case 3:printf("a = 3\n");
        default:printf("a = ?\n");
    }
}

这段代码是按Go语义编写的switch case,编译运行后得到的结果如下:

a = 1
a = 2
a = 3
a = ?

这显然不符合我们输出“a = 1”的预期。对于初学C的Gopher而言,这个问题影响还是蛮大的,因为这样编写的代码在C编译器眼中是完全合法的,但所代表的语义却完全不是开发人员想要的。这样的程序一旦流入到生产环境,其缺陷可能会引发生产故障。

一些Clint 工具可以检测出这样的问题,因此对于写C代码的Gopher,我建议在提交代码前使用lint工具对代码做一下检查。

4. 构建机制

Go与C都是静态编译型语言,它们的源码需要经过编译器和链接器处理,这个过程称为构建(build),构建后得到的可执行文件才是最终交付给用户的成果物。

和Go语言略有不同的是,C语言的构建还有一个预处理(pre-processing)阶段,预处理环节的输出才是C编译器的真正输入。C语言中的宏就是在预处理阶段展开的。不过,Go没有预处理阶段。

C语言的编译单元是一个C源文件(.c),每个编译单元在编译过程中会对应生成一个目标文件(.o/.obj),最后链接器将这些目标文件链接在一起,形成可执行文件。

而Go则是以一个包(package)为编译单元的,每个包内的源文件生成一个.o文件,一个包的所有.o文件聚合(archive)成一个.a文件,链接器将这些目标文件链接在一起形成可执行文件。

Go语言提供了统一的Go命令行工具链,且Go编译器原生支持增量构建,源码构建过程不需要Gopher手工做什么配置。但在C语言的世界中,用于构建C程序的工具有很多,主流的包括gcc/clang,以及微软平台的C编译器。这些编译器原生不支持增量构建,为了提升工程级构建的效率,避免每次都进行全量构建,我们通常会使用第三方的构建管理工具,比如make(Makefile)或CMake。考虑移植性时,我们还会使用到configure文件,用于在目标机器上收集和设置编译器所需的环境信息。

5. 依赖管理

我在前面提过,C语言仅提供了一个“小内核”。像依赖管理这类的事情,C语言本身并没有提供跟Go中的Go Module类似的,统一且相对完善的解决方案。在C语言的世界中,我们依然要靠外部工具(比如CMake)来管理第三方的依赖。

C语言的第三方依赖通常以静态库(.a)或动态共享库(.so)的形式存在。如果你的应用要使用静态链接,那就必须在系统中为C编译器提供第三方依赖的静态库文件。但在实际工作中,完全采用静态链接有时是会遇到麻烦的。这是因为,很多操作系统在默认安装时是不带开发包的,也就是说,像 libc、libpthread 这样的系统库只提供了动态共享库版本(如/lib下提供了libc的共享库libc.so.6),其静态库版本是需要自行下载、编译和安装的(如libc的静态库libc.a在安装后是放在/usr/lib下面的)。所以多数情况下,我们是将****静态、动态****两种链接方式混合在一起使用的,比如像libc这样的系统库多采用动态链接。

动态共享库通常是有版本的,并且按照一定规则安装到系统中。举个例子,一个名为libfoo的动态共享库,在安装的目录下文件集合通常是这样:

2022-03-10 12:28 libfoo.so -> libfoo.so.0.0.0*
2022-03-10 12:28 libfoo.so.0 -> libfoo.so.0.0.0*
2022-03-10 12:28 libfoo.so.0.0.0*

按惯例,每个动态共享库都有多个名字属性,包括real name、soname和linker name。下面我们来分别看下。

  • real name:实际包含共享库代码的那个文件的名字(如上面例子中的libfoo.so.0.0.0)。动态共享库的真实版本信息就在real name中,显然real name中的版本号符合语义版本规范,即major.minor.patch。当两个版本的major号一致,说明是向后兼容的两个版本;
  • soname:shared object name的缩写,也是这三个名字中最重要的一个。无论是在编译阶段还是在运行阶段,系统链接器都是通过动态共享库的soname(如上面例子中的libfoo.so.0)来唯一识别共享库的。我们看到的soname实际上是仅包含major号的共享库名字;
  • linker name:编译阶段提供给编译器的名字(如上面例子中的libfoo.so)。如果你构建的共享库的real name跟上面例子中libfoo.so.0.0.0类似,带有版本号,那么你在编译器命令中直接使用-L path -lfoo是无法让链接器找到对应的共享库文件的,除非你为libfoo.so.0.0.0提供了一个linker name(如libfoo.so,一个指向libfoo.so.0.0.0的符号链接)。linker name一般在共享库安装时手工创建。
    动态共享库有了这三个名称属性,依赖管理就有了依据。但由于在链接的时候使用的是linker name,而linker name并不带有版本号,真实版本与主机环境有关,因此要实现C应用的可重现构建还是比较难。在实践中,我们通常会使用专门的构建主机,项目组将该主机上的依赖管理起来,进而保证每次构建所使用的依赖版本是可控的。同时,应用部署的目标主机上的依赖版本也应该得到管理,避免运行时出现动态共享库版本不匹配的问题。

6. 代码风格

Go语言是历史上首次实现了代码风格全社区统一的编程语言。它基本上消除了开发人员在代码风格上的无休止的、始终无法达成一致的争论,以及不同代码风格带来的阅读、维护他人代码时的低效。gofmt工具格式化出来的代码风格已经成为Go开发者的一种共识,融入到Go语言的开发文化当中了。所以,如果你让某个Go开发者说说gofmt后的代码风格是什么样的,多数Go开发者可能说不出,因为代码会被gofmt自动变成那种风格,大家已经不再关心风格了。

而在C语言的世界,代码风格仍存争议。但经过多年的演进,以及像Go这样新兴语言的不断“教育”,C社区也在尝试进行这方面的改进,涌现出了像clang-format这样的工具。目前,虽然还没有在全社区达成一致的代码风格(由于历史原因,这很难做到),但已经可以减少很多不必要的争论。

对于正在学习C语言,并进行C编码实践的Gopher,我的建议是:不要拘泥于使用什么代码风格,先用clang-format,并确定一套风格模板就好

四. 小结

作为一名对Go跟随和研究了近十年的程序员,我深刻体会到,Go的简单性、性能和生产力使它成为了创建面向用户的应用程序和服务的理想语言。快速的迭代让团队能够快速地作出反应,以满足用户不断变化的需求,让团队可以将更多精力集中在保持灵活性上。

但Go也有缺点,比如缺少对内存以及一些低级操作的精确控制,而C语言恰好可以弥补这个缺陷。C 语言提供的更精细的控制允许更多的精确性,使得C成为低级操作的理想语言。这些低级操作不太可能发生变化,并且C相比Go还提高了性能。所以,如果你是一个有性能与低级操作需求的 Gopher ,就有充分的理由来学习C语言。

C 的优势体现在最接近底层机器的地方,而Go的优势在离用户较近的地方能得到最大发挥。当然,这并不是说两者都不能在对方的空间里工作,但这样做会增加“摩擦”。当你的需求从追求灵活性转变为注重效率时,用C重写库或服务的理由就更充分了。

总之,虽然Go和C的设计有很大的不同,但它们也有很多相似性,具备发挥兼容优势的基础。并且,当我们同时使用这二者时,就可以既有很大的灵活性,又有很好的性能,可以说是相得益彰!

五. 写在最后

今天的加餐中,我主要是基于C与Go的比较来讲解的,对于Go语言的特性并没有作详细展开。如果你还想进一步了解Go语言的设计哲学、语法特性、程序设计相关知识,欢迎来学习我在极客时间上的专栏《Tony Bai ·Go语言第一课》。在这门课里,我会用我十年Gopher的经验,带给你一条系统、完整的Go语言入门路径。

感谢你看到这里,如果今天的内容让你有所收获,欢迎把它分享给你的朋友。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go 1.10中值得关注的几个变化

又到了Go语言新版本的发布时间窗口了!这次的主角是Go 1.10

img{512x368}

曾几何时, 这是很多Gopher在Go 1.8Go 1.9时猜测是否存在的那个版本,毕竟minor version即将进化到两位数。从Go语言第一封设计mail发出到现在的十年间,尤其是Go语言经历了近几年的爆发式增长,基本奠定了云原生第一语言的位置之后,人们对Go语言有了更多新的、更为深刻的认知,同时对这门编程语言也有了更多的改进和优化的期望。Go2在Gopher心中的位置日益提升,直到Russ CoxGopherCon 2017上公布了Go core team对Go2的开发策略,我们才意识到:哦,Go1还将继续一段时间,甚至是一段很长的时间。2018年2月,我们将迎来Go 1.10版本

Go 1.4版本开始,我自己都没想到我能将“Go x.x中值得关注的几个变化”这个系列一直写到Go 1.10。不过现在看来,这个系列还会继续,以后可能还有Go 1.11、Go 1.12…,甚至是进化到Go2之后的各个版本。

Go从1.0版本发布之日起,便遵守着自己“变与不变”的哲学。不变的是对Go对“Go1 promise of compatibility”的严格遵守,变化的则是对语言性能、运行时、GC、工具以及标准库更为精细和耐心地打磨。这次发布的Go 1.10依然延续着这种理念,将重点的改进放在了运行时、工具以及标准库上。接下来,我就和大家一起看看即将发布的Go 1.10都有哪些值得重点关注的变化。

一、语言

Go language Spec是当前Go语言的唯一语言规范标准,虽然其严谨性与那些以ISO标准形式编写成的语言规范(比如:C语言、C++语言的规范)还有一定差距。因此,对go spec的优化,就是在严谨性方面下功夫。当前spec的主要修订者是Go语言三个设计者之一的Robert Griesemer,他在Go 1.10周期对spec做了较多语言概念严谨性方面的改进

1、显式定义Representability(可表示性)

Properties of types and values章节下,Robert Griesemer显式引入了一个新的术语Representability,这里译为可表示性。这一术语的引入并未带来语法的变化,只是为了更精确的阐释规范。Representability的定义明确了当规范中出现“a constant x is representable by a value of type T”时成立的几种条件,尤其是针对浮点类型和复数类型。这里摘录(不翻译):

A constant x is representable by a value of type T if one of the following conditions applies:

- x is in the set of values determined by T.
- T is a floating-point type and x can be rounded to T's precision without overflow. Rounding uses IEEE 754 round-to-even rules but with an IEEE negative zero further simplified to an unsigned zero. Note that constant values never result in an IEEE negative zero, NaN, or infinity.
- T is a complex type, and x's components real(x) and imag(x) are representable by values of T's component type (float32 or float64).

2、澄清未指定类型的常量作为shift(移位)非常量位操作的左操作数时在某些特定上下文中的类型

虽然不及ISO标准规范严谨,但凡是language spec,理解起来都是有门槛的。这个改进针对的是那些未指定类型的常量,在作为shift非常量位操作的左操作数时,在shift表达式结果作为下标表达式中的下标、切片表达式下标或者make函数调用中的size参数时,这个常量将被赋予int类型。我们还是看个例子更加直观:

// go1.10-examples/spec/untypedconst.go
package main

var (
    s uint = 2
)

func main() {
    a := make([]int, 10)
    a[1.0<<s] = 4
}

上面的例子中,重点看a[1.0 << s] = 4这一行,这一行恰好满足了几个条件:

  • 1.0 << s 是一个shift表达式,且作为slide表达式的下标;
  • shift表达式所移动的位数为s,s是一个变量,非常量,因此这是一个非常量位的移位操作;
  • 1.0是未指定类型的常量(untyped const),且作为shift表达式左操作数

在Go 1.9.2下面,上面的程序编译结果如下:

// go 1.9.2编译器build:

$go build untypedconst.go
# command-line-arguments
./untypedconst.go:9:7: invalid operation: 1 << s (shift of type float64)

在Go 1.9.2下,1.0这个常量被compiler赋予了float64类型,导致编译出错。在Go 1.10下,根据最新的spec,1.0被赋予了int型,编译则顺利通过。

但一旦脱离了下标这个上下文环境,1.0这个常量依旧会被compiler识别为float64类型,比如下面代码中1.0<<s作为Println的参数就是不符合语法的:

// go1.10-examples/spec/untypedconst.go
package main

import "fmt"

var (
    s uint = 2
)

func main() {
    a := make([]int, 10)
    a[1.0<<s] = 4
    fmt.Println(1.0<<s)
}

// go 1.10rc2编译器build:
 $go build untypedconst.go
# command-line-arguments
./untypedconst.go:12:17: invalid operation: 1 << s (shift of type float64)
./untypedconst.go:12:17: cannot use 1 << s as type interface {} in argument to fmt.Println

3、明确预声明类型(predeclared type)是defined type还是alias type

Go在1.9版本中引入了alias语法,同时引入defined type(以替代named type)和alias type,并使用alias语法对某些predeclared type的实现进行了调整。在Go 1.10 spec中,Griesemer进一步明确了哪些predeclared type是alias type

目前内置的predeclared type只有两个类型是alias type:

byte        alias for uint8
rune        alias for int32

其余的predeclared type都是defined type。

4、移除spec中对method expression: T.m中T的类型的限制

这次是spec落伍于compiler了。Go 1.9.2就可以顺利编译运行下面的代码:

//go1.10-examples/spec/methodexpression.go
package main

import "fmt"

type foo struct{}
func (foo)f() {
    fmt.Println("i am foo")
}

func main() {
    interface{f()}.f(foo{})
}

但在Go 1.9.2的spec中,对Method expression的定义如下:

Go 1.9.2 spec:

MethodExpr    = ReceiverType "." MethodName .
ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .

Go 1.9.2的spec说,method expression形式:T.m中的T仅能使用Typename,而非上述代码中type实现。Go 1.10的spec中放开了对method expression中T的限制,使得type的实现也可以作为T调用method,与编译器的实际实现行为同步:

Go 1.10rc2 spec:

MethodExpr    = ReceiverType "." MethodName .
ReceiverType  = Type .

不过目前Go 1.10 rc2 compiler还存在一个问题,我们看一下下面的代码:

//go1.10-examples/spec/methodexpression1.go
package main

func main() {
    (*struct{ error }).Error(nil)
}

使用Go 110rc2构建该源码,得到如下错误:

$go build methodexpression1.go
# command-line-arguments
go.(*struct { error }).Error: call to external function
main.main: relocation target go.(*struct { error }).Error not defined
main.main: undefined: "go.(*struct { error }).Error"

该问题目前已经有issue对应,状态还是Open。

二、工具

Go语言有着让其他主流编程语言羡慕的工具集,每次Go版本更新,工具集都会得到进一步的加强,无论是功能还是从开发者体验方面,都有提升。

1、默认的GOROOT

Go 1.8版本引入默认的GOPATH后,Go 1.10版本为继续改进Go工具的开发者体验,进一步降低新手的使用门槛,引入了默认GOROOT:即开发者无需显式设置GOROOT环境变量,go程序会自动根据自己所在路径推导出GOROOT的路径。这样一来,Gopher们就可以将下载的Go预编译好的安装包解压放置到任意本地路径下,唯一要做的就是将go二进制程序路径放置到PATH环境变量中。比如我们将go1.10rc2的安装包解压到下面路径下:

➜  /Users/tony/.bin/go1.10rc2 $ls
AUTHORS            LICENSE            VERSION            blog/            lib/            robots.txt
CONTRIBUTING.md        PATENTS            api/            doc/            misc/            src/
CONTRIBUTORS        README.md        bin/            favicon.ico        pkg/            test/

在设置为PATH后,我们通过go env命令查看go自动推导的GOROOT以及其他相关变量的值:

$go env
GOARCH="amd64"
GOBIN=""
GOCACHE="/Users/tony/Library/Caches/go-build"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="darwin"
GOOS="darwin"
GOPATH="/Users/tony/go"
GORACE=""
GOROOT="/Users/tony/.bin/go1.10rc2"
GOTMPDIR=""
GOTOOLDIR="/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64"
GCCGO="gccgo"
CC="clang"
CXX="clang++"
CGO_ENABLED="1"
CGO_CFLAGS="-g -O2"
CGO_CPPFLAGS=""
CGO_CXXFLAGS="-g -O2"
CGO_FFLAGS="-g -O2"
CGO_LDFLAGS="-g -O2"
PKG_CONFIG="pkg-config"
GOGCCFLAGS="-fPIC -m64 -pthread -fno-caret-diagnostics -Qunused-arguments -fmessage-length=0 -gno-record-gcc-switches -fno-common"

从输出结果看到,go正确找到了安装路径,并得到了GOROOT信息。

2、增加GOTMPDIR变量

在上面的go env命令输出内容中,我们发现了一个陌生的变量:GOTMPDIR,其值默认为空串。这个GOTMPDIR变量是Go 1.10新引入的变量,用于设置Go tool创建和使用的临时文件的路径的。有人可能会说:这个变量看似没什么必要,直接用系统的/tmp路径就好了啊。但是在/tmp路径中编译和执行编译后的程序至少有两点问题,这些问题实际上在go的issues历史中已经存在许久了:

我们知道默认情况下,go build和go run都会在/tmp下设置一个临时WORK目录来编译源码和执行编译后的程序的,从下面的一个最简单的helloworld源码的编译执行过程输出(WORK变量),我们就能看到这点:

// on ubuntu 16.04

# go run -x hello.go
WORK=/tmp/go-build001434392
mkdir -p $WORK/b001/
... ...
mkdir -p $WORK/b001/exe/
cd .
/root/.bin/go1.10rc2/pkg/tool/linux_amd64/link -o $WORK/b001/exe/hello -importcfg $WORK/b001/importcfg.link -s -w -buildmode=exe -buildid=fcYMWp_1J2Xqgzc_Vdga/UpnEUti07R2GzG8dUU3x/MLkSlJVesZhf2kQUaDUU/fcYMWp_1J2Xqgzc_Vdga -extld=gcc /root/.cache/go-build/9f/9f34be2dbcc3f8a62dd6efd6d35be18ecdcbc49e3c8b52b003ecd72b6264e19e-d
$WORK/b001/exe/hello

我个人就遇到过由于IaaS供应商提供的系统盘(不允许定制和修改)过小,导致系统盘空间满,使得Go应用构建和执行失败的问题。我们来设置一下GOTMPDIR,看看效果。我们将GOTMPDIR设置为~/.gotmp,生效后,重新build上面的那个helloworld代码:

# go build -x hello.go
WORK=/root/.gotmp/go-build452283009
mkdir -p $WORK/b001/
cat >$WORK/b001/importcfg << 'EOF' # internal
... ...
mkdir -p $WORK/b001/exe/
cd .
/root/.bin/go1.10rc2/pkg/tool/linux_amd64/link -o $WORK/b001/exe/a.out -importcfg $WORK/b001/importcfg.link -buildmode=exe -buildid=kO-wBNzMZmfHCKzMDziw/jCGBCt7bcrS5NEN-cR4H/8-du6iTQz8uPH3UC-FtB/kO-wBNzMZmfHCKzMDziw -extld=gcc $WORK/b001/_pkg_.a
/root/.bin/go1.10rc2/pkg/tool/linux_amd64/buildid -w $WORK/b001/exe/a.out # internal
mv $WORK/b001/exe/a.out hello
rm -r $WORK/b001/

可以看到,go tool转移到我们设置的GOTMPDIR下构建和执行了。

3、通过cache实现增量构建,提高go tools性能

Go语言具有较高的编译性能是Go语言最初设计时就确定下来的目标,Go编译器的性能在Go 1.4.3版本达到顶峰,这虽然是得益于其使用C语言实现,但更重要的是其为高性能构建而定义的便于依赖分析的语言构建模型,同时避免了像C/C++那样的重复多次扫描大量头文件的负担。随着Go自举的实现,使用Go语言实现的go compiler性能有较大下降,但即便这样,其编译速度在主流编程语言中仍然是数一数二的。在经过了Go 1.6Go1.9等多个版本对compiler的优化后,go compiler的编译速度已经恢复到Go 1.4.3 compiler的2/3左右或是更为接近的水平。在Go 1.9版本引入并行编译后,Go team在提升工具性能方面的思路发生了些许变化:不再是一味地进行代码级的性能优化,而是选择通过Cache,重复利用中间结果,实现增量构建,来减少编译构建所用的时间。因此,笔者觉得这个功能是本次Go 1.10最大的变化之一

1) 概述

Go 1.10版本以前,我们经常通过go build -i来加快Go项目源码的编译速度,其原因在于go build -i首次执行时会将目标所依赖的package安装到$GOPATH/pkg下面(.a文件),这样后续执行go build时,构建过程将不会重新编译目标文件的依赖包,而是直接链接首次执行build -i时安装的依赖包,以实现加速编译!以gocmpp/examples/client为例,第二次构建所需时间仅为首次构建的四分之一左右:

➜  $GOPATH/src/github.com/bigwhite/gocmpp/examples/client git:(master) ✗ $time go build -i client.go
go build -i client.go  1.34s user 0.34s system 131% cpu 1.274 total
➜  $GOPATH/src/github.com/bigwhite/gocmpp/examples/client git:(master) ✗ $time go build -i client.go
go build -i client.go  0.38s user 0.16s system 116% cpu 0.465 total

只有当目标文件的依赖包的源文件发生变化时(比对源文件的修改时间与.a文件的修改时间作为是否重新编译的判断依据),才会重新编译安装这些依赖包。这有些像Makefile的原理:make工具会比较targets文件和prerequisites文件的修改日期,如果prerequisites文件的日期要比targets文件的日期要新,或者target不存在的话,那么,make就会执行后续定义的命令。

不过即便这样,依然至少有两个问题困扰着Go team和广大Gopher:

  • 基于时间戳的比对,并不“合理”
    当某个目标文件的依赖包的源文件内容并未真正发生变化,但“修改时间”发生变化了,比如:添加了一行,保存了;然后又删除了这一行,保存。在这样的情况下,理想的操作是不需要重新编译安装这个依赖包,但目前的go build -i机制会重新编译并安装这个依赖包

  • 增量构建并未实现“常态化”
    以前版本中,默认的不带命令行参数的go build命令是不会安装依赖包的,因此每次执行go build,都会重新编译一次依赖包的源码,并将结果放入临时目录以供最终链接使用。也就是说最为常用的go build并未实现增量编译,社区需要常态化的“增量编译”,进一步提高效率。

Go 1.10引入cache机制来解决上述问题。从1.10版本开始,go build tool将维护一个package编译结果的缓存以及一些元数据,缓存默认位于操作系统指定的用户缓存目录中,其中数据用于后续构建重用;不仅go build支持“常态化”的增量构建,go test也支持在特定条件下缓存test结果,从而加快执行测试的速度。

b) go build with cache

我们先来直观的看看go 1.10 build带来的效果,初始情况cache为空:

以我的一个小项目gocmpp为例,用go 1.10第一次build该项目:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $time go build
go build  1.22s user 0.43s system 175% cpu 0.939 total

我们再来构建一次:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $time go build
go build  0.12s user 0.16s system 155% cpu 0.182 total

0.12s vs. 1.22s!通过cache进行的build将构建时间压缩为原来的1/10!为了弄清楚go build幕后行为,我们清除一下cache(go clean -cache),再重新build,这次我们通过-v -x 输出详细构建过程:

首次编译的详细输出信息:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go build -x -v
WORK=/var/folders/2h/xr2tmnxx6qxc4w4w13m01fsh0000gn/T/go-build735203690
github.com/bigwhite/gocmpp/vendor/golang.org/x/text/encoding/internal/identifier
mkdir -p $WORK/b033/
cat >$WORK/b033/importcfg << 'EOF' # internal
# import config
EOF
cd $(GOPATH)/src/github.com/bigwhite/gocmpp/vendor/golang.org/x/text/encoding/internal/identifier
/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64/compile -o $WORK/b033/_pkg_.a -trimpath $WORK/b033 -p github.com/bigwhite/gocmpp/vendor/golang.org/x/text/encoding/internal/identifier -complete -buildid iZWJNg2FYmWoSCXb640o/iZWJNg2FYmWoSCXb640o -goversion go1.10rc2 -D "" -importcfg $WORK/b033/importcfg -pack -c=4 ./identifier.go ./mib.go
/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64/buildid -w $WORK/b033/_pkg_.a # internal
cp $WORK/b033/_pkg_.a /Users/tony/Library/Caches/go-build/14/14223040d851359359b0e531555a47e22f5dbd4bf434acc136a7c70c1fc3663f-d # internal
github.com/bigwhite/gocmpp/vendor/golang.org/x/text/transform
mkdir -p $WORK/b031/
cat >$WORK/b031/importcfg << 'EOF' # internal
# import config
packagefile bytes=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/bytes.a
packagefile errors=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/errors.a
packagefile io=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/io.a
packagefile unicode/utf8=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/unicode/utf8.a
EOF

.... ....

cd $(GOPATH)/src/github.com/bigwhite/gocmpp
/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64/compile -o $WORK/b001/_pkg_.a -trimpath $WORK/b001 -p github.com/bigwhite/gocmpp -complete -buildid 6LaoHtjkFhandbEhv7zD/6LaoHtjkFhandbEhv7zD -goversion go1.10rc2 -D "" -importcfg $WORK/b001/importcfg -pack -c=4 ./activetest.go ./client.go ./conn.go ./connect.go ./deliver.go ./fwd.go ./packet.go ./receipt.go ./server.go ./submit.go ./terminate.go
/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64/buildid -w $WORK/b001/_pkg_.a # internal
cp $WORK/b001/_pkg_.a /Users/tony/Library/Caches/go-build/e0/e02a5fec0835ca540b62053fdea82589e686e88bf48f18355ed38d41ad19f334-d # internal

再次编译的详细输出信息:

$go build -x -v
WORK=/var/folders/2h/xr2tmnxx6qxc4w4w13m01fsh0000gn/T/go-build906548554

我们来分析一下。首次构建时,我们看到gocmpp依赖的每个包以及自身的包都会被编译,并被copy到/Users/tony/Library/Caches/go-build/下面的某个目录下,包括最终的gocmpp包也是这样。第二次build时,我们看到仅仅输出一行信息,这是因为go compiler在cache中找到了gocmpp包对应的编译好的缓存结果,无需进行实际的编译了。

前面说过,go 1.10 compiler决定是否重新编译包是content based的,而不是依照时间戳比对来决策。我们来修改一个gocmpp包中的文件fwd.go,删除一个空行,再恢复这个空行,保存退出。我们再来编译一下gocmpp:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go build -x -v
WORK=/var/folders/2h/xr2tmnxx6qxc4w4w13m01fsh0000gn/T/go-build857409409

可以看到go compiler并没有重新编译任何包。如果我们真实改变了fwd.go的内容,比如删除一个空行,保存后再次编译:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go build -x -v
WORK=/var/folders/2h/xr2tmnxx6qxc4w4w13m01fsh0000gn/T/go-build437927548
github.com/bigwhite/gocmpp
mkdir -p $WORK/b001/
cat >$WORK/b001/importcfg << 'EOF' # internal
# import config
packagefile bytes=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/bytes.a
packagefile crypto/md5=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/crypto/md5.a
packagefile encoding/binary=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/encoding/binary.a
packagefile errors=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/errors.a
packagefile fmt=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/fmt.a
packagefile github.com/bigwhite/gocmpp/utils=/Users/tony/Test/GoToolsProjects/pkg/darwin_amd64/github.com/bigwhite/gocmpp/utils.a
packagefile io=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/io.a
packagefile log=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/log.a
packagefile net=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/net.a
packagefile os=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/os.a
packagefile strconv=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/strconv.a
packagefile strings=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/strings.a
packagefile sync=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/sync.a
packagefile sync/atomic=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/sync/atomic.a
packagefile time=/Users/tony/.bin/go1.10rc2/pkg/darwin_amd64/time.a
EOF
cd /Users/tony/Test/GoToolsProjects/src/github.com/bigwhite/gocmpp
/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64/compile -o $WORK/b001/_pkg_.a -trimpath $WORK/b001 -p github.com/bigwhite/gocmpp -complete -buildid trn5lvvRTk_UP3LcT5CC/trn5lvvRTk_UP3LcT5CC -goversion go1.10rc2 -D "" -importcfg $WORK/b001/importcfg -pack -c=4 ./activetest.go ./client.go ./conn.go ./connect.go ./deliver.go ./fwd.go ./packet.go ./receipt.go ./server.go ./submit.go ./terminate.go
/Users/tony/.bin/go1.10rc2/pkg/tool/darwin_amd64/buildid -w $WORK/b001/_pkg_.a # internal
cp $WORK/b001/_pkg_.a /Users/tony/Library/Caches/go-build/7a/7a5671578ed30b125257fd16d0f0b8ceaefd0acc3e44f082ffeecea9f1895499-d # internal

Go compiler发现了内容的变动,对gocmpp包的变动内容进行了重新compile。

c) 缓存目录探索

在增加cache机制时,go tools增加了GOCACHE变量,通过go env GOCACHE查看变量值:

$go env GOCACHE
/Users/tony/Library/Caches/go-build

如果未重设环境变量GOCACHE,那么默认在Linux上,GOCACHE=”~/.cache/go-build”; 在Mac OS X上,GOCACHE=”/Users/UserName/Library/Caches/go-build”。在 OS X上,我们进入$GOCACHE目录,映入眼帘的是:

➜  /Users/tony/Library/Caches/go-build $ls
00/        18/        30/        48/        60/        78/        90/        a7/        bf/        d7/        ef/
01/        19/        31/        49/        61/        79/        91/        a8/        c0/        d8/        f0/
02/        1a/        32/        4a/        62/        7a/        92/        a9/        c1/        d9/        f1/
03/        1b/        33/        4b/        63/        7b/        93/        aa/        c2/        da/        f2/
04/        1c/        34/        4c/        64/        7c/        94/        ab/        c3/        db/        f3/
05/        1d/        35/        4d/        65/        7d/        95/        ac/        c4/        dc/        f4/
06/        1e/        36/        4e/        66/        7e/        96/        ad/        c5/        dd/        f5/
07/        1f/        37/        4f/        67/        7f/        97/        ae/        c6/        de/        f6/
08/        20/        38/        50/        68/        80/        98/        af/        c7/        df/        f7/
09/        21/        39/        51/        69/        81/        99/        b0/        c8/        e0/        f8/
0a/        22/        3a/        52/        6a/        82/        9a/        b1/        c9/        e1/        f9/
0b/        23/        3b/        53/        6b/        83/        9b/        b2/        ca/        e2/        fa/
0c/        24/        3c/        54/        6c/        84/        9c/        b3/        cb/        e3/        fb/
0d/        25/        3d/        55/        6d/        85/        9d/        b4/        cc/        e4/        fc/
0e/        26/        3e/        56/        6e/        86/        9e/        b5/        cd/        e5/        fd/
0f/        27/        3f/        57/        6f/        87/        9f/        b6/        ce/        e6/        fe/
10/        28/        40/        58/        70/        88/        README        b7/        cf/        e7/        ff/
11/        29/        41/        59/        71/        89/        a0/        b8/        d0/        e8/        log.txt
12/        2a/        42/        5a/        72/        8a/        a1/        b9/        d1/        e9/        trim.txt
13/        2b/        43/        5b/        73/        8b/        a2/        ba/        d2/        ea/
14/        2c/        44/        5c/        74/        8c/        a3/        bb/        d3/        eb/
15/        2d/        45/        5d/        75/        8d/        a4/        bc/        d4/        ec/
16/        2e/        46/        5e/        76/        8e/        a5/        bd/        d5/        ed/
17/        2f/        47/        5f/        77/        8f/        a6/        be/        d6/        ee/

熟悉git原理的朋友一定觉得这个目录组织结构似曾相识!没错,在每个git项目的./git/object目录下,我们也能看到下面的结果:

.git/objects git:(master) $ls
00/    0c/    18/    24/    30/    3c/    48/    54/    60/    6c/    78/    84/    90/    9c/    a8/    b4/    c0/    cc/    d8/    e4/    f0/    fc/
01/    0d/    19/    25/    31/    3d/    49/    55/    61/    6d/    79/    85/    91/    9d/    a9/    b5/    c1/    cd/    d9/    e5/    f1/    fd/
02/    0e/    1a/    26/    32/    3e/    4a/    56/    62/    6e/    7a/    86/    92/    9e/    aa/    b6/    c2/    ce/    da/    e6/    f2/    fe/
03/    0f/    1b/    27/    33/    3f/    4b/    57/    63/    6f/    7b/    87/    93/    9f/    ab/    b7/    c3/    cf/    db/    e7/    f3/    ff/
04/    10/    1c/    28/    34/    40/    4c/    58/    64/    70/    7c/    88/    94/    a0/    ac/    b8/    c4/    d0/    dc/    e8/    f4/    info/
05/    11/    1d/    29/    35/    41/    4d/    59/    65/    71/    7d/    89/    95/    a1/    ad/    b9/    c5/    d1/    dd/    e9/    f5/    pack/
06/    12/    1e/    2a/    36/    42/    4e/    5a/    66/    72/    7e/    8a/    96/    a2/    ae/    ba/    c6/    d2/    de/    ea/    f6/
07/    13/    1f/    2b/    37/    43/    4f/    5b/    67/    73/    7f/    8b/    97/    a3/    af/    bb/    c7/    d3/    df/    eb/    f7/
08/    14/    20/    2c/    38/    44/    50/    5c/    68/    74/    80/    8c/    98/    a4/    b0/    bc/    c8/    d4/    e0/    ec/    f8/
09/    15/    21/    2d/    39/    45/    51/    5d/    69/    75/    81/    8d/    99/    a5/    b1/    bd/    c9/    d5/    e1/    ed/    f9/
0a/    16/    22/    2e/    3a/    46/    52/    5e/    6a/    76/    82/    8e/    9a/    a6/    b2/    be/    ca/    d6/    e2/    ee/    fa/
0b/    17/    23/    2f/    3b/    47/    53/    5f/    6b/    77/    83/    8f/    9b/    a7/    b3/    bf/    cb/    d7/    e3/    ef/    fb/

这里猜测go 1.10使用的应该是与git一类内容摘要算法以及组织存储模式。在前面的build详细输出中,我们找到这一行:

cp $WORK/b001/_pkg_.a /Users/tony/Library/Caches/go-build/7a/7a5671578ed30b125257fd16d0f0b8ceaefd0acc3e44f082ffeecea9f1895499-d # internal

这行命令是将gocmpp包复制到cache下,我们到cache的7a目录下一查究竟:

➜  /Users/tony/Library/Caches/go-build/7a $tree
.
└── 7a5671578ed30b125257fd16d0f0b8ceaefd0acc3e44f082ffeecea9f1895499-d

0 directories, 1 file

我们用nm命令查看一下该文件:

$go tool nm 7a5671578ed30b125257fd16d0f0b8ceaefd0acc3e44f082ffeecea9f1895499-d|more
1c319 T %22%22.(*Client).Connect
   2e279 T %22%22.(*Client).Connect.func1
   3fc22 R %22%22.(*Client).Connect.func1·f
   1c79f T %22%22.(*Client).Disconnect
   1c979 T %22%22.(*Client).RecvAndUnpackPkt
   1c807 T %22%22.(*Client).SendReqPkt
   1c8e2 T %22%22.(*Client).SendRspPkt
   1e417 T %22%22.(*Cmpp2ConnRspPkt).Pack
... ...

这个文件的确就是gocmpp.a文件。通过比对该文件size与go install后的文件size也可以证实这一点:

➜  /Users/tony/Library/Caches/go-build/7a $
-rw-r--r--    1 tony  staff  445856 Feb 15 22:34 7a5671578ed30b125257fd16d0f0b8ceaefd0acc3e44f082ffeecea9f1895499-d

vs.

➜  $GOPATH/pkg/darwin_amd64/github.com/bigwhite $ll
-rw-r--r--  1 tony  staff  445856 Feb 15 23:27 gocmpp.a

也就是说go compiler将编译后的package的.a文件求取摘要值后,将.a文件存储在$GOCACHE下的某个目录中,这个目录名即为摘要值的前两位(比如”7a”),.a文件名字被换成其摘要值,以便后续查找并做比对。

cache目录下还有一个重要文件:log.txt,这个文件是用来记录缓存管理日志的,其内容格式如下:

//log.txt
... ...

1518705271 get 7533a063cd8c37888b19674bf4a4bb7e25fa422041082566530d58538c031516
1518705271 miss b6b9f996fbd14e4fd43f72dc4f9082946cddd0d61d6c6143c88502c8a4001666
1518705271 put b6b9f996fbd14e4fd43f72dc4f9082946cddd0d61d6c6143c88502c8a4001666 7a5671578ed30b125257fd16d0f0b8ceaefd0acc3e44f082ffeecea9f1895499 445856
1518705271 put f5a641ca081a0d2d794b0b54aa9f89014dbb6ff8d14d26543846e1676eca4c21 e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 0
1518708456 get 899589360d856265a84825dbeb8d283ca84e12f154eefc12ba84870af13e1f63
1518708456 get 8a7fcd97a5f36bd00ef084856c63e4e2facedce33d19a5b557cc67f219787661

该日志文件更多的用途是帮助Russ Cox对其开发的cache进行调试和问题诊断的。当然,如果您对于cache的机制原理也很精通,那么也可以让log.txt帮你诊断涉及cache的问题。

d) go test with cache

go 1.10版的go test也会维护一个cache,这个cache缓存了go test执行的测试结果。同时在go 1.10中,go test被分为两种执行模式:local directory mode和package list mode,在不同模式下,cache机制的介入是不同的。

local directory mode,即go test以整个当前目录作为隐式参数的执行模式,比如在某个目录下执行”go test”,go test后面不带任何显式的package列表参数(当然可以带着其他命令行flag参数,如-v)。在这种模式下,cache机制不会介入,go test的执行过程与go 1.10版本之前没有两样。还是以gocmpp这个项目为例,我们以local directory mode执行go test:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test
PASS
ok      github.com/bigwhite/gocmpp    0.011s

如果缓存机制介入,输出的test结果中会出现cached字样,显然上面的go test执行过程并没有使用test cache。

package list mode,即go test后面显式传入了package列表,比如:go test math、go test .、go test ./…等,在这种模式下,test cache机制会介入。我们连续两次在gocmpp目录下执行go test .:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test .
ok      github.com/bigwhite/gocmpp    0.011s
➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test .
ok      github.com/bigwhite/gocmpp    (cached)

如果你此时想进一步看看go test执行的详细输出,你可以会执行go test -v .:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test -v .
=== RUN   TestTypeString
--- PASS: TestTypeString (0.00s)
=== RUN   TestCommandIdString
--- PASS: TestCommandIdString (0.00s)
=== RUN   TestOpError
--- PASS: TestOpError (0.00s)
... ...
=== RUN   TestCmppTerminateRspPktPack
--- PASS: TestCmppTerminateRspPktPack (0.00s)
=== RUN   TestCmppTerminateRspUnpack
--- PASS: TestCmppTerminateRspUnpack (0.00s)
PASS
ok      github.com/bigwhite/gocmpp    0.017s

你会发现,这次go test并没有使用cache。如果你再执行一次go test -v .:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test -v .
=== RUN   TestTypeString
--- PASS: TestTypeString (0.00s)
=== RUN   TestCommandIdString
--- PASS: TestCommandIdString (0.00s)
=== RUN   TestOpError
--- PASS: TestOpError (0.00s)
... ...
=== RUN   TestCmppTerminateRspPktPack
--- PASS: TestCmppTerminateRspPktPack (0.00s)
=== RUN   TestCmppTerminateRspUnpack
--- PASS: TestCmppTerminateRspUnpack (0.00s)
PASS
ok      github.com/bigwhite/gocmpp    (cached)

test cache又起了作用。似乎cache对于go test .和go test -v .是独立的。没错,release note中给出的go test cache的介入条件如下:

  • 本次测试的执行程序以及命令行(及参数)与之前的一次test运行匹配;(这就能解释为何go test -v .没有使用go test .执行的cache了);
  • 上次测试执行时的文件和环境变量在本次没有发生变化;
  • 测试结果是成功的;
  • 以package list node运行测试;
  • go test的命令行参数使用”-cpu, -list, -parallel, -run, -short和 -v”的一个子集时

就像前面我们看到的,cache介入的go test结果不会显示test消耗的时间,而是以(cached)字样替代。

绝大多数Gopher都是喜欢test with cache的,但总有一些情况,cache是不受欢迎的。其实前面的条件已经明确告知gopher们什么条件下test cache是可以不介入的。一个惯用的关闭test cache的方法是使用-count=1:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test -count=1  -v .
=== RUN   TestTypeString
--- PASS: TestTypeString (0.00s)
=== RUN   TestCommandIdString
--- PASS: TestCommandIdString (0.00s)
=== RUN   TestOpError
--- PASS: TestOpError (0.00s)
... ...
=== RUN   TestCmppTerminateRspPktPack
--- PASS: TestCmppTerminateRspPktPack (0.00s)
=== RUN   TestCmppTerminateRspUnpack
--- PASS: TestCmppTerminateRspUnpack (0.00s)
PASS
ok      github.com/bigwhite/gocmpp    0.012s

go 1.10中的go test与之前版本还有一个不同,那就是go test在真正执行test前会自动对被测试的包执行go vet,但这个vet只会识别那些最为明显的问题。并且一旦发现问题,go test将会视这些问题与build error同级别,阻断test的执行,并让其出现在test failure中。当然gopher可以通过go test -vet=off关闭这个前置于测试的vet检查。

4. pprof

go tool pprof做了一个较大的改变:增加了Web UI,以后可以和go trace一起通过图形化的方法对Go程序进行调优了。可视化的pprof使用起来十分简单,我们以gocmpp为例,试用一下go 1.10的pprof,首先我们生成cpu profile文件:

➜  $GOPATH/src/github.com/bigwhite/gocmpp git:(master) ✗ $go test -run=^$ -bench=. -cpuprofile=profile.out
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/gocmpp
BenchmarkRecvAndUnpackPkt-4                1000000          1534 ns/op
BenchmarkCmppConnReqPktPack-4              1000000          1398 ns/op
BenchmarkCmppConnReqPktUnpack-4            3000000           450 ns/op
BenchmarkCmpp2DeliverReqPktPack-4          1000000          1156 ns/op
BenchmarkCmpp2DeliverReqPktUnpack-4        3000000           567 ns/op
BenchmarkCmpp3DeliverReqPktPack-4          1000000          1173 ns/op
BenchmarkCmpp3DeliverReqPktUnpack-4        3000000           465 ns/op
BenchmarkCmpp2FwdReqPktPack-4              1000000          2079 ns/op
BenchmarkCmpp2FwdReqPktUnpack-4            1000000          1276 ns/op
BenchmarkCmpp3FwdReqPktPack-4              1000000          2507 ns/op
BenchmarkCmpp3FwdReqPktUnpack-4            1000000          1286 ns/op
BenchmarkCmpp2SubmitReqPktPack-4           1000000          1845 ns/op
BenchmarkCmpp2SubmitReqPktUnpack-4         1000000          1251 ns/op
BenchmarkCmpp3SubmitReqPktPack-4           1000000          1863 ns/op
BenchmarkCmpp3SubmitReqPktUnpack-4         2000000           656 ns/op
PASS
ok      github.com/bigwhite/gocmpp    26.621s

启动pprof web ui:

$go tool pprof -http=:8080 profile.out

pprof会自动打开默认浏览器,进入下面页面:

img{512x368}

在view菜单中,我们可以看到”top”、”graph”、”peek”、”source”和”disassemble”几个选项,这些选项可以帮助你在各种视图间切换,默认初始为graph view。不过目前view菜单中并没有”Flame Graph(火焰图)”选项,要想使用Flame Graph,我们需要使用原生的pprof工具,该工具可通过go get -u github.com/google/pprof获取,install后原生pprof将出现在$GOROOT/bin下面。

使用原生pprof启动Web UI:

$pprof -http=:8080 profile.out

原生pprof同样会自动打开浏览器,进入下面页面:

img{512x368}

原生的pprof的web ui看起来比go 1.10 tool中的pprof更为精致,且最大的不同在于VIEW菜单下出现了”Flame Graph”菜单项!我们点击该菜单项,一幅Flame Graph便呈现在眼前:

img{512x368}

关于如何做火焰图分析不是这里的主要任务,请各位Gopher自行脑补。更多关于Go性能调优问题,可以参考Go官方提供的诊断手册

四、标准库

和之前的每次Go版本发布一样,标准库的改变是多且细碎的,这里不能一一举例说明。并且很多涉“专业领域”的包,比如加解密,需要一定专业深度,因此这里仅列举几个“通用”的变化^0^。

1、strings.Builder

strings包增加一个新的类型:Builder,用于在“拼字符串”场景中替代bytes.Buffer,由于使用了一些unsafe包的黑科技,在用户调用Builder.String()返回最终拼成的字符串时,避免了一些重复的、不必要的内存copy,提升了处理性能,优化了内存分配。我们用一个demo来看看这种场景下Builder的优势:

//go1.10-examples/stdlib/stringsbuilder/builer.go
package builder

import (
    "bytes"
    "strings"
)

type BuilderByBytesBuffer struct {
    b bytes.Buffer
}
func (b *BuilderByBytesBuffer) WriteString(s string) error {
    _, err := b.b.WriteString(s)
    return err
}
func (b *BuilderByBytesBuffer) String() string{
    return b.b.String()
}

type BuilderByStringsBuilder struct {
    b strings.Builder
}

func (b *BuilderByStringsBuilder) WriteString(s string) error {
    _, err := b.b.WriteString(s)
    return err
}
func (b *BuilderByStringsBuilder) String() string{
    return b.b.String()
}

针对上面代码中的BuilderByBytesBuffer和BuilderByStringsBuilder进行Benchmark的Test源文件如下:

//go1.10-examples/stdlib/stringsbuilder/builer_test.go
package builder

import "testing"

func BenchmarkBuildStringWithBytesBuffer(b *testing.B) {
    var builder BuilderByBytesBuffer

    for i := 0; i < b.N; i++ {
        builder.WriteString("Hello, ")
        builder.WriteString("Go")
        builder.WriteString("-1.10")
        _ = builder.String()
    }

}
func BenchmarkBuildStringWithStringsBuilder(b *testing.B) {

    var builder BuilderByStringsBuilder

    for i := 0; i < b.N; i++ {
        builder.WriteString("Hello, ")
        builder.WriteString("Go")
        builder.WriteString("-1.10")
        _ = builder.String()
    }
}

执行该Benchmark,查看结果:

$go test -bench . -benchmem
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/experiments/go1.10-examples/stdlib/stringsbuilder
BenchmarkBuildStringWithBytesBuffer-4            100000        108471 ns/op      704073 B/op           1 allocs/op
BenchmarkBuildStringWithStringsBuilder-4       20000000           122 ns/op          80 B/op           0 allocs/op
PASS
ok      github.com/bigwhite/experiments/go1.10-examples/stdlib/stringsbuilder    13.616s

可以看到StringsBuilder在处理速度和分配优化上都全面强于bytes.Buffer,真实的差距就在Builder.String这个方法上。

2、bytes包

bytes包的几个方法Fields, FieldsFunc, Split和SplitAfter在底层实现上有变化,使得外部展现的行为有所变化,我们通过一个例子直观的感受一下:

// go1.10-examples/stdlib/bytessplit/main.go
package main

import (
    "bytes"
    "fmt"
)

// 来自github.com/campoy/gotalks/blob/master/go1.10/bytes/fields.go
func desc(b []byte) string {
    return fmt.Sprintf("len: %2d | cap: %2d | %q\n", len(b), cap(b), b)
}

func main() {
    text := []byte("Hello, Go1.10 is coming!")
    fmt.Printf("text:  %s", desc(text))

    subslices := bytes.Split(text, []byte(" "))
    fmt.Printf("subslice 0:  %s", desc(subslices[0]))
    fmt.Printf("subslice 1:  %s", desc(subslices[1]))
    fmt.Printf("subslice 2:  %s", desc(subslices[2]))
    fmt.Printf("subslice 3:  %s", desc(subslices[3]))
}

我们先用Go 1.9.2编译运行一下该demo:

$go run main.go
text:  len: 24 | cap: 32 | "Hello, Go1.10 is coming!"
subslice 0:  len:  6 | cap: 32 | "Hello,"
subslice 1:  len:  6 | cap: 25 | "Go1.10"
subslice 2:  len:  2 | cap: 18 | "is"
subslice 3:  len:  7 | cap: 15 | "coming!"

我们再用go 1.10rc2运行一下该demo:

$go run main.go
text:  len: 24 | cap: 32 | "Hello, Go1.10 is coming!"
subslice 0:  len:  6 | cap:  6 | "Hello,"
subslice 1:  len:  6 | cap:  6 | "Go1.10"
subslice 2:  len:  2 | cap:  2 | "is"
subslice 3:  len:  7 | cap: 15 | "coming!"

对比两次输出结果中cap那一列,你会发现go 1.10输出的结果中的每个subslice(除了最后一个)的len与cap值都是相等的,而不是将原slice剩下所有cap都作为subslice的cap。这个行为的改变是出于安全的考虑,防止共享一个underlying slice的各个subslice的修改对相邻的subslice造成影响,因此限制它们的capacity。

在Fields, FieldsFunc, Split和SplitAfter这几个方法的具体实现上,Go 1.10使用了我们平时并不经常使用的”Full slice expression“,即:a[low, high, max]来指定subslice的cap。

五、性能

对于静态编译类型语言Go来说,性能也一直是其重点关注的设计目标,这两年来发布的Go版本,几乎每个都给Gopher们带来惊喜。谈到Go性能,Gopher们一般关心的有如下这么几个方面:

1、编译性能

Go 1.10的编译性能正如我们前面所说的那样,最大的改变在于cache机制的实现。事实证明cache机制的使用在日常开发过程中,会很大程度上提升你的工作效率,越是规模较大的项目越是如此。

2、目标代码的性能

这些年Go team在不断优化编译器生成的目标代码的性能,比如在Go 1.7版本中引入ssa后端。Go 1.10延续着对目标代码生成的进一步优化,虽说动作远不如引入ssa这么大。

3、GC性能

GC的性能一直是广大Gopher密切关注的事情,Go 1.10在减少内存分配延迟以及GC运行时的负担两个方面做了许多工作,但从整体上来看,Go 1.10并没有引入传说中的TOC(Transaction Oritented Collector),因此宏观上来看,GC变化不是很大。Twitter上的GC性能测试“专家”Brian Hatfield在对Go 1.10rc1的GC测试后,也表示与Go 1.9相比,变化不是很显著。

六、小结

Go 1.10版本又是一个Go team和Gopher社区共同努力的结果,让全世界Gopher都对Go保持着极大的热情和期望。当然Go 1.10中的变化还有许多许多,诸如:

  • 对Unicode规范的支持升级到10.0
  • 在不同的平台上,Assembler支持更多高性能的指令;
  • plugin支持darwin/amd64等;
  • gofmt、go doc在输出格式上进一步优化和提升gopher开发者体验;
  • cgo支持直接传递go string到C代码中;
    … …

很多很多!这里限于篇幅原因,不能一一详解了。通读一遍Go 1.10 Release Note是每个Gopher都应该做的。

以上验证在mac OS X, go 1.10rc2上测试,demo源码可以在这里下载

七、参考资料


著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

我的联系方式:

微博:http://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats