标签 CephFS 下的文章

在Kubernetes集群上部署高可用Harbor镜像仓库

关于基于Harbor的高可用私有镜像仓库,在我的博客里曾不止一次提到,在源创会2017沈阳站上,我还专门以此题目和大家做了分享。事后,很多人通过微博私信个人公众号或博客评论问我是否可以在Kubernetes集群上安装高可用的Harbor仓库,今天我就用这篇文章来回答大家这个问题。

一、Kubernetes上的高可用Harbor方案

首先,我可以肯定给出一个回答:Harbor支持在Kubernetes部署。只不过Harbor官方的默认安装并非是高可用的,而是“单点式”的。在《基于Harbor的高可用企业级私有容器镜像仓库部署实践》一文中,我曾谈到了一种在裸机或VM上的、基于Cephfs共享存储的高可用Harbor方案。在Kubernetes上部署,其高可用的思路也是类似的,可见下面这幅示意图:

img{512x368}

围绕这幅示意图,简单说明一下我们的方案:

  • 通过在Kubernetes上启动Harbor内部各组件的多个副本的方式实现Harbor服务的计算高可用;
  • 通过挂载CephFS共享存储的方式实现镜像数据高可用;
  • Harbor使用的配置数据和关系数据放在外部(External)数据库集群中,保证数据高可用和实时一致性;
  • 通过外部Redis集群实现UI组件的session共享。

方案确定后,接下来我们就开始部署。

二、环境准备

在Harbor官方的对Kubernetes支持的说明中,提到当前的Harbor on kubernetes相关脚本和配置在Kubernetes v1.6.5和Harbor v1.2.0上验证测试通过了,因此在我们的实验环境中,Kubernetes至少要准备v1.6.5及以后版本。下面是我的环境的一些信息:

Kubernetes使用v1.7.3版本:

# kubelet --version
Kubernetes v1.7.3

Docker使用17.03.2版本:

# docker version
Client:
 Version:      17.03.2-ce
 API version:  1.27
 Go version:   go1.7.5
 Git commit:   f5ec1e2
 Built:        Tue Jun 27 03:35:14 2017
 OS/Arch:      linux/amd64

Server:
 Version:      17.03.2-ce
 API version:  1.27 (minimum version 1.12)
 Go version:   go1.7.5
 Git commit:   f5ec1e2
 Built:        Tue Jun 27 03:35:14 2017
 OS/Arch:      linux/amd64
 Experimental: false

关于Harbor的相关脚本,我们直接用master branch中的,而不是v1.2.0这个release版本中的。切记!否则你会发现v1.2.0版本源码中的相关kubernetes支持脚本根本就没法工作,甚至缺少adminserver组件的相关脚本。不过Harbor相关组件的image版本,我们使用的还是v1.2.0的:

Harbor源码的版本:

commit 82d842d77c01657589d67af0ea2d0c66b1f96014
Merge pull request #3741 from wy65701436/add-tc-concourse   on Dec 4, 2017

Harbor各组件的image的版本:

REPOSITORY                      TAG                 IMAGE ID
vmware/harbor-jobservice      v1.2.0          1fb18427db11
vmware/harbor-ui              v1.2.0          b7069ac3bd4b
vmware/harbor-adminserver     v1.2.0          a18331f0c1ae
vmware/registry               2.6.2-photon    c38af846a0da
vmware/nginx-photon           1.11.13         2971c92cc1ae

除此之外,高可用Harbor使用外部的DB cluster和redis cluster,DB cluster我们采用MySQL,对于MySQL cluster,可以使用mysql galera cluster或MySQL5.7以上版本自带的Group Replication (MGR) 集群。

三、探索harbor on k8s部署脚本和配置

我们在本地创建harbor-install-on-k8s目录,并将Harbor最新源码下载到该目录下:

# mkdir harbor-install-on-k8s
# cd harbor-install-on-k8s
# wget -c https://github.com/vmware/harbor/archive/master.zip
# unzip master.zip
# cd harbor-master
# ls -F
AUTHORS  CHANGELOG.md  contrib/  CONTRIBUTING.md  docs/
LICENSE  make/  Makefile  NOTICE  partners.md  README.md
ROADMAP.md  src/  tests/  tools/  VERSION

将Harbor部署到k8s上的脚本就在make/kubernetes目录下:

# cd harbor-master/make
# tree kubernetes
kubernetes
├── adminserver
│   ├── adminserver.rc.yaml
│   └── adminserver.svc.yaml
├── jobservice
│   ├── jobservice.rc.yaml
│   └── jobservice.svc.yaml
├── k8s-prepare
├── mysql
│   ├── mysql.rc.yaml
│   └── mysql.svc.yaml
├── nginx
│   ├── nginx.rc.yaml
│   └── nginx.svc.yaml
├── pv
│   ├── log.pvc.yaml
│   ├── log.pv.yaml
│   ├── registry.pvc.yaml
│   ├── registry.pv.yaml
│   ├── storage.pvc.yaml
│   └── storage.pv.yaml
├── registry
│   ├── registry.rc.yaml
│   └── registry.svc.yaml
├── templates
│   ├── adminserver.cm.yaml
│   ├── jobservice.cm.yaml
│   ├── mysql.cm.yaml
│   ├── nginx.cm.yaml
│   ├── registry.cm.yaml
│   └── ui.cm.yaml
└── ui
    ├── ui.rc.yaml
    └── ui.svc.yaml

8 directories, 25 files

  • k8s-prepare脚本:根据templates下的模板文件以及harbor.cfg中的配置生成各个组件,比如registry等的最终configmap配置文件。它的作用类似于用docker-compose工具部署Harbor时的prepare脚本;
  • templates目录:templates目录下放置各个组件的配置模板文件(configmap文件模板),将作为k8s-prepare的输入;
  • pv目录:Harbor组件所使用的存储插件的配置,默认情况下使用hostpath,对于高可用Harbor而言,我们这里将使用cephfs;
  • 其他组件目录,比如:registry:这些目录中存放这各个组件的service yaml和rc yaml,用于在Kubernetes cluster启动各个组件时使用。

下面我用一个示意图来形象地描述一下配置的生成过程以及各个文件在后续Harbor组件启动中的作用:

img{512x368}

由于使用external mysql db,Harbor自带的mysql组件我们不会使用,对应的pv目录下的storage.pv.yaml和storage.pvc.yaml我们也不会去关注和使用。

四、部署步骤

1、配置和创建挂载Cephfs的pv和pvc

我们先在共享分布式存储CephFS上为Harbor的存储需求创建目录:apps/harbor-k8s,并在harbor-k8s下创建两个子目录:log和registry,分别满足jobservice和registry的存储需求:

# cd /mnt   // CephFS的根目录挂载到了/mnt下面
# mkdir -p apps/harbor-k8s/log
# mkdir -p apps/harbor-k8s/registry
# tree apps/harbor-k8s
apps/harbor-k8s
├── log
└── registry

关于CephFS的挂载等具体操作步骤,可以参见我的《Kubernetes集群跨节点挂载CephFS》一文。

接下来,创建用于k8s pv挂载cephfs的ceph-secret,我们编写一个ceph-secret.yaml文件:

//ceph-secret.yaml
apiVersion: v1
data:
  key: {base64 encoding of the ceph admin.secret}
kind: Secret
metadata:
  name: ceph-secret
type: Opaque

创建ceph-secret:

# kubectl create -f ceph-secret.yaml
secret "ceph-secret" created

最后,我们来修改pv、pvc文件并创建对应的pv和pvc资源,要修改的文件包括pv/log.xxx和pv/registry.xxx,我们的目的就是用cephfs替代原先的hostPath:

//log.pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
  name: log-pv
  labels:
    type: log
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteMany
  cephfs:
    monitors:
      - {ceph-mon-node-ip}:6789
    path: /apps/harbor-k8s/log
    user: admin
    secretRef:
      name: ceph-secret
    readOnly: false
  persistentVolumeReclaimPolicy: Retain

//log.pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: log-pvc
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
  selector:
    matchLabels:
      type: log

// registry.pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
  name: registry-pv
  labels:
    type: registry
spec:
  capacity:
    storage: 5Gi
  accessModes:
    - ReadWriteMany
  cephfs:
    monitors:
      - 10.47.217.91:6789
    path: /apps/harbor-k8s/registry
    user: admin
    secretRef:
      name: ceph-secret
    readOnly: false
  persistentVolumeReclaimPolicy: Retain

//registry.pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: registry-pvc
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 5Gi
  selector:
    matchLabels:
      type: registry

创建pv和pvc:

# kubectl create -f log.pv.yaml
persistentvolume "log-pv" created
# kubectl create -f log.pvc.yaml
persistentvolumeclaim "log-pvc" created
# kubectl create -f registry.pv.yaml
persistentvolume "registry-pv" created
# kubectl create -f registry.pvc.yaml
persistentvolumeclaim "registry-pvc" created
# kubectl get pvc
NAME           STATUS    VOLUME        CAPACITY   ACCESSMODES   STORAGECLASS   AGE
log-pvc        Bound     log-pv        1Gi        RWX                          31s
registry-pvc   Bound     registry-pv   5Gi        RWX                          2s
# kubectl get pv
NAME          CAPACITY   ACCESSMODES   RECLAIMPOLICY   STATUS    CLAIM                  STORAGECLASS   REASON    AGE
log-pv        1Gi        RWX           Retain          Bound     default/log-pvc                                 36s
registry-pv   5Gi        RWX           Retain          Bound     default/registry-pvc                            6s

2、创建和初始化Harbor用的数据库

我们需要在External DB中创建Harbor访问数据库所用的user(harbork8s/harbork8s)以及所使用的数据库(registry_k8s):

mysql> create user harbork8s identified  by 'harbork8s';
Query OK, 0 rows affected (0.03 sec)

mysql> GRANT ALL PRIVILEGES ON *.* TO 'harbork8s'@'%' IDENTIFIED BY 'harbork8s' WITH GRANT OPTION;
Query OK, 0 rows affected, 1 warning (0.00 sec)

# mysql> create database registry_k8s;
Query OK, 1 row affected (0.00 sec)

mysql> grant all on registry_k8s.* to 'harbork8s' identified by 'harbork8s';
Query OK, 0 rows affected, 1 warning (0.00 sec)

由于目前Harbor还不支持自动init数据库,因此我们需要为新建的registry_k8s数据库做初始化,具体的方案就是先使用docker-compose工具在本地启动一个harbor,通过mysqldump将harbor-db container中的数据表dump出来,再导入到external db中的registry_k8s中,具体操作步骤如下:

# wget -c http://harbor.orientsoft.cn/harbor-1.2.0/harbor-offline-installer-v1.2.0.tgz
# tar zxvf harbor-offline-installer-v1.2.0.tgz

进入harbor目录,修改harbor.cfg中的hostname:

hostname = hub.tonybai.com:31777

# ./prepare
# docker-compose up -d

找到harbor_db的container id: 77fde71390e7,进入容器,并将数据库registry dump出来:

# docker exec -i -t  77fde71390e7 bash
# mysqldump -u root -pxxx --databases registry > registry.dump

离开容器,将容器内导出的registry.dump copy到本地:
# docker cp 77fde71390e7:/tmp/registry.dump ./

修改registry.dump为registry_k8s.dump,修改其内容中的registry为registry_k8s,然后导入到external db:

# mysqldump -h external_db_ip -P 3306 -u harbork8s -pharbork8s
mysql> source ./registry_k8s.dump;

3、配置make/harbor.cfg

harbor.cfg是整个配置生成的重要输入,我们在k8s-prepare执行之前,先要根据我们的需要和环境对harbor.cfg进行配置:

// make/harbor.cfg
hostname = hub.tonybai.com:31777
db_password = harbork8s
db_host = {external_db_ip}
db_user = harbork8s

4、对templates目录下的configmap配置模板(*.cm.yaml)进行配置调整

  • templates/adminserver.cm.yaml:
MYSQL_HOST: {external_db_ip}
MYSQL_USR: harbork8s
MYSQL_DATABASE: registry_k8s
RESET: "true"

注:adminserver.cm.yaml没有使用harbor.cfg中的有关数据库的配置项,而是需要单独再配置一遍,这块估计将来会fix掉这个问题。

  • templates/registry.cm.yaml:
rootcertbundle: /etc/registry/root.crt
  • templates/ui.cm.yaml:

ui组件需要添加session共享。ui组件读取_REDIS_URL环境变量:

//vmware/harbor/src/ui/main.go
... ..
    redisURL := os.Getenv("_REDIS_URL")
    if len(redisURL) > 0 {
        beego.BConfig.WebConfig.Session.SessionProvider = "redis"
        beego.BConfig.WebConfig.Session.SessionProviderConfig = redisURL
    }
... ...

而redisURL的格式在beego的源码中有说明:

// beego/session/redis/sess_redis.go

// SessionInit init redis session
// savepath like redis server addr,pool size,password,dbnum
// e.g. 127.0.0.1:6379,100,astaxie,0
func (rp *Provider) SessionInit(maxlifetime int64, savePath string) error {...}

因此,我们在templates/ui.cm.yaml中添加一行:

_REDIS_URL: {redis_ip}:6379,100,{redis_password},11

jobservice.cm.yaml和nginx.cm.yaml无需改变。

5、对各组件目录下的xxx.rc.yaml和xxx.svc.yaml配置模板进行配置调整

  • adminserver/adminserver.rc.yaml
replicas: 3
  • adminserver/adminserver.svc.yaml

不变。

  • jobservice/jobservice.rc.yaml、jobservice/jobservice.svc.yaml

不变。

  • nginx/nginx.rc.yaml
replicas: 3
  • nginx/nginx.svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: nginx
spec:
  type: NodePort
  ports:
    - name: http
      port: 80
      nodePort: 31777
      protocol: TCP
  selector:
    name: nginx-apps
  • registry/registry.rc.yaml
replicas: 3
mountPath: /etc/registry

这里有一个严重的bug,即registry.rc.yaml中configmap的默认mount路径:/etc/docker/registry与registry的docker image中的registry配置文件的路径/etc/registry不一致,这将导致我们精心配置的registry的configmap根本没有发挥作用,数据依然在memory中,而不是在我们配置的Cephfs中。这样一旦registry container退出,仓库的image数据就会丢失。同时也无法实现数据的高可用。因此,我们将mountPath都改为与registry image的一致,即:/etc/registry目录。

  • registry/registry.svc.yaml

不变。

  • ui/ui.rc.yaml
replicas: 3
  • ui/ui.svc.yaml
- name: _REDIS_URL
             valueFrom:
               configMapKeyRef:
                 name: harbor-ui-config
                 key: _REDIS_URL

6、执行k8s-prepare

执行k8s-prepare,生成各个组件的configmap文件:

# ./k8s-prepare
# git status
 ... ...

    adminserver/adminserver.cm.yaml
    jobservice/jobservice.cm.yaml
    mysql/mysql.cm.yaml
    nginx/nginx.cm.yaml
    registry/registry.cm.yaml
    ui/ui.cm.yaml

7、启动Harbor组件

  • 创建configmap
# kubectl apply -f jobservice/jobservice.cm.yaml
configmap "harbor-jobservice-config" created
# kubectl apply -f nginx/nginx.cm.yaml
configmap "harbor-nginx-config" created
# kubectl apply -f registry/registry.cm.yaml
configmap "harbor-registry-config" created
# kubectl apply -f ui/ui.cm.yaml
configmap "harbor-ui-config" created
# kubectl apply -f adminserver/adminserver.cm.yaml
configmap "harbor-adminserver-config" created

# kubectl get cm
NAME                        DATA      AGE
harbor-adminserver-config   42        14s
harbor-jobservice-config    8         16s
harbor-nginx-config         3         16s
harbor-registry-config      2         15s
harbor-ui-config            9         15s
  • 创建harbor各组件对应的k8s service
# kubectl apply -f jobservice/jobservice.svc.yaml
service "jobservice" created
# kubectl apply -f nginx/nginx.svc.yaml
service "nginx" created
# kubectl apply -f registry/registry.svc.yaml
service "registry" created
# kubectl apply -f ui/ui.svc.yaml
service "ui" created
# kubectl apply -f adminserver/adminserver.svc.yaml
service "adminserver" created

# kubectl get svc
NAME               CLUSTER-IP      EXTERNAL-IP   PORT(S)
adminserver        10.103.7.8      <none>        80/TCP
jobservice         10.104.14.178   <none>        80/TCP
nginx              10.103.46.129   <nodes>       80:31777/TCP
registry           10.101.185.42   <none>        5000/TCP,5001/TCP
ui                 10.96.29.187    <none>        80/TCP
  • 创建rc,启动各个组件pods
# kubectl apply -f registry/registry.rc.yaml
replicationcontroller "registry-rc" created
# kubectl apply -f jobservice/jobservice.rc.yaml
replicationcontroller "jobservice-rc" created
# kubectl apply -f ui/ui.rc.yaml
replicationcontroller "ui-rc" created
# kubectl apply -f nginx/nginx.rc.yaml
replicationcontroller "nginx-rc" created
# kubectl apply -f adminserver/adminserver.rc.yaml
replicationcontroller "adminserver-rc" created

#kubectl get pods
NAMESPACE     NAME                  READY     STATUS    RESTARTS   AGE
default       adminserver-rc-9pc78  1/1       Running   0          3m
default       adminserver-rc-pfqtv  1/1       Running   0          3m
default       adminserver-rc-w55sx  1/1       Running   0          3m
default       jobservice-rc-d18zk   1/1       Running   1          3m
default       nginx-rc-3t5km        1/1       Running   0          3m
default       nginx-rc-6wwtz        1/1       Running   0          3m
default       nginx-rc-dq64p        1/1       Running   0          3m
default       registry-rc-6w3b7     1/1       Running   0          3m
default       registry-rc-dfdld     1/1       Running   0          3m
default       registry-rc-t6fnx     1/1       Running   0          3m
default       ui-rc-0kwrz           1/1       Running   1          3m
default       ui-rc-kzs8d           1/1       Running   1          3m
default       ui-rc-vph6d           1/1       Running   1          3m

五、验证与Troubleshooting

1、docker cli访问

由于harbor默认使用了http访问,因此在docker login前先要将我们的仓库地址加到/etc/docker/daemon.json的insecure-registries中:

///etc/docker/daemon.json
{
  "insecure-registries": ["hub.tonybai.com:31777"]
}

systemctl daemon-reload and restart后,我们就可以通过docker login登录新建的仓库了(初始密码:Harbor12345):

 docker login hub.tonybai.com:31777
Username (admin): admin
Password:
Login Succeeded

2、docker push & pull

我们测试上传一个busybox image:

# docker pull busybox
Using default tag: latest
latest: Pulling from library/busybox
0ffadd58f2a6: Pull complete
Digest: sha256:bbc3a03235220b170ba48a157dd097dd1379299370e1ed99ce976df0355d24f0
Status: Downloaded newer image for busybox:latest
# docker tag busybox:latest hub.tonybai.com:31777/library/busybox:latest
# docker push hub.tonybai.com:31777/library/busybox:latest
The push refers to a repository [hub.tonybai.com:31777/library/busybox]
0271b8eebde3: Preparing
0271b8eebde3: Pushing [==================================================>] 1.338 MB
0271b8eebde3: Pushed
latest: digest: sha256:179cf024c8a22f1621ea012bfc84b0df7e393cb80bf3638ac80e30d23e69147f size: 527

下载刚刚上传的busybox:

# docker pull hub.tonybai.com:31777/library/busybox:latest
latest: Pulling from library/busybox
414e5515492a: Pull complete
Digest: sha256:179cf024c8a22f1621ea012bfc84b0df7e393cb80bf3638ac80e30d23e69147f
Status: Downloaded newer image for hub.tonybai.com:31777/library/busybox:latest

3、访问Harbor UI

在浏览器中打开http://hub.tonybai.com:31777,用admin/Harbor12345登录,如果看到下面页面,说明安装部署成功了:

img{512x368}

六、参考资料


微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

微信赞赏:
img{512x368}

源创会2017沈阳站讲稿:基于Harbor的高可用企业级私有容器镜像仓库部署实践

上周六开源中国源创会在沈阳举办了一次技术活动,很荣幸以本地讲师的身份和大家交流了一个topic: “基于Harbor的高可用企业级私有容器镜像仓库部署实践”。之所以选择这个topic,是因为这是我们团队的项目实践心得。很多企业和组织在深入使用Docker之后,都会有类似的高可用私有容器仓库搭建的需求,于是我就把我们摸索的实践和填坑过程拿出来,用30分钟与大家分享一下。另外这算是一个入门级的分享,并未深入过多原理。以下就是本次分享的内容讲稿整理。如有不妥或不正确的地方,欢迎交流指正。

img{512x368}

大家下午好,欢迎各位来到源创会沈阳站。在这里我也代表沈阳的IT人欢迎源创会来到沈阳,希望能有更多的像源创会这样的组织到沈阳举办技术活动。非常高兴能有这个机会在源创会这个平台上做分享, 今天和大家一起探讨的题目是:“基于Harbor的高可用企业级私有容器镜像仓库部署实践”。题目有些长,简单来说就是如何搭建一个好用的镜像仓库。

img{512x368}

首先做个简单的自我介绍。我叫白明,东软(注:源创会这次活动的会场在东软沈阳园区)是我的主场,在这里工作很多年,目前就职东软云科技;Gopher一枚,近两年主要使用Go语言开发;技术译者,曾参与翻译过《七周七语言》一书;并且参与过智慧城市架构系列丛书的编著工作;GopherChina大会讲师,这里顺便说一下GopherChina大会,它是目前中国地区规模最大、水平最高的Go语言技术大会,一般每年4月份在北京或上海举行。希望有志于Go语言开发的开发者积极参与;Blogger,写博10多年,依旧笔耕不倦;目前主要从事Docker&kubernetes的研究和实践。

当今,IT技术发展飞快。五年前, IT从业者口中谈论最多的技术是Virtual Machine,即虚拟化技术,人们经常争论的是到底是vmware的技术好,还是原生kvm技术稳定,又或是xen的技术完美。转眼间五年过去了,大家口中经常讨论的技术词汇发生了变化,越来越多的技术人在谈论Docker,谈论容器。

Docker是什么? Docker这门技术非常热,但我们要透过现象看其本质:

Docker技术并不是新技术,而是将已有技术进行了更好的整合和包装

内核容器技术以一种完整形态最早出现在Sun公司Solaris操作系统上,Solaris是当时最先进的服务器操作系统。2005年Solaris发布Solaris Container技术,从此开启了内核容器之门。

IT技术发展的趋势就是这样:商业有的,开源也要有。三年后,即2008年,以Google公司开发人员为主导的Linux Container,LXC功能在被merge到Linux内核。LXC是一种内核级虚拟化技术,主要基于namespacescgroup技术,实现共享一个os kernel前提下的进程资源隔离,为进程提供独立的虚拟执行环境,这样的一个虚拟的执行环境就是一个容器。本质上说,LXC容器与现在的Docker所提供容器是一样的。但是,当时LXC处于早期阶段,开发人员可能更为关注LXC的技术实现,而对开发体验方面有所忽略,导致LXC技术使用门槛较高,普通应用开发者学习、理解和使用它的心智负担较高,因此应用并不广泛。

这一情况一直持续到2013年,当时美国一家名不见经传的公司dotCloud发布了一款平台工具Docker,对外宣称可以实现:“build,ship and run any app and anywhere”。Docker实质上也是基于namespaces和cgroup技术的,Docker的创新之处在于其基于union fs技术定义了一套应用打包规范,真正将应用及其运行的所有依赖都封装到一个特定格式的文件中,这种文件就被称为image,即镜像文件。同时,Docker还提供了一套抽象层次更高的工具集,这套工具对dev十分友好,具有良好的开发体验(Developer eXperience),开发者无需关心namespace, cgroups之类底层技术,即可很easy的启动一个承载着其应用的容器:

Docker run ubuntu echo hello

因此, 从2013发布以来,Docker项目就像坐上了火箭,发展迅猛,目前已经是github上最火爆的开源项目之一。这里还要提一点就是:Docker项目是使用go语言开发的,Docker项目的成功,也或多或少得益于Go优异的开发效率和执行效率。

Docker技术的出现究竟给我们带来了哪些好处呢,个人觉得至少有以下三点:

  • 交付标准化:Docker使得应用程序和依赖的运行环境真正绑定结合为一体,得之即用。这让开发人员、测试和运维实现了围绕同一交付物,保持开发交付上下文同步的能力,即“test what you write, ship what you test”;
  • 执行高效化:应用的启动速度从原先虚拟机的分钟级缩短到容器的秒级甚至ms级,使得应用可以支持快速scaling伸缩;
  • 资源集约化:与vm不同的是,Container共享一个内核,这使得一个container的资源消耗仅为进程级别或进程组级别。同时,容器的镜像也因为如此,其size可以实现的很小,最小可能不足1k,平均几十M。与vm动辄几百兆的庞大身段相比,具有较大优势。

有了image文件后,自然而言我们就有了对image进行存取和管理的需求,即我们需要一个镜像仓库,于是Docker推出了Docker registry这个项目。Docker Registry就是Docker image的仓库,用来存储、管理和分发image的;Docker registry由Docker公司实现,项目名为distribution,其实现了Docker Registr 2.0协议,与早前的Registry 1.x协议版本相比,Distribution采用Go语言替换了Python,在安全性和性能方面都有了大幅提升;Docker官方运行着一个世界最大的公共镜像仓库:hub.docker.com,最常用的image都在hub上,比如反向代理nginx、redis、ubuntu等。鉴于国内访问hub网速不佳,多使用国内容器服务厂商提供的加速器。Docker官方还将Registry本身打入到了一个image中,方便开发人员快速以容器形式启动一个Registry:

docker run -d -p 5000:5000 --restart=always --name registry registry:2

不过,这样启动的Registry更多仅仅是一个Demo级别或满足个体开发者自身需要的,离满足企业内部开发流程或生产需求还差了许多。

既然Docker官方运行着免费的镜像仓库,那我们还需要自己搭建吗?实际情况是,对Docker的使用越深入,对私有仓库的需求可能就越迫切。我们先来看一组Docker 2016官方的调查数据,看看Docker都应用在哪些场合。 从Docker 2016官方调查来看,Docker 更多用于dev、ciDevOps等环节,这三个场合下的应用占据了半壁江山。而相比于公共仓库,私有镜像仓库能更好的满足开发人员在这些场合对镜像仓库的需求。理由至少有四点:

  • 便于集成到内部CI/Cd
    以我司内部为例,由于公司内部办公需要使用正向代理访问外部网络,要想将Public Registry集成到你的内部CI中,技术上就会有很多坎儿,整个搭建过程可能是非常痛苦的;

  • 对镜像可以更全面掌控
    一般来说,外部Public Registry提供的管理功能相对单一,往往无法满足企业内部的开发和交付需求;

  • 内部网络,网络传输性能更好
    内部开发运维流水线很多环节是有一定的时间敏感性的,比如:一次CI如果因为network问题导致image pull总是timeout,会让dev非常闹心,甚至影响整体的开发和交付效率。

  • 出于安全考虑
    总是有企业不想将自己开发的软件或数据放到公网上,因此在企业内部选择搭建一个private registry更会让这些企业得到满足;另外企业对仓库的身份验证可能还有LDAP支持的需求,这是外部registry无法满足的。

一旦企业决定搭建自己的private仓库,那么就得做一个private仓库的技术选型。商业版不在我们讨论范围内,我们从开源软件中挑选。不过开源的可选的不多,Docker 官方的Registry更聚焦通用功能,没有针对企业客户需求定制,开源领域我们大致有两个主要候选者:SUSEPortus和Vmware的Harbor。针对开源项目的技术选型,我个人的挑选原则最简单的就是看社区生态,落实到具体的指标上包括:

  • 项目关注度(即star数量)
  • 社区对issue的反馈数量和积极性
  • 项目维护者对issue fix的积极程度以及是否有远大的roadmap

对比后,我发现在这三个指标上,目前Harbor都暂时领先portus一段距离,于是我们选择Harbor。

Harbor是VMware中国团队开源的企业级镜像仓库项目,聚焦镜像仓库的企业级需求,这里从其官网摘录一些特性,大家一起来看一下:

– 支持基于角色的访问控制RBAC;
– 支持镜像复制策略(PUSH);
– 支持无用镜像数据的自动回收和删除; – 支持LDAP/AD认证;
– Web UI;
– 提供审计日志功能;
– 提供RESTful API,便于扩展;
– 支持中文&部署Easy。

不过,Harbor默认安装的是单实例仓库,并非是高可用的。对于接纳和使用Docker的企业来说,镜像仓库已经企业内部开发、交付和运维流水线的核心,一旦仓库停掉,流水线将被迫暂停,对开发交付的效率会产生重要影响;对于一些中大型企业组织,单实例的仓库性能也无法满足需求,为此高可用的Harbor势在必行。在设计Harbor HA方案之前,我们简单了解一下Harbor组成架构。

一个Harbor实例就是一组由docker-compose工具启动的容器服务,主要包括四个主要组件:

  • proxy
    实质就是一个反向代理nginx,负责流量路由分担到ui和registry上;

  • registry
    这里的registry就是原生的docker官方的registry镜像仓库,Harbor在内部内置了一个仓库,所有仓库的核心功能均是由registry完成的;

  • core service
    包含了ui、token和webhook服务;

  • job service
    主要用于镜像复制供。

同时,每个Harbor实例还启动了一个MySQL数据库容器,用于保存自身的配置和镜像管理相关的关系数据。

高可用系统一般考虑三方面:计算高可用、存储高可用和网络高可用。在这里我们不考虑网络高可用。基于Harbor的高可用仓库方案,这里列出两个。

img{512x368}

两个方案的共同点是计算高可用,都是通过lb实现的多主热运行,保证无单点;存储高可用则各有各的方案。一个使用了分布式共享存储,数据可靠性由共享存储provider提供;另外一个则需要harbor自身逻辑参与,通过镜像相互复制的方式保持数据的多副本。

两种方案各有优缺点,就看哪种更适合你的组织以及你手里的资源是否能满足方案的搭建要求。

方案1是Harbor开发团队推荐的标准方案,由于基于分布式共享存储,因此其scaling非常好;同样,由于多Harbor实例共享存储,因此可以保持数据是实时一致的。方案1的不足也是很明显的,第一:门槛高,需要具备共享存储provider;第二搭建难度要高于第二个基于镜像复制的方案。

方案2的优点就是首次搭建简单。不足也很多:scaling差,甚至是不能,一旦有三个或三个以上节点,可能就会出现“环形复制”;镜像复制需要时间,因此存在多节点上数据周期性不一致的情况;Harbor的镜像复制规则以Project为单位配置,因此一旦新增Project,需要在每个节点上手工维护复制规则,非常繁琐。因此,我们选择方案1。

我们来看一下方案1的细节: 这是一幅示意图。

  • 每个安放harbor实例的node都mount cephfs。ceph是目前最流行的分布式共享存储方案之一;
  • 每个node上的harbor实例(包含组件:ui、registry等)都volume mount node上的cephfs mount路径;
  • 通过Load Balance将request流量负载到各个harbor实例上;
  • 使用外部MySQL cluster替代每个Harbor实例内部自维护的那个MySQL容器;对于MySQL cluster,可以使用mysql galera cluster或MySQL5.7以上版本自带的Group Replication (MGR) 集群。
  • 通过外部Redis实现访问Harbor ui的session共享,这个功能是Harbor UI底层MVC框架-beego提供的。

接下来,我们就来看具体的部署步骤和细节。

环境和先决条件:

  • 三台VM(Ubuntu 16.04及以上版本);
  • CephFS、MySQL、Redis已就绪;
  • Harbor v1.1.0及以上版本;
  • 一个域名:hub.tonybai.com:8070。我们通过该域名和服务端口访问Harbor,我们可以通过dns解析多ip轮询实现最简单的Load balance,虽然不完美。

第一步:挂载cephfs

每个安装Harbor instance的节点都要mount cephfs的相关路径,步骤包括:

#安装cephfs内核驱动
apt install ceph-fs-common

# 修改/etc/fstab,添加挂载指令,保证节点重启依旧可以自动挂载cephfs
xx.xx.xx.xx:6789:/apps/harbor /mnt/cephfs/harbor ceph name=harbor,secretfile=/etc/ceph/a dmin.secret,noatime,_netdev 0 2

这里涉及一个密钥文件admin.secret,这个secret文件可以在ceph集群机器上使用ceph auth tool生成。

img{512x368}

前面提到过每个Harbor实例都是一组容器服务,这组容器启动所需的配置文件是在Harbor正式启动前由prepare脚本生成的,Prepare脚本生成过程的输入包括:harbor.cfg、docker-compose.yml和common/templates下的配置模板文件。这也是部署高可用Harbor的核心步骤,我们逐一来看。

第二步:修改harbor.cfg

我们使用域名访问Harbor,因此我们需要修改hostname配置项。注意如果要用域名访问,这里一定填写域名,否则如果这里使用的是Harbor node的IP,那么在后续会存在client端和server端仓库地址不一致的情况;

custom_crt=false 关闭 crt生成功能。注意:三个node关闭其中两个,留一个生成一套数字证书和私钥。

第三步:修改docker-compose.yml

docker-compose.yml是docker-compose工具标准配置文件,用于配置docker-compose即将启动的容器服务。针对该配置文件,我们主要做三点修改:

  • 修改volumes路径
    由/data/xxx 改为:/mnt/cephfs/harbor/data/xxx
  • 由于使用外部Mysql,因此需要删除mysql service以及其他 service对mysql service的依赖 (depends_on)
  • 修改对proxy外服务端口 ports: 8070:80

第四步:配置访问external mysql和redis

external mysql的配置在common/templates/adminserver/env中,我们用external Mysql的访问方式覆盖下面四项配置:

MYSQL_HOST=harbor_host
MYSQL_PORT=3306
MYSQL_USR=harbor
MYSQL_PWD=harbor_password

还有一个关键配置,那就是将RESET由false改为true。只有改为true,adminserver启动时,才能读取更新后的配置

RESET=true

Redis连接的配置在common/templates/ui/env中,我们需要新增一行:

_REDIS_URL=redis_ip:6379,100,password,0

第五步:prepare并启动harbor

执行prepare脚本生成harbor各容器服务的配置;在每个Harbor node上通过下面命令启动harbor实例:

docker-compose up -d

启动后,可以通过docker-compose ps命令查看harbor实例中各容器的启动状态。如果启动顺利,都是”Up”状态,那么我们可以在浏览器里输入:http://hub.tonybai.com:8070,不出意外的话,我们就可以看到Harbor ui的登录页面了。

至此,我们的高可用Harbor cluster搭建过程就告一段落了。

Troubleshooting

不过,对Harbor的认知还未结束,我们在后续使用Harbor的过程中遇到了一些问题,这里举两个例子。

问题1: docker login hub.tonybai.com:8070 failed

现象日志:

Error response from daemon: Get https://hub.tonybai.com:8070/v1/users/: http: server gave HTTP response to HTTPS client

通过错误日志分析应该是docker daemon与镜像仓库所用协议不一致导致。docker engine默认采用https协议访问仓库,但之前我们搭建的Harbor采用的是http协议提供服务,两者不一致。

解决方法有两种,这里列出第一种:让docker引擎通过http方式访问harbor仓库:

在/etc/docker/daemon.json中添加insecure-registry:

{
    "insecure-registries": ["hub.tonybai.com:8070"]
}

重启docker service生效

第二种方法就是让Harbor支持https,需要为harbor的proxy配置私钥和证书,位置:harbor.cfg中

#The path of cert and key files for nginx, they are applied only the protocol is set to https
ssl_cert = /data/cert/server.crt
ssl_cert_key = /data/cert/server.key

这里就不细说了。

问题2:docker login hub.tonybai.com:8070 有时成功,有时failed

现象日志:

第一次登录成功:
# docker login -u user -p passwd http://hub.tonybai.com:8070 Login Succeeded

第二次登录失败:
# docker login -u user -p passwd http://hub.tonybai.com:8070
Error response from daemon: login attempt to http://hub.tonybai.com:8070/v2/ failed with status: 401 Unauthorized

这个问题的原因在于对docker registry v2协议登录过程理解不够透彻。docker registry v2是一个两阶段登录的过程:

  • 首先:docker client会到registry去尝试登录,registry发现request中没有携带token,则返回失败应答401,并告诉客户端到哪里去获取token;
  • 客户端收到应答后,获取应答中携带的token service地址,然后到harbor的core services中的token service那里获取token(使用user, password进行校验)。一旦token service校验ok,则会使用private_key.pem生成一个token;
  • 客户端拿到token后,再次到registry那里去登录,这次registry用root.crt去校验客户端携带的token,校验通过,则login成功。

由于我们是一个harbor cluster,如果docker client访问的token service和registry是在一个harbor实例中的,那么login就会ok;否则docker client就会用harbor node1上token service生成的token到harbor node2上的registry去登录,由于harbor node2上root.crt与harbor node1上private_key.pem并非一对,因此登录失败

解决方法:将所有节点上使用同一套root.crt和private_key.pem。即将一个harbor node(harbor.cfg中custom_crt=true的那个)上的 common/config/ui/private_key.pem和 common/config/registry/root.crt复制到其他harbor node;然后重建各harbor实例中的容器。

至此,我们的高可用Harbor仓库部署完了。针对上面的配置过程,我还做了几个录屏文件,由于时间关系,这里不能播放了,大家可以在下面这个连接下载并自行播放收看。

Harbor install 录屏: https://pan.baidu.com/s/1o8JYKEe

谢谢大家!

讲稿slide可以在这里获取到。

微博:@tonybai_cn
微信公众号:iamtonybai
github.com: https://github.com/bigwhite

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats