标签 Unix 下的文章

Go包构建:专家也未必了解的文件选择细节

本文永久链接 – https://tonybai.com/2024/11/21/go-source-file-selection-details-when-building-package

在Go语言开发中,包(package)是代码组织的基本单位,也是基本的构建单元。Go编译器会将每个包构建成一个目标文件(.a),然后通过链接器将这些目标文件链接在一起,形成最终的可执行程序。

尽管Go包的构建过程看似简单,但实际上蕴含着许多值得深入了解的细节。例如,当我们执行go build命令时,Go编译器是如何选择需要编译的源文件的?你可能会回答:“不就是通过文件名中的ARCH和OS标识以及构建约束(build constraints)来选择的吗?” 虽然你的答案并没有错,但如果我进一步提出以下问题,你是否还能给出确切的答案呢?

假设一个Go源文件使用了如下的构建约束:

//go:build unix

package foo
// ... ...

在执行GOOS=android go build时,这个文件是否会被编译?如果执行的是GOOS=aix go build呢?而“unix”究竟包含了哪些操作系统?

再进一步,当一个源文件的文件名中包含ARCH和操作系统标识,并且文件内容中也使用了构建约束时,Go编译器会如何处理这些信息的优先级?

即使是经验丰富的Go专家,对于上述在包构建过程中涉及的文件选择细节,可能也只能给出模糊的答案。

在实际开发中,我们常常需要针对不同操作系统和架构编写特定的代码,这意味着灵活性与复杂性并存。Go的构建约束和文件名约定虽然为我们提供了灵活性,但也带来了额外的复杂性。理解这些规则不仅有助于优化构建过程,还能有效避免潜在的错误和不必要的麻烦。

在这篇文章中,我将与大家探讨Go包构建过程中源文件选择的细节,包括文件名中ARCH和os标识约定和构建约束的作用,以及二者的优先级处理问题。希望通过这些内容,帮助开发者更好地掌握Go语言的构建机制,从而提高开发效率。

为了更好地说明Go包构建时的文件选择逻辑,我们先从Go包构建的一些“表象”说起。

注:在本文中,我们将使用Go 1.17引入的新版build constraints写法://go:build ,之前的// +build aix darwin dragonfly freebsd js,wasm …写法已经不再被推荐使用。如果你想对旧版build constraints写法有一个全面了解以便与新写法对比,推荐阅读我的《Go语言精进之路:从新手到高手的编程思想、方法和技巧》第2册

1. 表象

在Go工程中,通常一个目录对应一个Go包,每个Go包下可以存在多个以.go为后缀的Go源文件,这些源文件只能具有唯一的包名(测试源文件除外),以标准库fmt包为例,它的目录下的源文件列表如下(以Go 1.23.0源码为例):

$ls $GOROOT/src/fmt
doc.go              export_test.go          print.go            stringer_example_test.go
errors.go           fmt_test.go         scan.go             stringer_test.go
errors_test.go          format.go           scan_test.go
example_test.go         gostringer_example_test.go  state_test.go

在这些文件中,哪些最终进入到了fmt包的目标文件(fmt.a)中呢?贴心的Go工具链为我们提供了查看方法:

$go list -f '{{.GoFiles}}' fmt
[doc.go errors.go format.go print.go scan.go]

对于独立于目标ARCH和OS的fmt包来说,其Go源文件的选择似乎要简单一些。我们看到,除了包测试文件(xxx_test.go),其他文件都被编译到了最终的fmt包中。

我们再来看一个与目标ARCH和OS相关性较高的net包。除去子目录,这个包目录下的Go源文件数量大约有220多个,但在macOS/amd64下通过go list查看最终进入net包目标文件的文件,大约只有几十个:

$go list -f '{{.GoFiles}}' net
[addrselect.go cgo_darwin.go cgo_unix.go cgo_unix_syscall.go conf.go dial.go dnsclient.go dnsclient_unix.go dnsconfig.go dnsconfig_unix.go error_posix.go error_unix.go fd_posix.go fd_unix.go file.go file_unix.go hook.go hook_unix.go hosts.go interface.go interface_bsd.go interface_darwin.go ip.go iprawsock.go iprawsock_posix.go ipsock.go ipsock_posix.go lookup.go lookup_unix.go mac.go mptcpsock_stub.go net.go netcgo_off.go netgo_off.go nss.go parse.go pipe.go port.go port_unix.go rawconn.go rlimit_unix.go sendfile_unix_alt.go sock_bsd.go sock_posix.go sockaddr_posix.go sockopt_bsd.go sockopt_posix.go sockoptip_bsdvar.go sockoptip_posix.go splice_stub.go sys_cloexec.go tcpsock.go tcpsock_posix.go tcpsock_unix.go tcpsockopt_darwin.go tcpsockopt_posix.go udpsock.go udpsock_posix.go unixsock.go unixsock_posix.go unixsock_readmsg_cloexec.go writev_unix.go]

接下来,我们跳出Go标准库,来看一个自定义的示例:

$tree -F buildconstraints/demo1
buildconstraints/demo1
├── foo/
│   ├── f1_android.go
│   ├── f2_linux.go
│   └── f3_darwin.go
└── go.mod

// buildconstraints/demo1/foo/f1_android.go 

//go:build linux

package foo

func F1() {
}

// buildconstraints/demo1/foo/f2_linux.go
//go:build android

package foo

func F2() {
}

// buildconstraints/demo1/foo/f3_darwin.go
//go:build android

package foo

func F3() {
}

在GOOS=android下构建buildconstraints/demo1/foo这个包,哪些文件会被选出来呢,看下面输出结果:

$GOOS=android go list -f '{{.GoFiles}}' github.com/bigwhite/demo1/foo
[f1_android.go f2_linux.go]

如果说前两个示例还好理解,那这第三个示例很可能会让很多开发者觉得有些“发蒙”。 别急,上面三个示例都是表象,接下来,我们就来仔细探索一下Go构建时的文件选择机制。

2. 文件选择机制

Go包构建时选择源文件的机制还是蛮繁琐的,我们需要从源码入手梳理出其主要逻辑,在Go 1.23版本中,Go包构建过程源文件选择逻辑的代码位于\$GOROOT/src/go/build/build.go中,这个源文件有2k多行,不过不用担心,我这里会替你把主要调用逻辑梳理为下图:

函数Import调用Default.Import去获取包的详细信息,信息用build.Package结构表示:

// $GOROOT/src/go/build/build.go
// A Package describes the Go package found in a directory.
  type Package struct {
      Dir           string   // directory containing package sources
      Name          string   // package name
      ImportComment string   // path in import comment on package statement
      Doc           string   // documentation synopsis
      ImportPath    string   // import path of package ("" if unknown)
      Root          string   // root of Go tree where this package lives
      SrcRoot       string   // package source root directory ("" if unknown)
      PkgRoot       string   // package install root directory ("" if unknown)
      PkgTargetRoot string   // architecture dependent install root directory ("" if unknown)
      BinDir        string   // command install directory ("" if unknown)
      Goroot        bool     // package found in Go root
      PkgObj        string   // installed .a file
      AllTags       []string // tags that can influence file selection in this directory
      ConflictDir   string   // this directory shadows Dir in $GOPATH
      BinaryOnly    bool     // cannot be rebuilt from source (has //go:binary-only-package comment)

      // Source files
      GoFiles           []string // .go source files (excluding CgoFiles, TestGoFiles, XTestGoFiles)
      ... ...

其中的GoFiles就是参与Go包编译的源文件列表。

Default是默认的上下文信息,包括构建所需的默认goenv中几个环境变量,比如GOARCH、GOOS等的值:

// Default is the default Context for builds.
// It uses the GOARCH, GOOS, GOROOT, and GOPATH environment variables
// if set, or else the compiled code's GOARCH, GOOS, and GOROOT.
var Default Context = defaultContext()

Context的Import方法代码行数很多,对于要了解文件选择细节的我们来说,其中最重要的调用是Context的matchFile方法。

matchFile正是那个用于确定某个Go源文件是否应该被选入最终包文件中的方法。它内部的逻辑可以分为两个主要步骤。

第一步是调用Context的goodOSArchFile方法对Go源文件的名字进行判定,goodOSArchFile方法的判定也有两个子步骤:

  • 判断名字中的OS和ARCH是否在Go支持的OS和ARCH列表中

当前Go支持的OS和ARCH在syslist.go文件中有定义:

// $GOROOT/src/go/build/syslist.go

// knownArch is the list of past, present, and future known GOARCH values.
// Do not remove from this list, as it is used for filename matching.
var knownArch = map[string]bool{
    "386":         true,
    "amd64":       true,
    "amd64p32":    true,
    "arm":         true,
    "armbe":       true,
    "arm64":       true,
    "arm64be":     true,
    "loong64":     true,
    "mips":        true,
    "mipsle":      true,
    "mips64":      true,
    "mips64le":    true,
    "mips64p32":   true,
    "mips64p32le": true,
    "ppc":         true,
    "ppc64":       true,
    "ppc64le":     true,
    "riscv":       true,
    "riscv64":     true,
    "s390":        true,
    "s390x":       true,
    "sparc":       true,
    "sparc64":     true,
    "wasm":        true,
}

// knownOS is the list of past, present, and future known GOOS values.
// Do not remove from this list, as it is used for filename matching.
// If you add an entry to this list, look at unixOS, below.
var knownOS = map[string]bool{
    "aix":       true,
    "android":   true,
    "darwin":    true,
    "dragonfly": true,
    "freebsd":   true,
    "hurd":      true,
    "illumos":   true,
    "ios":       true,
    "js":        true,
    "linux":     true,
    "nacl":      true,
    "netbsd":    true,
    "openbsd":   true,
    "plan9":     true,
    "solaris":   true,
    "wasip1":    true,
    "windows":   true,
    "zos":       true,
}

我们也可以通过下面命令查看:

$go tool dist list
aix/ppc64
android/386
android/amd64
android/arm
android/arm64
darwin/amd64
darwin/arm64
dragonfly/amd64
freebsd/386
freebsd/amd64
freebsd/arm
freebsd/arm64
freebsd/riscv64
illumos/amd64
ios/amd64
ios/arm64
js/wasm
linux/386
linux/amd64
linux/arm
linux/arm64
linux/loong64
linux/mips
linux/mips64
linux/mips64le
linux/mipsle
linux/ppc64
linux/ppc64le
linux/riscv64
linux/s390x
netbsd/386
netbsd/amd64
netbsd/arm
netbsd/arm64
openbsd/386
openbsd/amd64
openbsd/arm
openbsd/arm64
openbsd/ppc64
openbsd/riscv64
plan9/386
plan9/amd64
plan9/arm
solaris/amd64
wasip1/wasm
windows/386
windows/amd64
windows/arm
windows/arm64

注:像sock_bsd.go、sock_posix.go这样的Go源文件,虽然它们的文件名中包含posix、bsd等字样,但这些文件实际上只是普通的Go源文件。其文件名本身并不会影响Go包在构建时选择文件的结果。

  • 调用matchTag来判定该Go源文件名字中的OS和ARCH是否与当前上下文信息中的OS和ARCH匹配

Go支持的源文件名组成格式如下:

  //  name_$(GOOS).*
  //  name_$(GOARCH).*
  //  name_$(GOOS)_$(GOARCH).*
  //  name_$(GOOS)_test.*
  //  name_$(GOARCH)_test.*
  //  name_$(GOOS)_$(GOARCH)_test.*

不过这里有三个例外,即:

如果上下文中的GOOS=android,那么文件名字中OS值为linux的Go源文件也算是匹配的;

如果上下文中的GOOS=illumos,那么文件名字中OS值为solaris的Go源文件也算是匹配的;

如果上下文中的GOOS=ios,那么文件名字中OS值为darwin的Go源文件也算是匹配的。

还有一个特殊处理,那就是当文件名字中OS值为unix时,该源文件可以匹配以下上下文中GOOS的值:

// $GOROOT/src/go/build/syslist.go

// unixOS is the set of GOOS values matched by the "unix" build tag.
// This is not used for filename matching.
// This list also appears in cmd/dist/build.go and
// cmd/go/internal/imports/build.go.
var unixOS = map[string]bool{
    "aix":       true,
    "android":   true,
    "darwin":    true,
    "dragonfly": true,
    "freebsd":   true,
    "hurd":      true,
    "illumos":   true,
    "ios":       true,
    "linux":     true,
    "netbsd":    true,
    "openbsd":   true,
    "solaris":   true,
}

这里面列出os都是所谓的“类Unix”操作系统。

如果goodOSArchFile方法返回文件名匹配成功,那么第二步就是调用Context的shouldBuild方法对Go源文件中的build constraints进行判定,这个判定过程也是调用matchTag完成的,因此规则与上面对matchTag的说明一致。如果判定match成功,那么该源文件将会被Go编译器编译到最终的Go包目标文件中去。

下面我们结合文章第一节“表象”中的那个自定义示例来判定一下为何最终会输出那个结果。

3. 示例分析

在buildconstraints/demo1/foo包目录中,一共有三个Go源文件:

$tree -F foo
foo
├── f1_android.go
├── f2_linux.go
└── f3_darwin.go

注意:当前我的系统为darwin/amd64,但我们使用了GOOS=android的环境变量。我们顺着上一节梳理出来的文件选择判定的主逻辑,对着三个文件逐一过一遍。

  • f1_android.go

首先用goodOSArchFile判定文件名是否匹配。当GOOS=android时,文件名中的os为android,文件名匹配成功,

然后用shouldBuild判定文件中的build constraints是否匹配。该文件的约束为linux,在上面matchTag的三个例外规则里提到过,当GOOS=android时,如果build constraints是linux,是可以匹配的。

因此,f1_android.go将出现在最终编译文件列表中。

  • f2_linux.go

首先用goodOSArchFile判定文件名是否匹配。当GOOS=android时,文件名中的os为linux,linux显然在go支持的os列表中,并且根据matchTag的例外规则,当GOOS=android时,文件名中的os为linux时是可以匹配的。

然后用shouldBuild判定文件中的build constraints是否匹配。该文件的约束为android,与GOOS相同,可以匹配。

因此,f2_linux.go将出现在最终编译文件列表中。

  • f3_darwin.go

首先用goodOSArchFile判定文件名是否匹配。当GOOS=android时,文件名中的os为darwin,虽然darwin在go支持的os列表中,但darwin与GOOS=android并不匹配,因此在goodOSArchFile这步中,f3_darwin.go就被“淘汰”掉了!即便f3_darwin.go中的build constraints为android。

因此,f3_darwin.go不会出现在最终编译文件列表中。

如果再增加一个源文件f4_unix.go,其内容为:

//go:build android

func F4() {
}

这个f4_unix.go是否会出现在最终的包编译文件列表中呢?这个作为思考题留给大家了,也欢迎你在评论区留言,说说你的思考结果。

4. 小结

在Go语言的开发过程中,包的构建是核心环节之一,而源文件的选择则是构建过程中一个复杂且关键的细节。本文深入探讨了Go编译器在执行go build命令时,如何根据文件名中的架构(ARCH)和操作系统(OS)标识,以及构建约束(build constraints),来选择需要编译的源文件。

通过具体示例,本文展示了不同文件名和构建约束如何影响最终的编译结果,并揭示了Go编译器处理这些信息的优先级。理解这些内部机制不仅能帮助开发者优化构建过程,还能有效避免潜在的错误。希望本文的分析能够给大家带去帮助。

注:限于篇幅,本文仅针对包编译文件选择最复杂的部分进行的探索,而像ReleaseTags(比如: go1.21等)、cgo、_test.go后缀等比较明显的约束并未涉及,同时对于新版build constraints的运算符组合也未提及,感兴趣的童鞋可以参考go build constraints官方文档查阅。

本文涉及的源码可以在这里下载。

5. 参考资料


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

探索Go守护进程的实现方法

本文永久链接 – https://tonybai.com/2024/10/03/how-to-daemonize-go-program

在后端开发的世界里,守护进程(daemon)这个概念与Unix系统一样古老。守护进程是在后台运行的长期服务程序,不与任何终端关联。尽管现代进程管理工具如systemdsupervisor等让应用转化为守护进程变得十分简单,我们甚至可以使用以下命令来在后台运行程序:

nohup ./your_go_program &

但在某些情况下,程序的原生转化为守护进程的能力仍然是有必要的。比如分布式文件系统juicefs cli的mount子命令,它就支持以-d选项启动,并以守护进程方式运行:

$juicefs mount -h
NAME:
   juicefs mount - Mount a volume

USAGE:
   juicefs mount [command options] META-URL MOUNTPOINT

... ...

OPTIONS:
   -d, --background  run in background (default: false)
   ... ...
... ...

这种自我守护化的能力会让很多Go程序受益,在这一篇文章中,我们就来探索一下Go应用转化为守护进程的实现方法。

1. 标准的守护进程转化方法

W.Richard Stevens的经典著作《UNIX环境高级编程》中对将程序转化为一个守护进程的 (daemonize) 步骤进行了详细的说明,主要步骤如下:

  • 创建子进程并终止父进程

通过fork()系统调用创建子进程,父进程立即终止,保证子进程不是控制终端的会话组首领。

  • 创建新的会话

子进程调用setsid()来创建一个新会话,成为会话组首领,从而摆脱控制终端和进程组。

  • 更改工作目录

使用chdir(“/”) 将当前工作目录更改为根目录,避免守护进程持有任何工作目录的引用,防止对文件系统卸载的阻止。

  • 重设文件权限掩码

通过umask(0) 清除文件权限掩码,使得守护进程可以自由设置文件权限。

  • 关闭文件描述符

关闭继承自父进程的已经open的文件描述符(通常是标准输入、标准输出和标准错误)。

  • 重定向标准输入/输出/错误

重新打开标准输入、输出和错误,重定向到/dev/null,以避免守护进程无意输出内容到不应有的地方。

注:fork()系统调用是一个较为难理解的调用,它用于在UNIX/Linux系统中创建一个新的进程。新创建的进程被称为子进程,它是由调用fork()的进程(即父进程)复制出来的。子进程与父进程拥有相同的代码段、数据段、堆和栈,但它们是各自独立的进程,有不同的进程ID (PID)。在父进程中,fork()返回子进程的PID(正整数),在子进程中,fork()返回0,如果fork()调用失败(例如系统资源不足),则返回-1,并设置errno以指示错误原因。

下面是一个符合UNIX标准的守护进程转化函数的C语言实现,参考了《UNIX环境高级编程》中的经典步骤:

// daemonize/c/daemon.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <syslog.h>
#include <signal.h>

void daemonize()
{
    pid_t pid;

    // 1. Fork off the parent process
    pid = fork();
    if (pid < 0) {
        exit(EXIT_FAILURE);
    }
    // If we got a good PID, then we can exit the parent process.
    if (pid > 0) {
        exit(EXIT_SUCCESS);
    }

    // 2. Create a new session to become session leader to lose controlling TTY
    if (setsid() < 0) {
        exit(EXIT_FAILURE);
    }

    // 3. Fork again to ensure the process won't allocate controlling TTY in future
    pid = fork();
    if (pid < 0) {
        exit(EXIT_FAILURE);
    }
    if (pid > 0) {
        exit(EXIT_SUCCESS);
    }

    // 4. Change the current working directory to root.
    if (chdir("/") < 0) {
        exit(EXIT_FAILURE);
    }

    // 5. Set the file mode creation mask to 0.
    umask(0);

    // 6. Close all open file descriptors.
    for (int x = sysconf(_SC_OPEN_MAX); x>=0; x--) {
        close(x);
    }

    // 7. Reopen stdin, stdout, stderr to /dev/null
    open("/dev/null", O_RDWR); // stdin
    dup(0);                    // stdout
    dup(0);                    // stderr

    // Optional: Log the daemon starting
    openlog("daemonized_process", LOG_PID, LOG_DAEMON);
    syslog(LOG_NOTICE, "Daemon started.");
    closelog();
}

int main() {
    daemonize();

    // Daemon process main loop
    while (1) {
        // Perform some background task...
        sleep(30); // Sleep for 30 seconds.
    }

    return EXIT_SUCCESS;
}

注:这里省略了书中设置系统信号handler的步骤。

这里的daemonize函数完成了标准的守护化转化过程,并确保了程序在后台无依赖地稳定运行。我们编译运行该程序后,程序进入后台运行,通过ps命令可以查看到类似下面内容:

$ ./c-daemon-app
$ ps -ef|grep c-daemon-app
root     28517     1  0 14:11 ?        00:00:00 ./c-daemon-app

我们看到c-daemon-app的父进程是ppid为1的进程,即linux的init进程。我们看到上面c代码中转化为守护进程的函数daemonize进行了两次fork,至于为何要做两次fork,在我的《理解Zombie和Daemon Process》一文中有说明,这里就不赘述了。

那么Go是否可以参考上述步骤实现Go程序的守护进程转化呢?我们接着往下看。

2. Go语言实现守护进程的挑战

关于Go如何实现守护进程的转换,在Go尚未发布1.0之前的2009年就有issue提到,在runtime: support for daemonize中,Go社区与Go语言的早起元老们讨论了在Go中实现原生守护进程的复杂性,主要挑战源于Go的运行时及其线程管理方式。当一个进程执行fork操作时,只有主线程被复制到子进程中,如果fork前Go程序有多个线程(及多个goroutine)在执行(可能是由于go runtime调度goroutine和gc产生的线程),那么fork后,这些非执行fork线程的线程(以及goroutine)将不会被复制到新的子进程中,这可能会导致后续子进程中线程运行的不确定性(基于一些fork前线程留下的数据状态)。

理想情况下是Go runtime提供类似的daemonize函数,然后在多线程启动之前实现守护进程的转化,不过Go团队至今也没有提供该机制,而是建议大家使用如systemd的第三方工具来实现Go程序的守护进程转化。

既然Go官方不提供方案,Go社区就会另辟蹊径,接下来,我们看看目前Go社区的守护进程解决方案。

3. Go社区的守护进程解决方案

尽管面临挑战,Go社区还是开发了一些库来支持Go守护进程的实现,其中一个star比较多的解决方案是github.com/sevlyar/go-daemon。

go-daemon库的作者巧妙地解决了Go语言中无法直接使用fork系统调用的问题。go-daemon采用了一个简单而有效的技巧来模拟fork的行为:该库定义了一个特殊的环境变量作为标记。程序运行时,首先检查这个环境变量是否存在。如果环境变量不存在,执行父进程相关操作,然后使用os.StartProcess(本质是fork-and-exec)启动带有特定环境变量标记的程序副本。如果环境变量存在,执行子进程相关操作,继续执行主程序逻辑,下面是该库作者提供的原理图:

这种方法有效地模拟了fork的行为,同时避免了Go运行时中与线程和goroutine相关的问题。下面是使用go-daemon包实现Go守护进程的示例:

// daemonize/go-daemon/main.go

package main

import (
    "log"
    "time"

    "github.com/sevlyar/go-daemon"
)

func main() {
    cntxt := &daemon.Context{
        PidFileName: "example.pid",
        PidFilePerm: 0644,
        LogFileName: "example.log",
        LogFilePerm: 0640,
        WorkDir:     "./",
        Umask:       027,
    }

    d, err := cntxt.Reborn()
    if err != nil {
        log.Fatal("无法运行:", err)
    }
    if d != nil {
        return
    }
    defer cntxt.Release()

    log.Print("守护进程已启动")

    // 守护进程逻辑
    for {
        // ... 执行任务 ...
        time.Sleep(time.Second * 30)
    }
}

运行该程序后,通过ps可以查看到对应的守护进程:

$make
go build -o go-daemon-app
$./go-daemon-app 

$ps -ef|grep go-daemon-app
  501  4025     1   0  9:20下午 ??         0:00.01 ./go-daemon-app

此外,该程序会在当前目录下生成example.pid(用于实现file lock),用于防止意外重复执行同一个go-daemon-app:

$./go-daemon-app
2024/09/26 21:21:28 无法运行:daemon: Resource temporarily unavailable

虽然原生守护进程化提供了精细的控制且无需安装和配置外部依赖,但进程管理工具提供了额外的功能,如开机自启、异常退出后的自动重启和日志记录等,并且Go团队推荐使用进程管理工具来实现Go守护进程。进程管理工具的缺点在于需要额外的配置(比如systemd)或安装设置(比如supervisor)。

4. 小结

在Go中实现守护进程化,虽然因为语言运行时的特性而具有挑战性,但通过社区开发的库和谨慎的实现是可以实现的。随着Go语言的不断发展,我们可能会看到更多对进程管理功能的原生支持。同时,开发者可以根据具体需求,在原生守护进程化、进程管理工具或混合方法之间做出选择。

本文涉及的源码可以在这里下载。


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats