标签 nginx 下的文章

理解Unikernels

Docker, Inc在今年年初宣布收购Unikernel Systems公司时,Unikernel对大多数技术人员来说还是很陌生的。直到今天,知名问答类网站知乎上也没有以Unikernel为名字的子话题。国内搜索引擎中关于Unikernel的内容很少,实践相关的内容就更少了。Docker收购Unikernel Systems,显然不是为了将这个其未来潜在的竞争对手干掉,而是嗅到了Unikernel身上的某些技术潜质。和关注Docker一样,本博客后续将持续关注Unikernel的最新发展和优秀实践,并将一些国外的优秀资料搬(翻)移(译)过来供国内Unikernel爱好者和研究人员参考。

本文翻译自BSD Magazine2016年第3期中Russell Pavlicek的文章《Understanding Unikernels》,译文全文如下。

当我们描述一台机器(物理的或虚拟的)上的操作系统内核时,我们通常所指的是运行在特定处理器模式(内核模式)下且所使用的地址空间有别于机器上其他软件运行地址空间的一段特定的软件代码。操作系统内核通常用于提供一些关键的底层函数,这些函数被操作系统中其他软件所使用。内核通常是一段通用的代码,(有需要时)一般会被做适当裁剪以适配支持机器上的应用软件栈。这个通用的内核通常会提供各种功能丰富的函数,但很多功能和函数并不是内核支持的特定应用程序所需要的。

事实上,如果看看今天大多数机器上运行的整体软件栈,我们会发现很难弄清楚到底哪些应用程序运行在那台机器上了。你可能会发现即便没有上千,也会有成百计的低级别实用程序(译注:主要是指系统引导起来后,常驻后台的一些系统服务程序),外加许多数据库程序,一两个Web服务程序,以及一些指定的应用程序。这台机器可能实际上只承担运行一个单独的应用程序,或者它也可能被用于同时运行许多应用。通过对系统启动脚本的细致分析来确定最终运行程序的集合是一个思路,但还远非精准。因为任何一个具有适当特权的用户都可以去启动系统中已有应用程序中的任何一个。

Unikernel的不同之处

基于Unikernel的机器的覆盖面(footprint)是完全不同的。在物理机器(或虚拟机映像)中,Unikernel扮演的角色与其他内核是相似的,但实现特征显著不同。

例如,对一个基于Unikernel的机器的代码进行分析就不会受到大多数其他软件栈的模糊性的影响。当你考虑分析一个Unikernel系统时,你会发现系统中只存在一个且只有一个应用程序。那种标准的多应用程序软件栈不见了,前面提到的过多的通用实用程序和支持函数也不见了。不过裁剪并未到此打住。不仅应用软件栈被裁剪到了最低限度,操作系统功能也同样被剪裁了。例如,多用户支持、多进程支持以及高级内存管理也都不见了。

认为这很激进?想想看:如果整个独立的操作系统层也不见了呢!内核不再有独立的地址空间,应用程序也不再有独立的地址空间了。为什么?因为内核的功能函数和应用程序现在都成为了同一个程序的一部分。事实上,整个软件栈是由一个单独的软件程序构成的,这个程序负责提供应用程序所需的所有代码以及操作系统的功能函数。如果这还不够的话,只需在Unikernel中提供应用所需的那些功能函数即可,所有其他应用程序所不需要的操作系统功能函数都会被整体移除掉。

一个反映新世纪现实的软件栈

Unikernel的出现,其背后的目的在于对这个行业的彻底的反思。几十年来,在这个行业里我们的工作一直伴随着这样一个理念:机器的最好架构是基于一个通用多用户操作系统启动,加载一系列有用的实用工具程序,添加我们可能需要使用的应用程序。最后,再使用一些包管理软件来管理这种混乱的情况。

35年前,这种做法是合乎情理的。那个时候,硬件很昂贵,虚拟化的选择非常有限甚至是不可用。安全仅局限于保证计算中心坐在你身旁的人没有在偷看你输密码。一台机器需要同时处理许多用户运行的许多应用程序以保证较高的成本效益。当我还在大学(1、2千年前。 译注:作者开玩笑,强调那时的古老^_^)时,在个人计算机出现之前,学校计算机中心有一个超级昂贵的机器(以今天的标准来看) – 一台DEC PDP-11/34a,配置了248K字节的内存和25M磁盘,为全校的计算机科学、工程以及数学专业的学生使用。这台机器必须服务于几百名学生每个学期想出的每个功能。

对比计算机历史上那个远古时代的恐龙和现代的智能手机,你会发现手机拥有的计算能力高出那台机器几个数量级。这样一来,我们为什么还要用在计算机石器时代所使用的那些原则去创建机器内核映像呢?重新思考与新的计算现实相匹配的软件栈难道不是很有意义吗?

在现代世界,硬件十分便宜。虚拟化无处不在且运行效率很高。几乎所有计算设备都连接在一个巨大的、世界范围的且存在潜在恶意黑客的网络中。想想看:一台DNS服务器真的不需要上千兆的字节去完成它的工作;一台应用服务器也真的不需要为刚刚利用一个漏洞获得虚拟命令行访问权的黑客准备数千实用工具程序。 一个Web服务器并不需要验证500个不同的分时用户的命令行登录。那么为什么我们现在仍然在使用支持这些不需要的场景的过时的软件栈概念呢?

Unikernel的美丽新世界

那么一个现代软件栈应该是什么样子的呢?下面这个怎么样:单一应用映像,虚拟化的,高度安全的,超轻量的,具有超快启动速度。这些正是Unikernel所能提供的。我们逐一来说:

单一映像

叠加在一个通用内核上的数以百计的实用工具程序和大量应用程序被一个可执行体所替代。这个可执行体将所有需要的应用程序和操作系统代码放置在一个单一的映像中。它只包含它所需要的。

虚拟化的

就在几年前,你可以很幸运地在一台服务器上启动少量虚拟机。硬件的内存限制以及守旧的、吃内存的软件栈不允许你在一台服务器上同时启动太多虚机。今天我们有了配置了数千兆内存的高性能服务器,我们不再满足于每台机器仅能启动少量虚机了。如果每个虚机映像足够小,我们可以在一个服务器上同事运行数百个,甚至上千个虚机应用。

安全

在云计算时代,我们发现恶意黑客可以例行公事般入侵各地的服务器,即便是那些知名大公司和政府机构的服务器也不例外。这些违规行为常常是利用了某个网络服务的缺陷并进入了软件栈的更低层。从那开始,恶意入侵者可以利用系统中已有的实用程序或其他应用程序来实施他们的邪恶行为。在Unikernel栈中,没有其他软件可以协助这些恶意的黑客。黑客必须足够聪明才能入侵其中的应用程序,但接下来还是没有驻留的工具可以用来协助做坏事。虽然Unikernel栈不会使得软件彻底完全的变安全,但是它确能显著提升软件的安全级别。并且这是云计算时代长期未兑现的一种进步。

超轻量

一个正常的VM仅仅是为了能在网络中提供少量的服务就要占用千兆的磁盘和内存空间。若使用Unikernel,我们可以不再纠结于这些资源需求。例如,使用MirageOS(一个非常流行的Unikernel系统),我们可以构建出一个具备DNS服务功能的VM映像,其占用的磁盘空间仅仅为449K – 是的,还不到半兆。使用ClickOS,一个来自NEC实验室的网络应用Unikernel系统制作的网络设备仅仅使用6兆内存却可以成功达到每秒5百万包的处理能力。这些绝不是基于Unikernel的设备的非典型例子。鉴于Unikernels的小巧精简,在单主机服务器上启动数百或数千这类微小虚拟机的想法似乎不再遥不可及。

快速启动

普通VM的引导启动消耗较长时间。在现代硬件上启动一个完整操作系统以及软件栈直到服务上线需要花费一分钟甚至更多的时间。但是对于基于Unikernel的VM来说,这种情况却不适用。绝大多数的Unikernel VM引导启动时间少于十分之一秒。例如,ClickOS网络VM文档中记录的引导启动时间在30毫秒以下。这个速度快到足以在服务请求到达网络时再启动一个用于处理该请求的VM了(这正是Jitsu项目所要做的事情,参见http://unikernel.org/files/2015-nsdi-jitsu.pdf)。

但是,容器不已经做到这一点了吗?

在创建轻量级,快速启动的VM方面,容器已经走出了很远。但在幕后容器依然依赖着一个共享的、健壮的操作系统。从安全的角度来看,容器还有很多要锁定的地方。很明显我们需要加强我们在云中的安全,但不是去追求这些相同的、陈旧的、在云中就会快速变得漏洞百出的安全方法。除此之外,Unikernel的最终覆盖面仍然要比容器能提供的小得很多。因此容器走在了正确的方向上,而Unikernel则设法在这个未来云所需要的方向上走的更远。

Unikernels是如何工作的?

正如之前提到的,传统机器自底向上构建:你选择一个通用的操作系统内核,添加大量实用工具程序,最后添加应用程序。Unikernel正好相反:它们是自顶向下构建的。聚焦在你要运行的应用程序上,恰到好处地添加使其刚好能运行的操作系统函数。大多数Unikernel系统依靠一个编译链接系统,这个系统编译应用程序源码并将应用程序所需的操作系统函数库链接进来,形成一个单独的编译映像。无需其他软件,这个映像就可以运行在VM中。

如何对结果进行调试?

由于在最终的成品中没有操作系统或实用工具程序,绝大多数Unikernel系统使用了一种分阶段的方法来开发。通常,在开发阶段一次编译会生成一个适合在Linux或类Unix操作系统上进行测试的可执行程序。这个可执行程序可以运行和被调试,就像任何一个标准程序那样。一旦你对测试结果感到满意,你可以重新编译,打开开关,创建独立运行在VM中的最终映像。

在生产环境机器上缺少调试工具并没有最初想象的那样糟糕。绝大多数组织不允许开发人员在生产机器上调试,相反,他们收集日志和其他信息,在开发平台重现失败场景,修正问题并重新部署。这个事实让调试生产映像的限制也有所缓和。在Unikernel世界中,这个操作顺序也已具备。你只需要保证你的生产环境映像可以输出足够多的日志以方便重构失败场景。你的标准应用程序可能正在做这些事情了。

有哪些可用的Unikernel系统?

现在有很多Unikernel可供选择,它们支持多种编程语言,并且Unikernel项目还在持续增加中。一些较受欢迎的Unikernel系统包括:

  • MirageOS:最早的Unikernels系统之一,它使用Ocaml语言;
  • HaLVM:另外一个早期Unikernels系统,由Haskell语言实现;
  • LING:历史悠久的项目,使用Erlang实现;
  • ClickOS:为网络应用优化的系统,支持C、C++和Python;
  • OSv:稍有不同的Unikernel系统,它基于Java,并支持其他一些编程语言。支持绝大多数JAR文件部署和运行。
  • Rumprun:使用了来自NetBSD项目的模块代码,目标定位于任何符合POSIX标准的、不需要Fork的应用程序,特别适合将现有程序移植到Unikernel世界。

Unikernel是灵丹妙药吗?

Unikernel远非万能的。由于他们是单一进程实体,运行在单一地址空间,没有高级内存管理,很多程序无法很容易地迁移到Unikernel世界。不过,运行于世界各地数据中心中的大量服务很适合该方案。将这些服务转换为轻量级Unikernel,我们可以重新分配服务器能力,任务较重的服务可以从额外的资源中受益。

转换成Unikernel的任务数量比你想象的要多。在2015年,Martin Lucina宣布成功创建了一个”RAMP”栈 – LAMP栈(Linux、Apache、MySQL和PHP/Python)的变种。RAMP栈使用了NGINX,MySQL和PHP,它们都构建在Rumprun之上。Rumprun是Rump内核的一个实例,而Rump内核则是基于NetBSD工程模块化操作系统功能函数集合的一个Unikernel系统。所以这种常见的解决方案堆栈可以成功地转化迁移到Unikernels世界中。

更多信息

要想学习更多有关Unikernels方面的内容,可以访问http://www.unikernel.org或观看2015年我在Southeast Linuxfest的演讲视频

使用Filebeat输送Docker容器的日志

今天我们来说说Docker容器日志。

一、容器日志输出的旧疾及能力演进

Docker容器在默认情况下会将打印到stdout、stderr的 日志数据存储在本地磁盘上,默认位置为/var/lib/docker/containers/{ContainerId} /{ContainerId}-json.log。在老版本Docker中,这种日志记录方式经常被诟病,诸如:日志大小无限制、无法 Rotate(轮转)、无日志基本管理能力以及性能糟糕等。针对这些旧疾,Docker一直试图在演进中完善和解决。

记忆中好像是在Docker 1.8版本中,Docker增加了对json-file型(默认)log driver的rotate功能,我们可通过max-size和max-file两个–log-opt来配置。比如:我们启动一个nginx容器,采用 json-file日志引擎,每个log文件限制最大为1k,轮转的日志个数为5个:

$docker run -d --log-driver=json-file --log-opt max-size=1k --log-opt max-file=5 --name webserver -p 9988:80 nginx
50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72
$ sudo ls -l /var/lib/docker/containers/50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72
总用量 44
-rw-r--r-- 1 root root  226  3月 24 14:39 50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72-json.log
-rw-r--r-- 1 root root 1129  3月 24 14:39 50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72-json.log.1
-rw-r--r-- 1 root root 1130  3月 24 14:39 50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72-json.log.2
-rw-r--r-- 1 root root 1129  3月 24 14:39 50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72-json.log.3
-rw-r--r-- 1 root root 1129  3月 24 14:39 50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72-json.log.4
... ...

有了rotate,我们就不必担心某个container的日志暴涨而将同host的其他container拖死了。不过对于日志的管理目前也仅仅演进到如此,很多需求还得依靠第三方工具和方案来解决。

另外当前Docker容器日志的写入性能依旧糟糕,如果对此敏感,可以用volume机制来解决,即 关闭容器内应用的标准输出、错误(–log-driver=none),直接将日志写到某mounted volume中的某个文件中。下面是bare metal裸机原生写日志文件、volume方式写日志文件以及docker默认写json文件的性能简单对比:

我们用dd这个小工具,以go1.6.linux-amd64.tar.gz这个 85MB的文件作为输入,结果如下:(环境ubuntu 12.04 docker 1.9.1)

1、bare metal
dd if=~/.bin/go1.6.linux-amd64.tar.gz of=./go.bin
记录了165623+1 的读入
记录了165623+1 的写出
84799480字节(85 MB)已复制,0.426716 秒,199 MB/秒

2、通过挂在本地volume
$ docker run --rm -it -v /home1/tonybai/testdd/volume:/testdd ubuntu:14.04 dd if=/testdd/go1.6.linux-amd64.tar.gz of=/testdd/go.bin
165623+1 records in
165623+1 records out
84799480 bytes (85 MB) copied, 0.3753 s, 226 MB/s

3、docker default
$docker run  -v /home1/tonybai/testdd/volume:/testdd ubuntu:14.04 dd if=/testdd/go1.6.linux-amd64.tar.gz 2>&1 1>/dev/null

165623+1 records in
165623+1 records out
84799480 bytes (85 MB) copied, 5.97732 s, 14.2 MB/s

$ sudo ls -lh /var/lib/docker/containers/d4b5e6aae3968f68e5081414ad95c6308fa91808b44b415a03040403af5a4713/                                              d4b5e6aae3968f68e5081414ad95c6308fa91808b44b415a03040403af5a4713-json.log
-rw------- 1 root root 331M  3月 24 18:05 /var/lib/docker/containers/d4b5e6aae3968f68e5081414ad95c6308fa91808b44b415a03040403af5a4713/                                          d4b5e6aae3968f68e5081414ad95c6308fa91808b44b415a03040403af5a4713-json.log

可以看出,默认情况下,Docker写入json的速度是挂载volume方式的十分之一还低。主要原因是Docker容器的标准输出、 标准错误都会被Docker Daemon接管,并由Daemon写入json log文件,因此Daemon就成为了日志写入的瓶颈。

二、容器日志的集中管理

日志的管理需求由来已久,无论是传统遗留系统,还是互联网应用或服务,日志在运维和运营中的作用不可小觑。尤其是现在被普遍采用的集中日志管理实践,对Docker的日志管理提出了新的要求。上面提到随着Docker的演进,Docker的logging已有所改善,增加了多种log driver的支持(比如syslog、fluentd等),为容器日志的集中管理方案提供了多样性。

目前国内很多企业采用ELK方案(当然ELK方案不仅仅局限于Docker了),即ElasticSearch + Logstash + Kibana,Logstash负责从各个节点收集、过滤、分析和处理日志,ElasticSearch负责存储、索引和查找日志;Kibana负责以图形化界面展示日志处理结果。但Docker Container如何做本地日志管理、如何将本地最新的日志输送给Logstash没有标准方案,你可以用fluentd agent也可以使用logspout。ELK方案中也有自己的用于客户端节点日志输送的工具,以前称为logstash-forwarder:

node1 (logstash-forwarder) ------>

node2 (logstash-forwarder) ------>   logstash server --> ElasticSearch

node3 (logstash-forwarder) ------>

现在Elastic.co使用beats系列产品替代logstash-forwarder,针对日志输送这块,对应的beats产品是filebeat,使用filebeat后,前面的集中日志方案结构就变成了:

node1 (filebeat) ------>

node2 (filebeat) ------>   [logstash server] --> ElasticSearch

node3 (filebeat) ------>

我们看到logstash server是一个可选的中间环节,使用filebeat后,你可以将client node上的最新日志直接发送给ElasticSearch,而无需经过logstash这一环节。当然如果你对源日志有过滤、清洗、分析等需求时,logstash依旧是你的得力助手。这里我们暂不用logstash,而是直接将日志发给ElasticSearch做存储和索引。

三、使用Filebeat输出容器日志的步骤

测试环境示意图如下:(ubuntu 14.04 + docker 1.9.1)

node1 (10.10.126.101 nginx container +  filebeat) ------>   server 10.10.105.71 (ElasticSearch + kibana)

这里的所有程序均以容器形式安装和运行。

1、安装elasticsearch和kibana

elasticsearch和kibana都有官方Docker image。

安装elasticsearch:

$ docker pull elasticsearch
Using default tag: latest
latest: Pulling from library/elasticsearch
...

执行env,查看版本:

$ docker exec  elasticsearch env

... ...
ELASTICSEARCH_MAJOR=2.2
ELASTICSEARCH_VERSION=2.2.1
ELASTICSEARCH_REPO_BASE=http://packages.elasticsearch.org/elasticsearch/2.x/debian
... ...

安装kibana:

$ docker pull kibana
Using default tag: latest
latest: Pulling from library/kibana
... ...

我们查看一下当前images列表:

REPOSITORY                             TAG                 IMAGE ID            CREATED             VIRTUAL SIZE
elasticsearch                          latest              c6b6bed19c45        8 days ago          347.1 MB
kibana                                 latest              d2c9c3cfc682        12 days ago         295.4 MB
... ...

2、启动es和kibana,验证服务启动ok

启动ES:

$ sudo mkdir -p /data/elasticsearch
$  docker run -d --name elasticsearch -p 9200:9200 -v /data/elasticsearch:/usr/share/elasticsearch/data elasticsearch
4288b4db18af8575961faf940a1dc634fe30857bb184fb45611136b7bd3ffb7d

查看服务启动情况:

$ docker ps
CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS              PORTS                              NAMES
4288b4db18af        elasticsearch       "/docker-entrypoint.s"   21 seconds ago      Up 10 seconds       0.0.0.0:9200->9200/tcp, 9300/tcp   elasticsearch

启动日志如下:

$ docker logs elasticsearch
[2016-03-24 11:00:29,289][INFO ][node                     ] [Katherine Reynolds] version[2.2.1], pid[1], build[d045fc2/2016-03-09T09:38:54Z]
[2016-03-24 11:00:29,291][INFO ][node                     ] [Katherine Reynolds] initializing ...
[2016-03-24 11:00:29,863][INFO ][plugins                  ] [Katherine Reynolds] modules [lang-expression, lang-groovy], plugins [], sites []
[2016-03-24 11:00:29,894][INFO ][env                      ] [Katherine Reynolds] using [1] data paths, mounts [[/usr/share/elasticsearch/data (/dev/disk/by-uuid/f577c0bc-665b-431b-96e0-e3536dc11469)]], net usable_space [114.5gb], net total_space [130.4gb], spins? [possibly], types [ext4]
[2016-03-24 11:00:29,894][INFO ][env                      ] [Katherine Reynolds] heap size [990.7mb], compressed ordinary object pointers [true]
[2016-03-24 11:00:31,881][INFO ][node                     ] [Katherine Reynolds] initialized
[2016-03-24 11:00:31,881][INFO ][node                     ] [Katherine Reynolds] starting ...
[2016-03-24 11:00:31,993][INFO ][transport                ] [Katherine Reynolds] publish_address {172.17.0.1:9300}, bound_addresses {[::]:9300}
[2016-03-24 11:00:32,004][INFO ][discovery                ] [Katherine Reynolds] elasticsearch/D7hV_RcHQa275Xc7if1Kkg
[2016-03-24 11:00:35,058][INFO ][cluster.service          ] [Katherine Reynolds] new_master {Katherine Reynolds}{D7hV_RcHQa275Xc7if1Kkg}{172.17.0.1}{172.17.0.1:9300}, reason: zen-disco-join(elected_as_master, [0] joins received)
[2016-03-24 11:00:35,075][INFO ][http                     ] [Katherine Reynolds] publish_address {172.17.0.1:9200}, bound_addresses {[::]:9200}
[2016-03-24 11:00:35,076][INFO ][node                     ] [Katherine Reynolds] started
[2016-03-24 11:00:35,144][INFO ][gateway                  ] [Katherine Reynolds] recovered [0] indices into cluster_state

启动kibana:

启动kibana容器需要提供一个环境变量参数,即ES的服务地址和端口:

$docker run -d --name kibana -e ELASTICSEARCH_URL="http://10.10.105.72:9200"  -p 5601:5601 kibana

要验证kibana是否启动ok,可以通过浏览器打开:http://10.10.105.72:5601,如果web页面正常显示,并且http://10.10.105.72:5601/status页面中有”Status: Green”字样,说明Kibana启动ok了。

3、安装和配置filebeat

在安装filebeat前,我们先启动一个测试用webserver,部署在10.10.126.101上,用于产生日志数据:

$ docker run -d --log-driver=json-file --log-opt max-size=1k --log-opt max-file=5 --name webserver -p 9988:80 nginx
50f100e7ea4d5b4931f144f9eac12b6a05e56579583d7a0322b250004b68ae72

Filebeat没有官方image版本,docker hub上star数量最多的是prima/filebeat这个库中的image,我们就打算使用这个了,pull过程这里就不赘述了:

$docker run --rm prima/filebeat env
... ...
FILEBEAT_VERSION=1.1.2
... ...

可以看到这个库中的filebeat image使用的filebeat版本是最新的。

我们接下来来看run:

$ docker run --rm prima/filebeat
Loading config file error: Failed to read /filebeat.yml: open /filebeat.yml: no such file or directory. Exiting.

看来Filebeat需要做一些配置,我们得来查看一下Filebeat的官方manual

Filebeat需要一个filebeat.yml配置文件,用于配置log来源以及log输送的目的地,我们参考manual给出一个适合我们的配置:

filebeat:
  # List of prospectors to fetch data.
  prospectors:
    # Each - is a prospector. Below are the prospector specific configurations
    -
      # Paths that should be crawled and fetched. Glob based paths.
      # For each file found under this path, a harvester is started.
      paths:
          - "/var/lib/docker/containers/*/*.log"
        #- c:\programdata\elasticsearch\logs\*

      # Type of the files. Based on this the way the file is read is decided.
      # The different types cannot be mixed in one prospector
      #
      # Possible options are:
      # * log: Reads every line of the log file (default)
      # * stdin: Reads the standard in
      input_type: log

# Configure what outputs to use when sending the data collected by the beat.
# Multiple outputs may be used.
output:
  ### Elasticsearch as output
  elasticsearch:
    # Array of hosts to connect to.
    hosts: ["10.10.105.72:9200"]

我们采集/var/lib/docker/containers/*/*.log,即filebeat所在节点的所有容器的日志。输出的位置是我们ElasticSearch的服务地址,这里我们直接将log输送给ES,而不通过Logstash中转。

再启动之前,我们还需要向ES提交一个filebeat index template,以便让Es知道filebeat输出的日志数据都包含哪些属性和字段。filebeat.template.json这个模板文件不用我们编写,filebeat官方提供,我们可以在github.com上找到它

加载这个模板到ES:

$ curl -XPUT 'http://10.10.105.72:9200/_template/filebeat?pretty' -d@/home1/tonybai/filebeat.template.json
{
  "acknowledged" : true
}

如果看到curl的返回结果是true,那么说明加载ok了。

接下来,我们启动filebeat容器:

$ docker run -d --name filebeat -v /home1/tonybai/filebeat.yml:/filebeat.yml prima/filebeat
f93497ea816e5c4015e69376f98e791ca02b91a20145ee1366e4c15f6a706c10

我们到Kibana中看看是否能收到容器的日志。使用Kibana时,需要添加一个新的index pattern。按照manual中的要求,对于filebeat输送的日志,我们的index name or pattern应该填写为:”filebeat-“,不过我在kibana中添加default index :filebeat- 一直失败,下面那个按钮一直是灰色的,并提示:“Unable to fetch mapping. Do you have indices matching the pattern”。

在filebeat的forum中找寻问题答案,有人提示:看看ElasticSearch中是否有filebeat传输来的日志。于是查看ElasticSearch日志以及通过ElasticSearch提供的API做了一番查询,发现filebeat根本没有日志传输过来。

回过头仔细想来,wow,居然没给filebeat容器挂在/var/lib/docker/containers目录,那么filebeat就没有权限访问容器日志,自然不会有日志传输到ES了,下面的输出也证实了这一点:

$ docker exec filebeat ls /var/lib/docker/containers
ls: cannot access /var/lib/docker/containers: No such file or directory

于是修改filebeat启动参数:

$docker run -d  --name filebeat -v /home1/tonybai/filebeat.yml:/filebeat.yml -v /var/lib/docker/containers:/var/lib/docker/containers prima/filebeat

一段时间后,我们就可以在Kibana上成功创建filebeat-* index pattern并看到filebeat输送过来的日志了。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats