标签 API 下的文章

Go还是Rust?2025年技术选型之辩

本文永久链接 – https://tonybai.com/2025/06/15/rust-vs-go-2025

大家好,我是Tony Bai。

技术圈的话题里,从来不缺少编程语言之争,并且这类话题向来热度不减。最近,JetBrains 旗下的 RustRover 博客发表了一篇题为《Rust vs Go: Which one to choose in 2025》的文章,并引用了《State of Developer Ecosystem Report 2024》的一些数据,再次将 Go 和 Rust 这两位“当红炸子鸡”推上了对比的擂台。

文章指出,Rust 和 Go 都在现代计算领域开辟了重要的生态位,尤其在系统级操作和并发处理方面备受赞誉。报告数据也颇为亮眼:Rust 的用户基数已达到约 227 万,其中 70.9 万开发者将其作为主要语言;而 Go 的用户基础依然稳固。但一个颇具“引战”潜力的数据点是——“约 1/6 的 Go 用户正在考虑转向 Rust”

这不禁让人深思:这是否预示着某种趋势?在即将到来的 2025 年,当面临新的项目或技术升级时,我们究竟应该选择 Go 还是 Rust?作为一名在 Go 领域深耕多年的老兵,我想结合 RustRover 的这篇文章,谈谈我的一些看法,希望能为正在做技术选型的你,提供一些来自 Go 视角的参考。

文章核心观点速览(与Go的对比)

首先,我们简要回顾一下RustRover这篇博客文章中对两种语言核心特性和适用场景的概括(以下观点主要转述自原文):

Rust的画像:极致安全与性能的追求者

  • 核心理念:无 GC 的内存安全(所有权、借用机制,编译时强制检查),无数据竞争的并发。
  • 性能表现:非常接近 C++,零成本抽象,计算密集型任务通常更快,内存占用更低。
  • 适用场景:系统编程 (OS、嵌入式)、IoT、WebAssembly、区块链、云基础设施、网络编程、CLI 工具等对性能和安全要求极致的领域。
  • 学习曲线:陡峭。所有权、借用、生命周期、以及严格的编译器对新手构成较大挑战。
  • 生态:年轻但发展迅速,Cargo 包管理器和 crates.io 体验优秀,社区充满热情。但在库的全面性上可能尚不及 Go。

Rust在内存安全和底层控制方面的确做到了极致,其编译期检查能消除许多运行时风险,这在特定高安全、高性能场景下是巨大优势。然而,这种极致是以显著牺牲开发效率和上手速度为代价的。

Go的画像:简洁高效与工程化生产力的典范

  • 核心理念:简洁、高效、可读性强,易学易用。
  • 并发模型:内置 Goroutines 和 Channels,轻松实现高并发。
  • 性能表现:高效的 GC,优秀的网络性能,尤其适合构建高并发网络服务。
  • 适用场景:云基础设施 (Docker, K8s)、Web 服务与 API、网络编程、DevOps 工具、CLI 工具。
  • 学习曲线:平缓。简约的设计哲学和少量关键字,使得 Go 非常容易上手。
  • 生态:拥有强大且全面的标准库,成熟的工具链,以及庞大且活跃的社区,尤其在云原生领域具有主导地位。

Go的核心竞争力在于其卓越的工程效率和在构建大规模分布式系统方面的成熟度。它的 GC 和并发模型虽然不如 Rust 那样在理论上“完美”,但在绝大多数实际应用中,提供了远超许多语言的生产力和性能平衡。

文章还从性能、易用性、并发、生态等多个维度对两者进行了对比,总体而言,强调了 Rust 在底层控制、内存安全和理论性能上的优势,以及 Go 在开发效率、并发易用性和生态成熟度上的长处。

解读“1/6 Go 用户考虑转向 Rust”:是焦虑还是理性探索?

这个数据点无疑是最引人注目的。我们该如何看待?

首先,不必过度焦虑。Go 语言的用户基数依然庞大且在持续增长。技术领域永远不乏对新工具、新范式的好奇与探索。一部分 Gopher 考虑 Rust,可能源于以下几点原因:

  • 对特定场景的极致追求:在某些对内存安全、性能要求达到严苛级别,且愿意投入更高学习成本的项目中(例如操作系统内核、游戏引擎、某些嵌入式系统),Rust 的特性确实更具吸引力。
  • 技术视野的拓展:优秀的开发者总是乐于学习新事物。了解 Rust 的所有权模型等独特设计,本身就能拓宽技术视野,甚至反过来促进对 Go 并发安全和资源管理的更深理解。
  • 对 Go 某些方面的“不满”:尽管 Go 的 GC 经过了多年优化,但在极少数对延迟极度敏感或内存分配模式特殊的场景下,GC 带来的不可预测性仍可能成为痛点。此外,Go 的错误处理方式(if err != nil)虽然清晰,但其冗余性也常被诟病。Rust 的 Result 类型和 ? 操作符提供了一种不同的体验。

然而,“考虑转向”不等于“实际转向”,更不等于“大规模流失”。从“考虑”到在生产项目中大规模采用一种学习曲线陡峭、生态相对年轻的语言,中间还有很长的路要走。团队技能储备、项目时间压力、招聘难度、现有基础设施兼容性等都是现实的考量因素。

更重要的是,Go 语言自身也在不断进化。泛型的引入弥补了表达力上的一块短板;性能分析和调试工具日益完善;标准库持续增强;社区也在不断探索新的最佳实践。Go团队对生产力和生产就绪的承诺,使其能够持续满足绝大多数后端和云原生场景的需求。

我的Go视角:场景驱动,务实选择,拥抱互补

在我看来(可能也是很多Gopher的想法),Go与Rust之争,很多时候并非“有你无我”的零和博弈,而更应回归到场景驱动的技术选型

Go的核心阵地依然稳固

  • 高并发网络服务:Go 的 Goroutine + Channel 模型在构建需要处理大量并发连接的后端服务(如 API网关、微服务、消息队列等)时,其简洁性、高效性和成熟度依然是无与伦比的。这是 Go 的“龙兴之地”,也是其最强大的生态位。
  • 云原生基础设施:Docker、Kubernetes、Prometheus、Terraform、Etcd……这些构建了现代云计算基石的项目,无一不是用 Go 编写。Go 在这个领域的生态、工具链和人才储备,使其成为构建云原生应用和平台的首选。
  • DevOps 与 CLI 工具:Go 编译速度快、交叉编译方便、部署简单(静态链接),使其成为编写各类运维工具、CLI 应用的理想选择。
  • 追求工程效率和快速迭代的团队:Go 的简洁易学、快速编译和强大的标准库,使得团队能够快速上手、高效协作,快速将产品推向市场。

Rust 的独特优势区间

  • 对内存安全和零开销抽象有极致要求的系统级编程:当你需要直接操作硬件、编写操作系统组件、或者开发对性能和资源控制要求极度严苛(且无法容忍 GC 暂停)的底层库时,Rust 的优势非常明显。
  • WebAssembly (Wasm):Rust 凭借其性能和对 Wasm 的良好支持,在构建高性能 Web 前端组件或浏览器插件方面展现出巨大潜力。
  • 安全关键领域:在一些对安全漏洞容忍度极低的领域,Rust 编译期的严格检查能提供更强的保障。

Go 与 Rust 的互补与融合

早在2021年,时任谷歌Go编程语言的产品和战略负责人的史蒂夫·弗朗西亚(Steve Francia),也就是gohugo、viper等一簇明星Go开源项目的作者就曾提出过“Go与Rust强强联合”的观点。

与其将Go与Rust视为绝对的竞争对手,不如看到它们的互补性。在一个复杂的系统中,完全可能出现 Go 与 Rust 各司其职的场景:例如,用 Rust 编写对性能和内存安全要求最高的底层核心计算模块或驱动,然后用 Go 来构建上层的业务逻辑、API 接口和分布式调度系统。这种“强强联合”或许是未来的一种趋势。

给 Gopher 的建议:深耕当下,放眼未来

面对 Rust 的崛起和社区的讨论,作为 Gopher,我们应该:

  1. 坚定对 Go 的信心: Go 在其核心优势领域(高并发、网络编程、云原生、工程效率)的地位依然稳固且在持续增强。Go 社区的活力和 Google 的持续投入,保证了 Go 的未来发展。
  2. 深耕 Go 的核心能力: 充分理解和掌握 Go 的并发模型、内存管理、标准库和工具链,才能在实际项目中发挥其最大价值。不要因为外界的喧嚣而动摇对基础的夯实。
  3. 保持开放心态,按需学习: 了解 Rust 等其他优秀语言的设计思想和适用场景,是有益的。如果你的工作场景确实需要 Rust 的特性,或者你对系统底层有浓厚兴趣,学习 Rust 会是一个很好的补充。但不必为了“时髦”而盲目追逐。
  4. 关注 Go 的演进: Go 也在不断吸取社区反馈并进行改进。例如,对性能的持续优化(如 Go 1.24中map的Swiss Table实现、Go 1.25中新增的“绿茶”新GC)、对泛型的支持、对工具链的打磨等,都在让 Go 变得更好。
  5. 技术选型,务实为本: 最终选择哪种语言,永远要服务于项目目标、团队能力和业务需求。没有“最好”的语言,只有“最合适”的语言。TypeScript编译器原生化选择Go就是一个很好的例子。

小结:2025,Go 与 Rust 各自精彩

RustRover 的文章及其引用的报告,为我们提供了一个观察当前编程语言生态动态的窗口。Rust 的确是一门优秀且充满潜力的语言,它在特定领域展现出的强大实力值得肯定。

然而,对于绝大多数追求高并发处理能力、高开发效率、快速迭代、以及需要在庞大而成熟的云原生生态中构建应用的场景而言,Go 语言在 2025 年乃至更远的未来,依然会是极其明智和强大的选择。

“1/6 的 Go 用户考虑转向 Rust”,这或许正说明了 Go 社区的开发者们视野开阔,乐于学习。但更重要的是,在探索新可能的同时,我们更要清醒地认识到自己手中工具的价值和核心竞争力。

Go 与 Rust,未来更可能是并驾齐驱,在各自擅长的领域大放异彩,甚至在某些场景下携手共进。作为技术人,理解它们的区别与联系,做出最适合自己的选择,才是最重要的。

你对 Go 和 Rust 的未来怎么看?欢迎在评论区分享你的观点!


精进有道,更上层楼

极客时间《Go语言进阶课》上架刚好一个月,受到了各位读者的热烈欢迎和反馈。在这>里感谢大家的支持。目前我们已经完成了课程模块一『语法强化篇』的 13 讲,为你系统突破 Go 语言的语法认知瓶颈,打下坚实基础。

现在,我们即将进入模块二『设计先行篇』,这不仅包括 API 设计,更涵盖了项目布局、包设计、并发设计、接口设计、错误处理设计等构建高质>量 Go 代码的关键要素。

这门进阶课程,是我多年 Go 实战经验和深度思考的结晶,旨在帮助你突破瓶颈,从“会用 Go”迈向“精通 Go”,真正驾驭 Go 语言,编写出更优雅、
更高效、更可靠的生产级代码!

扫描下方二维码,立即开启你的 Go 语言进阶之旅!

感谢阅读!

如果这篇文章让你对 Go 和 Rust有了新的认识,请帮忙转发,让更多朋友一起学习和进步!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

告别手写汇编:Go官方提出原生SIMD支持,高性能计算将迎来巨变

本文永久链接 – https://tonybai.com/2025/06/09/go-simd-intrinsics

大家好,我是Tony Bai。

长期以来,在Go语言中追求极致性能的开发者,当遇到需要利用现代 CPU 的 SIMD (Single Instruction, Multiple Data) 能力时,往往不得不求助于手写汇编。这种方式不仅编写和维护困难,还会导致异步抢占失效、阻碍编译器内联优化等问题。现在,这一“不得不”的时代有望终结。 Go 官方团队正式提出了 #73787 提案:在 GOEXPERIMENT 标志下引入架构特定的 SIMD 内置函数。这一里程碑式的提案,旨在为 Go 开发者提供一种无需编写汇编即可利用底层硬件加速能力的方式,预示着 Go 在高性能计算领域将迎来一场深刻的巨变。在这篇文章中,我就和大家一起解读一下这个里程碑式的提案。

两步走战略:从架构特定到可移植 Highway

Go 语言的 API 设计一向以简洁和可移植性著称,但 SIMD 操作的本质却是硬件特定且复杂的。不同 CPU 架构(如 amd64, arm64, riscv64 等)支持不同的向量长度、操作指令甚至数据表示方式。如何在高层抽象的简洁性与底层硬件的复杂性之间找到平衡,是 Go SIMD 设计面临的核心挑战。

为此,Go 团队提出了一个清晰的“两步走”战略:

  1. 第一步:低级、架构特定的 API 与内置函数 (Low-level, architecture-specific API)

    • 目标: 提供一组与机器指令紧密对应的底层 SIMD 操作。这些操作将作为 Go 编译器可识别的内置函数 (intrinsics),在编译时直接转换为高效的单条机器指令。
    • 定位: 类似于 syscall 包。它为追求极致性能的“高级用户”提供了直接访问硬件特性的能力,是构建上层抽象的基石。
    • 实现方式: 初期将以 GOEXPERIMENT=simd 的形式提供预览,首先聚焦于 amd64 等架构的定长向量支持。
  2. 第二步:高级、可移植的向量 API (High-level, portable vector API)

    • 目标: 借鉴 C++ Highway 等项目的成功经验,在底层内置函数的基础上,构建一套跨平台、易于使用的高级 SIMD API。
    • 定位: 类似于 os 包。大多数数据处理、AI 基础设施等场景的开发者可以直接使用这个可移植的 API,在不同架构上都能获得良好的性能。

这个分层设计,既满足了对底层硬件极致控制的需求,也为广大开发者提供了简单易用的可移植方案,实现了优雅的权衡。

底层 API 设计哲学与核心要素

提案详细阐述了底层 SIMD API 的设计原则和关键组成部分:

向量类型 (Vector Types)

SIMD 向量类型将被定义为不透明的结构体(Opaque Structs),而非数组,以避免动态索引(硬件通常不支持)带来的问题。类型命名将直观反映元素类型和数量。

package simd

// 示例:在支持的架构上定义
type Uint32x4 struct { a0, a1, a2, a3 uint32 } // 128-bit vector
type Float64x8 struct { /* 8 float64 fields */ } // 512-bit vector

编译器会特殊处理这些类型,确保它们在传递和存储时使用向量寄存器。

操作 (Operations)

向量操作将以方法 (methods) 的形式定义在向量类型上,编译器会将其识别为内置函数。

// Add 每个元素相加
//
// 等价于 x86 指令 VPADDD
func (Uint32x4) Add(Uint32x4) Uint32x4
  • 命名: 采用易于理解的描述性名称(如 Add, Mul, ShiftLeftConst),而非与特定架构指令(如 VPADDD)绑定。不过,注释中会标明对应的机器指令,方便专家查阅。
  • 尽力而为的可移植性 (Best-effort portability): 对于多平台都支持的常见操作,将使用相同的名称和签名。但该层 API 不追求完全的可移植性,通常不会模拟硬件不支持的操作。

加载与存储 (Load & Store)

加载和存储操作将通过函数实现,通常接受指向固定大小数组的指针。为了方便,也会提供从切片加载的辅助函数。

// 从指向数组的指针加载
func LoadUint32x4(p *[4]uint32) Uint32x4

// 从切片加载
func LoadUint32x4FromSlice(s []uint32) Uint32x4 {
    return LoadUint32x4((*[4]uint32)(s))
}

// 存储到指向数组的指针
func (v Uint32x4) Store(p *[4]uint32)

掩码类型 (Mask Types)

不同架构对掩码的表示方式差异巨大(如 AVX512 的 k-register vs AVX2 的向量寄存器)。为屏蔽这种复杂性,掩码将表示为不透明类型(如 Mask32x4)。编译器会根据上下文选择最高效的硬件表示。

// 比较操作返回掩码
func (Uint32x4) Equal(Uint32x4) Mask32x4 

// 带掩码的加法 (仅对掩码为 true 的元素进行操作)
func (Uint32x4) AddMasked(Uint32x4, Mask32x4) Uint32x4

// 掩码可以与向量互相转换
func (Mask32x4) AsVector() Int32x4

API 组织模式的探讨

除了提案本身,Go团队成员@dr2chase 的示例项目 go_simd_examples 进一步探讨了 SIMD 包的不同组织模式,这对于我们理解未来 API 的可能形态至关重要。

  • 模式 A:单一 simd 包 (提案当前倾向)

    • 所有向量类型和操作都在一个 simd 包内,通过构建标签(build tags)为不同架构提供实现。
    • 开发者通过运行时检查(如 simd.BitLen(), simd.Scalable())来调度不同向量长度(128/256/512位)或可伸缩向量的实现。
    • 优点: 用户只需导入一个包,API 表面上看起来是统一的。
    • 挑战: 需要开发者编写运行时分派逻辑,且代码可移植性依赖于“尽力而为”的公共 API 子集。有开发者指出,这使得在无 build tag 的通用文件中编写 SIMD 代码变得困难,因为 simd 包本身可能在某些架构上不存在。
  • 模式 B:每个架构一个 simd 子包 (simd_amd64, simd_arm64等)

    • 每个架构的 SIMD 内置函数被隔离在各自的包中。开发者通过 build tag 和不同的导入语句来使用特定于架构的功能。
    • 优点: 借鉴了 syscall 包拆分的经验,API 边界清晰,明确了代码的非可移植性。文档和工具(如 gopls)能更好地为特定架构提供支持。
    • 挑战: 对于共享相同算法逻辑但仅向量类型不同的代码,会导致更多的代码重复。
  • 模式 C:每个向量长度一个 simd 子包 (simd_128, simd_256, simd_s等)

    • 这是一种更激进的探索,将 API 按向量能力(长度)划分。
    • 优点:
      • 允许在包级别定义常量(如 simd_128.NFloat64s),减少了代码中的硬编码。
      • 可以通过统一的类型后缀(如 simd_256.Float64s)来指代该包内最大长度的向量,使得为不同向量长度编写的代码在结构上更相似,更接近可伸缩向量的写法。
      • 对于 amd64 架构,这种方式能更清晰地区分不同指令集下的同尺寸向量操作(例如,simd_128 包中的操作对应 SSE,而 simd_256 包中128位操作则使用 AVX 指令)。
    • 挑战: 增加了包的数量,开发者需要根据目标硬件能力选择导入正确的包。

@dr2chase 的示例通过一个“加权内积”的例子,分别用这三种模式实现了跨架构的 SIMD 加速,直观地展示了不同组织方式对代码结构和可维护性的影响。

社区反馈与深入讨论

73787提案引发了社区专家的热烈讨论,一些关键点包括:

  • API 命名哲学 (Add vs. VPADDD): ianlancetaylor 认为,使用特定于架构的指令名或 C/C++ 内置函数名,对专家更友好,便于他们直接将在其他平台的经验移植过来。而 cherrymui则认为,描述性的通用名称(如 Add)对代码的读者更友好,因为大多数人不是 SIMD 专家,通用名称降低了理解门槛。最终提案倾向于后者,并通过注释标明具体指令来服务专家。
  • 处理立即数操作数: 对于需要编译时常量的指令(如 VPINSRD),提案建议开发者传入常量。如果传入变量,编译器可能会回退到效率较低的模拟实现或表驱动跳转。
  • 每架构一个包的呼声: 有一部分开发者强烈建议采用类似 syscall 分拆的模式,即每个架构一个独立的 simd 包。他们认为这能更清晰地界定可移植性边界,避免一个看似统一的 simd 包在不同平台下行为不一所带来的困惑。
  • 对非原生数据类型的支持: 提案确认了未来支持如 bfloat16、float16 等 Go 语言本身没有原生标量类型的计划,这些类型将仅以向量形式存在于 simd 包中。
  • 与现有工具链的整合: 讨论涉及了与 golang.org/x/sys/cpu 的集成、GOAMD64 等环境变量的影响、VZEROUPPER 指令的自动插入、以及编译器内联启发式算法的改进等深度技术问题。

小结

Go 官方的 #73787 SIMD 提案,标志着 Go 语言在拥抱底层硬件能力、提升高性能计算方面迈出了决定性的一步。其“两步走”战略清晰地规划了从架构特定的底层能力到高级可移植 API 的演进路径,既务实又富有远见。

对 Go 开发者而言,这意味着:

  • 性能优化的新途径: 未来,我们将能用纯 Go 代码(而非汇编)来编写利用 SIMD 的高性能计算密集型任务,如数据处理、加密、多媒体编解码、AI/ML 等。
  • 更低的入门门槛: 相比于手写汇编,基于 Go 方法和类型的 SIMD API 将极大地降低学习和使用门槛。
  • 持续关注实验性特性: 该功能将首先通过 GOEXPERIMENT=simd 标志发布,这为社区提供了宝贵的早期试用和反馈机会,共同塑造其最终形态。

虽然关于 API 的组织形式、命名约定等细节仍在积极讨论中,但提案所确立的大方向——通过编译器内置函数提供底层支持,并在此基础上构建高级抽象——已经非常明确。这不仅将直接惠及需要极致性能的 Go 应用,也将为 Go 语言的整体生态(例如标准库的内部优化)注入新的活力。

从提案目前的状态来看,最早也要等到Go 1.26版本落地了。


微专栏推荐:征服 Go 并发测试

想彻底告别并发测试的“噩梦”吗?我的全新微专栏 《征服 Go 并发测试》(共三篇)现已上线!

本系列深入剖析并发测试痛点、testing/synctest 的设计原理与 API,并提供丰富的实战案例。助你轻松驾驭并发测试,写出更稳健的 Go 应用!

扫码订阅,即刻解锁并发测试新境界!

更多微专栏,敬请期待! 对后续选题(如 Go 性能优化、AI 与 Go 结合等)有何期待或建议?欢迎在留言区畅所欲言,一起打造更精彩的内容!


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats