标签 设计模式 下的文章

聊聊Go与依赖注入

本文永久链接 – https://tonybai.com/2023/09/28/dependency-injection-with-go

如果你读过Robert C. Martin《敏捷软件开发:原则、模式与实践》(书的封皮见下图),那么你一定知道经典的SOLID设计原则中的“D”:依赖倒置原则(Dependency Inversion Principle, DIP)。

依赖倒置原则是面向对象设计中的基本原则之一,它阐述了高层模块和低层模块的依赖关系应该倒置(如下图),也就是:

  • 高层模块不应该依赖低层模块,二者都应该依赖其抽象
  • 抽象不应该依赖细节,细节应该依赖抽象

依赖倒置原则实际上就是对控制反转(Inversion of Control,IoC)这一概念的阐述,而依赖注入(Dependency Injection)是实现控制反转的一种机制。所以可以说,依赖倒置原则是设计级的指导思想,它提出了正确的依赖关系;而依赖注入是实现级的具体设计模式,它将组件的依赖关系控制权移到了外部,实现了组件之间的解耦,是对依赖倒置原则的一种实现手段。

依赖注入可以帮助你开发出松耦合的代码,松耦合使代码更易于维护

《Go语言包设计指南》一文中,我们提到过:在Go中,耦合发生在包这一层次。而在Go代码层面最低的耦合是接口耦合。在Go中,接口的实现是隐式的,即a包实现b包中定义的接口时是不需要显式导入b包的,我们可以在c包中完成对a包与b包的组装,这样c包依赖a包和b包,但a包与b包之间没有任何耦合。那么负责组装a包与b包的c包能否在代码层面消除掉对a和b的依赖呢?这个就很难了。不过我们可以使用依赖注入技术来消除在代码层面手动基于依赖进行初始化或创建时的复杂性,在中大型的程序中,依赖注入的优点更能得到体现。

在这篇文章中,我们就来聊聊Go中依赖注入可以解决的问题,并初步认识一下两个在Go社区认可度较高的Go依赖注入框架。

1. 手动注入

我们先建立一个符合DIP原则的例子,其依赖关系如下图:

这里有三个“模块”,从高到低分别为Service、BussinessLogic和DatabaseAccess。Service是一个接口,其实现ServiceImpl依赖BussinessLogic接口。Business是BussinessLogic的实现,它还依赖DatabaseAccess接口。Database则是DatabaseAccess接口的实现。

围绕这一示例,我们分别用手动组装和依赖注入框架演示一下如何实现注入,先来看一下手动组装与注入。

下面是示例的项目结构布局:

./manual
└── demo/
    ├── Makefile
    ├── business/
    │   └── business.go
    ├── database/
    │   └── database.go
    ├── go.mod
    ├── main.go
    └── service/
        └── service.go

manual/demo目录下的service、business和database包下面包含了导出的接口与其具体实现的定义。这里将这些包的代码列出来,这些代码在后续应用依赖注入工具的示例中也是保持不变的:

// dependency-injection-examples/manual/demo/service/service.go

package service

import "demo/business"

// Service interface
type Service interface {
    HandleRequest() string
}

// ServiceImpl struct
type ServiceImpl struct {
    logic business.BusinessLogic
}

// Constructor
func NewService(logic business.BusinessLogic) *ServiceImpl {
    return &ServiceImpl{logic: logic}
}

// Implement HandleRequest()
func (s ServiceImpl) HandleRequest() string {
    return "Handled request: " + s.logic.ProcessData()
}

// dependency-injection-examples/manual/demo/business/business.go

package business

import (
    "demo/database"
)

// BusinessLogic interface
type BusinessLogic interface {
    ProcessData() string
}

// Business struct
type Business struct {
    db database.DatabaseAccess
}

// Constructor
func NewBusiness(db database.DatabaseAccess) *Business {
    return &Business{db: db}
}

// Implement ProcessData()
func (b Business) ProcessData() string {
    return "Business logic processed " + b.db.GetData()
}

// dependency-injection-examples/manual/demo/database/database.go

package database

// DatabaseAccess interface
type DatabaseAccess interface {
    GetData() string
}

// Database struct
type Database struct{}

func NewDatabase() *Database {
    return &Database{}
}

// Implement GetData()
func (db Database) GetData() string {
    return "Data from database"
}

service.Service是直面client的接口。于是在main函数中,我们实例化一个Service的实现并传给Client,后者调用Service的HandleRequest方法触发全流程。service.NewService的调用依赖一个实现了business.BusinessLogic接口的实例,我们在调用NewService之前还需要调用business.NewBusiness创建一个实现了business.BusinessLogic接口的实例;business.NewBusiness的调用依赖一个实现了database.DatabaseAccess接口的实例,我们在调用NewBusiness之前需要调用database.NewDatabase创建一个实现了database.DatabaseAccess接口的实例。

这就是手工组装的现实:我们要记住“模块”间的依赖关系,并手动创建对应实例以满足这种依赖。下面是main函数的代码:

// dependency-injection-examples/manual/demo/main.go

package main

import (
    "demo/business"
    "demo/database"
    "demo/service"
    "fmt"
)

// Client struct
type Client struct {
    service service.Service
}

// Constructor
func NewClient(service service.Service) *Client {
    return &Client{service: service}
}

// Call service
func (c Client) MakeRequest() string {
    return "Client request: " + c.service.HandleRequest()
}

func main() {
    // make dependency injection manually
    db := database.NewDatabase()
    busi := business.NewBusiness(db)
    svc := service.NewService(busi)
    client := NewClient(svc)

    fmt.Println(client.MakeRequest())
}

编译运行上述示例的结果如下:

$cd dependency-injection-examples/manual/demo
$make
$./demo
Client request: Handled request: Business logic processed Data from database

这种为了满足依赖而进行的手工实例创建的行为,在一些小型或演示型程序中还可以自诩为straightforward,但在拥有上百个包的大型程序中,这种为了组装而进行的创建行为就会因多点发生、依赖众多而显现出“复杂性”和难于维护。为了保持代码的松耦合还要降低组装创建行为的复杂度,依赖注入工具被引入,并且往往代码库越庞大,引入DI的好处就越发明显。松耦合带来的好处并不总是立竿见影,但随着时间的推移,随着代码库复杂性的增加,这些好处就会变得显而易见。

注:大家不要进入这样的误区:“采用依赖注入工具的代码就一定是符合DIP原则的松耦合的代码”。至少在Go中,不符合DIP原则的代码(比如没有建立接口抽象)也可以使用依赖注入工具来进行依赖的创建和模块间的组装。

Go社区(尤其是一些大厂)提供了一些Go依赖注入工具,比如:Google wireuber Fxfacebook inject等。这些工具大致可分为两类,一类是利用代码生成技术的编译期依赖注入,另一类则是利用反射技术的运行时依赖注入

下面我们分别以编译器依赖注入的Google wire和运行时依赖注入的uber fx为例来看看如何通过依赖注入工具来完成依赖模块的组装(assembly)。

注:facebook的inject已经public archived;google wire目前的开发也不是很active,wire团队给出的理由是要保持wire足够简单并认为从v0.3.0开始,wire已经是功能特性完备的了,目前不接受新feature,仅接受bug报告和修复的补丁pr。只有uber的fx还处于非常积极的开发状态,uber宣称fx是经过uber生产验证的:uber几乎所有的Go服务都是建立在Fx基础之上的。

2. google/wire:编译期的依赖注入

wire是由Google Go Cloud开发包团队于2018年下旬开源的Go编译期依赖注入工具,与uber fx、facebook的inject等使用反射在运行时注入不同的是,wire灵感来自Java的Dagger 2,使用的是代码生成技术,而不是反射或服务定位器(service locator)技术。

相较于运行时依赖注入,编译期间注入的最大好处就是生成的依赖注入和组装的代码是对你可见的,没有任何背后的“魔法”。这便于在编译期捕捉到注入过程的错误,也便于代码的调试。

此外,wire团队认为编译期注入可以避免依赖膨胀。Wire生成的代码只会导入所需的依赖项,因此,你的二进制文件不会有未使用的导入。运行时依赖项注入在运行时之前无法识别未使用的依赖项。

下面我们就用wire注入来改造一下上面的示例。

注:安装wire命令为go install github.com/google/wire/cmd/wire@latest 。

相对于manual那个示例,我们在main包下面增加一个新文件wire.go:

// dependency-injection-examples/wire/demo/wire.go

//go:build wireinject
// +build wireinject

package main

// wire.go

import (
    "demo/business"
    "demo/database"
    "demo/service"

    "github.com/google/wire"
)

func InitializeService() service.Service {
    wire.Build(service.NewService,
        wire.Bind(new(service.Service), new(*service.ServiceImpl)),
        business.NewBusiness,
        wire.Bind(new(business.BusinessLogic), new(*business.Business)),
        database.NewDatabase,
        wire.Bind(new(database.DatabaseAccess), new(*database.Database)),
    )
    return nil
}

我们看到wire.go中提供了一个InitializeService函数,用于为main函数中的Client实例提供一个service.Service接口的具体实现。但是在这个函数中我们并没有像manual中那样手工调用NewService等来创建实例,我们仅仅是将各个“模块”Service、BussinessLogic以及DatabaseAccess的实例的创建函数传给了wire.Build函数。另外我们看到wire.go这个源文件使用了build tag,这个文件仅仅是用于代码生成,并不会参与到最终的代码编译过程中,这也是InitializeService函数的返回值随意设置为nil的原因,这个nil在代码生成过程中会被忽略并替换掉。

注:为什么要使用wire.Bind?我们示例中的各个模块的NewXXX函数接受的参数都为接口类型,返回的都是具体的类型实例,这符合Go的惯例。但如果不使用wire.Bind,wire将无法知道NewXXX依赖的接口类型参数该如何创建!通过wire.Bind告诉wire某个接口类型参数,比如service.Service,可由创建如*service.ServiceImpl的类型替代。关于Binding Interfaces的具体介绍,可以参考wire官方文档。

接下来,我们就可以通过wire命令生成代码,完成注入过程:

$cd dependency-injection-examples/wire/demo
$wire
wire: demo: wrote /Users/tonybai/Go/src/github.com/bigwhite/experiments/dependency-injection-examples/wire/demo/wire_gen.go

wire工具基于wire.go生成了wire_gen.go文件,在该示例中,wire_gen.go的内容如下:

// Code generated by Wire. DO NOT EDIT.

//go:generate go run github.com/google/wire/cmd/wire
//go:build !wireinject
// +build !wireinject

package main

import (
    "demo/business"
    "demo/database"
    "demo/service"
)

// Injectors from wire.go:

func InitializeService() service.Service {
    databaseDatabase := database.NewDatabase()
    businessBusiness := business.NewBusiness(databaseDatabase)
    serviceImpl := service.NewService(businessBusiness)
    return serviceImpl
}

看一下wire生成的代码,和我们在manual中手动组装的代码基本是一样的。基于这份代码,我们调整一下main函数,主要是去掉手动组装的过程,改为直接调用InitializeService:

// dependency-injection-examples/wire/demo/main.go

func main() {
    // make dependency injection by code generated by wire
    svc := InitializeService()
    client := NewClient(svc)
    fmt.Println(client.MakeRequest())
}

运行一下wire注入这个demo,其结果与manual demo是一致的:

$cd dependency-injection-examples/wire/demo
$make
$./demo
Client request: Handled request: Business logic processed Data from database

关于wire,这里仅是作了“浅尝辄止”的介绍。要想深入了解wire的功能特性,可以阅读Wire tutorialWire User Guide

接下来,我们再来看看如何使用uber/fx来实现依赖注入。

3. uber/fx:运行时的依赖注入

如果我没记错的话,uber应该是先开源的dig,再有的fx。dig是基于反射的依赖注入工具包,而fx则是由dig支撑的依赖注入框架。对应普通Go开发者而言,直接使用fx就对了。

下面是使用fx实现上面示例依赖注入的代码,我们只需要改造一下main.go:

// dependency-injection-examples/fx/demo/main.go

func main() {
    app := fx.New(
        fx.Provide(
            fx.Annotate(
                service.NewService,
                fx.As(new(service.Service)),
            ),
        ),
        fx.Provide(
            fx.Annotate(
                business.NewBusiness,
                fx.As(new(business.BusinessLogic)),
            ),
        ),
        fx.Provide(
            fx.Annotate(
                database.NewDatabase,
                fx.As(new(database.DatabaseAccess)),
            ),
        ),

        fx.Invoke(func(svc service.Service) {
            client := NewClient(svc)
            fmt.Println(client.MakeRequest())
        }),
        fx.NopLogger, // no fx log output
    )

    app.Run()
}

我们在main函数中,使用fx.Provide注册了所有依赖类型的实例的构造方法(NewXXX),然后将我们要执行的代码放入一个匿名函数,并传给fx.Invoke。当我们运行程序时,fx会在内存中构建对象调用依赖图,并使用Provide中注册的类型实例的构造方法构造实例,完成依赖注入和代码组装,然后运行传给Invoke的函数。

在向fx.Provide传递NewXXX时,我们使用了fx.Annotate,其目的与在wire示例中使用wire.Bind一样,即将一个类型实例转换为接口类型,以满足参数为接口类型的NewXXX的依赖所需。关于fx.Annotate的详细说明,可参考fx的官方文档。

上述使用fx示例还有两处要提及一下,一个是使用fx.NopLogger关闭fx框架自身的日志输出;另外一个则是上述示例run起来后并不会自动退出,只有当按下ctrl+c后,程序才会因收到系统退出信号而退出!

对比fx和wire,你可能也发现了这样一点:fx将很多工作放到了“背后隐蔽处”,如果你不了解fx框架的运行机理,你很难使用好fx框架;而wire生成的代码就是编译到程序中的代码,没有额外的“魔法”。

当然fx不仅提供了Provide、Annotate、Invoke,其他一些功能特性大家可以自行到官方文档阅读并理解使用。

4. 小结

依赖注入常用来解决软件模块之间高度耦合的问题。传统的程序设计中,一个模块直接new或者静态调用另一个模块,这使得模块之间产生了强耦合。依赖注入将模块创建和注入的控制权移交给外部,由外部动态地将某个实现类实例注入到需要它的模块中。这样实现了模块之间的松耦合。

如果你来自Java等面向对象编程语言的群体,你对依赖注入肯定不陌生。

但是在Go社区,我觉得依赖注入并非惯用法。Go社区很多人崇尚“You often don’t need frameworks in Go”这样的信条。但凡引入一个框架,都会带来学习和理解上的额外负担,Go依赖注入框架亦是如此。

究竟是否使用依赖注入,完全取决于你在开发过程中的权衡和取舍。

如果你决定使用依赖注入,wire和fx都是你可选择的框架。就目前情况来看,fx是目前开发最active、历经生产考验最多的Go依赖注入框架,不过要想用好fx,必须深入理解fx的运行机制和底层原理,这又会带来一定的学习负担。

本文涉及的Go源码,可以在这里下载。

5. 参考资料


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

gRPC客户端的那些事儿

本文永久链接 – https://tonybai.com/2021/09/17/those-things-about-grpc-client

在云原生与微服务主导架构模式的时代,内部服务间交互所采用的通信协议选型无非就是两类:HTTP API(RESTful API)和RPC。在如今的硬件配置与网络条件下,现代RPC实现的性能一般都是好于HTTP API的。我们以json over http与gRPC(insecure)作比较,分别使用ghzhey压测gRPC和json over http的实现,gRPC的性能(Requests/sec: 59924.34)要比http api性能(Requests/sec: 49969.9234)高出20%。实测gPRC使用的protobuf的编解码性能更是最快的json编解码的2-3倍,是Go标准库json包编解码性能的10倍以上(具体数据见本文附录)。

对于性能敏感并且内部通信协议较少变动的系统来说,内部服务使用RPC可能是多数人的选择。而gRPC虽然不是性能最好的RPC实现,但作为有谷歌大厂背书且是CNCF唯一的RPC项目,gRPC自然得到了开发人员最广泛的关注与使用。

本文也来说说gRPC,不过我们更多关注一下gRPC的客户端,我们来看看使用gRPC客户端时都会考虑的那些事情(本文所有代码基于gRPC v1.40.0版本,Go 1.17版本)。

1. 默认的gRPC的客户端

gRPC支持四种通信模式,它们是(以下四张图截自《gRPC: Up and Running》一书):

  • 简单RPC(Simple RPC):最简单的,也是最常用的gRPC通信模式,简单来说就是一请求一应答

  • 服务端流RPC(Server-streaming RPC):一请求,多应答

  • 客户端流RPC(Client-streaming RPC):多请求,一应答

  • 双向流RPC(Bidirectional-Streaming RPC):多请求,多应答

我们以最常用的Simple RPC(也称Unary RPC)为例来看一下如何实现一个gRPC版的helloworld。

我们无需自己从头来编写helloworld.proto并生成相应的gRPC代码,gRPC官方提供了一个helloworld的例子,我们仅需对其略微改造一下即可。

helloworld例子的IDL文件helloworld.proto如下:

// https://github.com/grpc/grpc-go/tree/master/examples/helloworld/helloworld/helloworld.proto

syntax = "proto3";

option go_package = "google.golang.org/grpc/examples/helloworld/helloworld";
option java_multiple_files = true;
option java_package = "io.grpc.examples.helloworld";
option java_outer_classname = "HelloWorldProto";

package helloworld;

// The greeting service definition.
service Greeter {
  // Sends a greeting
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

// The request message containing the user's name.
message HelloRequest {
  string name = 1;
}

// The response message containing the greetings
message HelloReply {
  string message = 1;
}

对.proto文件的规范讲解大家可以参考grpc官方文档,这里不赘述。显然上面这个IDL是极致简单的。这里定义了一个service:Greeter,它仅包含一个方法SayHello,并且这个方法的参数与返回值都是一个仅包含一个string字段的结构体。

我们无需手工执行protoc命令来基于该.proto文件生成对应的Greeter service的实现以及HelloRequest、HelloReply的protobuf编解码实现,因为gRPC在example下已经放置了生成后的Go源文件,我们直接引用即可。这里要注意,最新的grpc-go项目仓库采用了多module的管理模式,examples作为一个独立的go module而存在,因此我们需要将其单独作为一个module导入到其使用者的项目中。以gRPC客户端greeter_client为例,它的go.mod要这样来写:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo1/greeter_client/go.mod
module github.com/bigwhite/grpc-client/demo1

go 1.17

require (
    google.golang.org/grpc v1.40.0
    google.golang.org/grpc/examples v1.40.0
)

require (
    github.com/golang/protobuf v1.4.3 // indirect
    golang.org/x/net v0.0.0-20201021035429-f5854403a974 // indirect
    golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f // indirect
    golang.org/x/text v0.3.3 // indirect
    google.golang.org/genproto v0.0.0-20200806141610-86f49bd18e98 // indirect
    google.golang.org/protobuf v1.25.0 // indirect
)

replace google.golang.org/grpc v1.40.0 => /Users/tonybai/Go/src/github.com/grpc/grpc-go

replace google.golang.org/grpc/examples v1.40.0 => /Users/tonybai/Go/src/github.com/grpc/grpc-go/examples

注:grpc-go项目的标签(tag)似乎打的有问题,由于没有打grpc/examples/v1.40.0标签,go命令在grpc-go的v1.40.0标签中找不到examples,因此上面的go.mod中使用了一个replace trick(example module的v1.40.0版本是假的哦),将examples module指向本地的代码。

gRPC通信的两端我们也稍作改造。原greeter_client仅发送一个请求便退出,这里我们将其改为每隔2s发送请求(便于后续观察),如下面代码所示:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo1/greeter_client/main.go
... ...
func main() {
    // Set up a connection to the server.
    ctx, cf1 := context.WithTimeout(context.Background(), time.Second*3)
    defer cf1()
    conn, err := grpc.DialContext(ctx, address, grpc.WithInsecure(), grpc.WithBlock())
    if err != nil {
        log.Fatalf("did not connect: %v", err)
    }
    defer conn.Close()
    c := pb.NewGreeterClient(conn)

    // Contact the server and print out its response.
    name := defaultName
    if len(os.Args) > 1 {
        name = os.Args[1]
    }

    for i := 0; ; i++ {
        ctx, _ := context.WithTimeout(context.Background(), time.Second)
        r, err := c.SayHello(ctx, &pb.HelloRequest{Name: fmt.Sprintf("%s-%d", name, i+1)})
        if err != nil {
            log.Fatalf("could not greet: %v", err)
        }
        log.Printf("Greeting: %s", r.GetMessage())
        time.Sleep(2 * time.Second)
    }
}

greeter_server加了一个命令行选项-port并支持gRPC server的优雅退出

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo1/greeter_server/main.go
... ...

var port int

func init() {
    flag.IntVar(&port, "port", 50051, "listen port")
}

func main() {
    flag.Parse()
    lis, err := net.Listen("tcp", fmt.Sprintf("localhost:%d", port))
    if err != nil {
        log.Fatalf("failed to listen: %v", err)
    }
    s := grpc.NewServer()
    pb.RegisterGreeterServer(s, &server{})

    go func() {
        if err := s.Serve(lis); err != nil {
            log.Fatalf("failed to serve: %v", err)
        }
    }()

    var c = make(chan os.Signal)
    signal.Notify(c, os.Interrupt, os.Kill)
    <-c
    s.Stop()
    fmt.Println("exit")
}

搞定go.mod以及对client和server进行改造ok后,我们就可以来构建和运行greeter_client和greeter_server了:

编译和启动server:

$cd grpc-client/demo1/greeter_server
$make
$./demo1-server -port 50051
2021/09/11 12:10:33 Received: world-1
2021/09/11 12:10:35 Received: world-2
2021/09/11 12:10:37 Received: world-3
... ...

编译和启动client:
$cd grpc-client/demo1/greeter_client
$make
$./demo1-client
2021/09/11 12:10:33 Greeting: Hello world-1
2021/09/11 12:10:35 Greeting: Hello world-2
2021/09/11 12:10:37 Greeting: Hello world-3
... ...

我们看到:greeter_client和greeter_server启动后可以正常的通信!我们重点看一下greeter_client。

greeter_client在Dial服务端时传给DialContext的target参数是一个静态的服务地址:

const (
      address     = "localhost:50051"
)

这个形式的target经过google.golang.org/grpc/internal/grpcutil.ParseTarget的解析后返回一个值为nil的resolver.Target。于是gRPC采用默认的scheme:”passthrough”(github.com/grpc/grpc-go/resolver/resolver.go),默认的”passthrough” scheme下,gRPC将使用内置的passthrough resolver(google.golang.org/grpc/internal/resolver/passthrough)。默认的这个passthrough resolver是如何设置要连接的service地址的呢?下面是passthrough resolver的代码摘录:

// github.com/grpc/grpc-go/internal/resolver/passthrough/passthrough.go

func (r *passthroughResolver) start() {
    r.cc.UpdateState(resolver.State{Addresses: []resolver.Address{{Addr: r.target.Endpoint}}})
}

我们看到它将target.Endpoint,即localhost:50051直接传给了ClientConnection(上面代码的r.cc),后者将向这个地址建立tcp连接。这正应了该resolver的名字:passthrough

上面greeter_client连接的仅仅是service的一个实例(instance),如果我们同时启动了该service的三个实例,比如使用goreman通过加载脚本文件来启动多个service实例:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo1/greeter_server/Procfile

# Use goreman to run `go get github.com/mattn/goreman`
demo1-server1: ./demo1-server -port 50051
demo1-server2: ./demo1-server -port 50052
demo1-server3: ./demo1-server -port 50053

同时启动多实例:

$goreman start
15:22:12 demo1-server3 | Starting demo1-server3 on port 5200
15:22:12 demo1-server2 | Starting demo1-server2 on port 5100
15:22:12 demo1-server1 | Starting demo1-server1 on port 5000

那么我们应该如何告诉greeter_client去连接这三个实例呢?是否可以将address改为下面这样就可以了呢:

const (
    address     = "localhost:50051,localhost:50052,localhost:50053"
    defaultName = "world"
)

我们来改改试试,修改后重新编译greeter_client,启动greeter_client,我们看到下面结果:

$./demo1-client
2021/09/11 15:26:32 did not connect: context deadline exceeded

greeter_client连接server超时!也就是说像上面这样简单的传入多个实例的地址是不行的!那问题来了!我们该怎么让greeter_client去连接一个service的多个实例呢?我们继续向下看。

2. 连接一个Service的多个实例(instance)

grpc.Dial/grpc.DialContext的参数target可不仅仅是service实例的服务地址这么简单,它的实参(argument)形式决定了gRPC client将采用哪一个resolver来确定service实例的地址集合

下面我们以一个返回service实例地址静态集合(即service的实例数量固定且服务地址固定)的StaticResolver为例,来看如何让gRPC client连接一个Service的多个实例。

1) StaticResolver

我们首先来设计一下传给grpc.DialContext的target形式。关于gRPC naming resolution,gRPC有专门文档说明。在这里,我们也创建一个新的scheme:static,多个service instance的服务地址通过逗号分隔的字符串传入,如下面代码:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo2/greeter_client/main.go

const (
      address = "static:///localhost:50051,localhost:50052,localhost:50053"
)

当address被作为target的实参传入grpc.DialContext后,它会被grpcutil.ParseTarget解析为一个resolver.Target结构体,该结构体包含三个字段:

// github.com/grpc/grpc-go/resolver/resolver.go
type Target struct {
    Scheme    string
    Authority string
    Endpoint  string
}

其中Scheme为”static”,Authority为空,Endpoint为”localhost:50051,localhost:50052,localhost:50053″。

接下来,gRPC会根据Target.Scheme的值到resolver包中的builder map中查找是否有对应的Resolver Builder实例。到目前为止gRPC内置的的resolver Builder都无法匹配该Scheme值。是时候自定义一个StaticResolver的Builder了!

grpc的resolve包定义了一个Builder实例需要实现的接口:

// github.com/grpc/grpc-go/resolver/resolver.go 

// Builder creates a resolver that will be used to watch name resolution updates.
type Builder interface {
    // Build creates a new resolver for the given target.
    //
    // gRPC dial calls Build synchronously, and fails if the returned error is
    // not nil.
    Build(target Target, cc ClientConn, opts BuildOptions) (Resolver, error)
    // Scheme returns the scheme supported by this resolver.
    // Scheme is defined at https://github.com/grpc/grpc/blob/master/doc/naming.md.
    Scheme() string
}

Scheme方法返回这个Builder对应的scheme,而Build方法则是真正用于构建Resolver实例的方法,我们来看一下StaticBuilder的实现:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo2/greeter_client/builder.go

func init() {
    resolver.Register(&StaticBuilder{}) //在init函数中将StaticBuilder实例注册到resolver包的Resolver map中
}

type StaticBuilder struct{}

func (sb *StaticBuilder) Build(target resolver.Target, cc resolver.ClientConn,
    opts resolver.BuildOptions) (resolver.Resolver, error) {

    // 解析target.Endpoint (例如:localhost:50051,localhost:50052,localhost:50053)
    endpoints := strings.Split(target.Endpoint, ",")

    r := &StaticResolver{
        endpoints: endpoints,
        cc:        cc,
    }
    r.ResolveNow(resolver.ResolveNowOptions{})
    return r, nil
}

func (sb *StaticBuilder) Scheme() string {
    return "static" // 返回StaticBuilder对应的scheme字符串
}

在这个StaticBuilder实现中,init函数在包初始化是就将一个StaticBuilder实例注册到resolver包的Resolver map中。这样gRPC在Dial时就能通过target中的scheme找到该builder。Build方法是StaticBuilder的关键,在这个方法中,它首先解析传入的target.Endpoint,得到三个service instance的服务地址并存到新创建的StaticResolver实例中,并调用StaticResolver实例的ResolveNow方法确定即将连接的service instance集合。

和Builder一样,grpc的resolver包也定义了每个resolver需要实现的Resolver接口:

// github.com/grpc/grpc-go/resolver/resolver.go 

// Resolver watches for the updates on the specified target.
// Updates include address updates and service config updates.
type Resolver interface {
    // ResolveNow will be called by gRPC to try to resolve the target name
    // again. It's just a hint, resolver can ignore this if it's not necessary.
    //
    // It could be called multiple times concurrently.
    ResolveNow(ResolveNowOptions)
    // Close closes the resolver.
    Close()
}

从这个接口注释我们也能看出,Resolver的实现负责监视(watch)服务测的地址与配置变化,并将变化更新给grpc的ClientConn。我们来看看我们的StaticResolver的实现:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo2/greeter_client/resolver.go

type StaticResolver struct {
    endpoints []string
    cc        resolver.ClientConn
    sync.Mutex
}

func (r *StaticResolver) ResolveNow(opts resolver.ResolveNowOptions) {
    r.Lock()
    r.doResolve()
    r.Unlock()
}

func (r *StaticResolver) Close() {
}

func (r *StaticResolver) doResolve() {
    var addrs []resolver.Address
    for i, addr := range r.endpoints {
        addrs = append(addrs, resolver.Address{
            Addr:       addr,
            ServerName: fmt.Sprintf("instance-%d", i+1),
        })
    }

    newState := resolver.State{
        Addresses: addrs,
    }

    r.cc.UpdateState(newState)
}

注:resolver.Resolver接口的注释要求ResolveNow方法是要支持并发安全的,所以这里我们通过sync.Mutex来实现同步。

由于服务侧的服务地址数量与信息都是不变的,因此这里并没有watch和update的过程,而只是在实现了ResolveNow(并在Builder中的Build方法中调用),在ResolveNow中将service instance的地址集合更新给ClientConnection(r.cc)。

接下来我们来编译与运行一下demo2的client与server:

$cd grpc-client/demo2/greeter_server
$make
$goreman start
22:58:21 demo2-server1 | Starting demo2-server1 on port 5000
22:58:21 demo2-server2 | Starting demo2-server2 on port 5100
22:58:21 demo2-server3 | Starting demo2-server3 on port 5200

$cd grpc-client/demo2/greeter_client
$make
$./demo2-client

执行一段时间后,你会在server端的日志中发现一个问题,如下日志所示:

22:57:16 demo2-server1 | 2021/09/11 22:57:16 Received: world-1
22:57:18 demo2-server1 | 2021/09/11 22:57:18 Received: world-2
22:57:20 demo2-server1 | 2021/09/11 22:57:20 Received: world-3
22:57:22 demo2-server1 | 2021/09/11 22:57:22 Received: world-4
22:57:24 demo2-server1 | 2021/09/11 22:57:24 Received: world-5
22:57:26 demo2-server1 | 2021/09/11 22:57:26 Received: world-6
22:57:28 demo2-server1 | 2021/09/11 22:57:28 Received: world-7
22:57:30 demo2-server1 | 2021/09/11 22:57:30 Received: world-8
22:57:32 demo2-server1 | 2021/09/11 22:57:32 Received: world-9

我们的Service instance集合中明明有三个地址,为何只有server1收到了rpc请求,其他两个server都处于空闲状态呢?这是客户端的负载均衡策略在作祟!默认情况下,grpc会为客户端选择内置的“pick_first”负载均衡策略,即在service instance集合中选择第一个intance进行请求。在这个例子中,在pick_first策略的作用下,grpc总是会选择demo2-server1发起rpc请求。

如果要将请求发到各个server上,我们可以将负载均衡策略改为另外一个内置的策略:round_robin,就像下面代码这样:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo2/greeter_client/main.go

conn, err := grpc.DialContext(ctx, address, grpc.WithInsecure(), grpc.WithBlock(), grpc.WithBalancerName("round_robin"))

重新编译运行greeter_client后,在server测我们就可以看到rpc请求被轮询地发到了每个server instance上了。

2) Resolver原理

我们再来用一幅图来梳理一下Builder以及Resolver的工作原理:

图中的SchemeResolver泛指实现了某一特定scheme的resolver。如图所示,service instance集合resolve过程的步骤大致如下:

    1. SchemeBuilder将自身实例注册到resolver包的map中;
    1. grpc.Dial/DialContext时使用特定形式的target参数
    1. 对target解析后,根据target.Scheme到resolver包的map中查找Scheme对应的Buider;
    1. 调用Buider的Build方法
    1. Build方法构建出SchemeResolver实例;
    1. 后续由SchemeResolver实例监视service instance变更状态并在有变更的时候更新ClientConnection。

3) NacosResolver

在生产环境中,考虑到服务的高可用、可伸缩等,我们很少使用固定地址、固定数量的服务实例集合,更多是通过服务注册和发现机制自动实现服务实例集合的更新。这里我们再来实现一个基于nacos的NacosResolver,实现服务实例变更时grpc Client的自动调整(注:nacos的本地单节点安装方案见文本附录),让示例具实战意义^_^。

由于有了上面关于Resolver原理的描述,这里简化了一些描述。

首先和StaticResolver一样,我们也来设计一下target的形式。nacos有namespace, group的概念,因此我们将target设计为如下形式:

nacos://[authority]/host:port/namespace/group/serviceName

具体到我们的greeter_client中,其address为:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo3/greeter_client/main.go

const (
      address = "nacos:///localhost:8848/public/group-a/demo3-service" //no authority
)

接下来我们来看NacosBuilder:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo3/greeter_client/builder.go

func (nb *NacosBuilder) Build(target resolver.Target,
    cc resolver.ClientConn,
    opts resolver.BuildOptions) (resolver.Resolver, error) {

    // use info in target to access naming service
    // parse the target.endpoint
    // target.Endpoint - localhost:8848/public/DEFAULT_GROUP/serviceName, the addr of naming service :nacos endpoint
    sl := strings.Split(target.Endpoint, "/")
    nacosAddr := sl[0]
    namespace := sl[1]
    group := sl[2]
    serviceName := sl[3]
    sl1 := strings.Split(nacosAddr, ":")
    host := sl1[0]
    port := sl1[1]
    namingClient, err := initNamingClient(host, port, namespace, group)
    if err != nil {
        return nil, err
    }

    r := &NacosResolver{
        namingClient: namingClient,
        cc:           cc,
        namespace:    namespace,
        group:        group,
        serviceName:  serviceName,
    }

    // initialize the cc's states
    r.ResolveNow(resolver.ResolveNowOptions{})

    // subscribe and watch
    r.watch()
    return r, nil
}

func (nb *NacosBuilder) Scheme() string {
    return "nacos"
}

NacosBuilder的Build方法流程也StaticBuilder并无二致,首先我们也是解析传入的target的Endpoint,即”localhost:8848/public/group-a/demo3-service”,并将解析后的各段信息存入新创建的NacosResolver实例中备用。NacosResolver还需要一个信息,那就是与nacos的连接,这里用initNamingClient创建一个nacos client端实例(调用nacos提供的go sdk)。

接下来我们调用NacosResolver的ResolveNow获取一次nacos上demo3-service的服务实例列表并初始化ClientConn,最后我们调用NacosResolver的watch方法来订阅并监视demo3-service的实例变化。下面是NacosResolver的部分实现:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo3/greeter_client/resolver.go

func (r *NacosResolver) doResolve(opts resolver.ResolveNowOptions) {
    instances, err := r.namingClient.SelectAllInstances(vo.SelectAllInstancesParam{
        ServiceName: r.serviceName,
        GroupName:   r.group,
    })
    if err != nil {
        fmt.Println(err)
        return
    }

    if len(instances) == 0 {
        fmt.Printf("service %s has zero instance\n", r.serviceName)
        return
    }

    // update cc.States
    var addrs []resolver.Address
    for i, inst := range instances {
        if (!inst.Enable) || (inst.Weight == 0) {
            continue
        }

        addrs = append(addrs, resolver.Address{
            Addr:       fmt.Sprintf("%s:%d", inst.Ip, inst.Port),
            ServerName: fmt.Sprintf("instance-%d", i+1),
        })
    }

    if len(addrs) == 0 {
        fmt.Printf("service %s has zero valid instance\n", r.serviceName)
    }

    newState := resolver.State{
        Addresses: addrs,
    }

    r.Lock()
    r.cc.UpdateState(newState)
    r.Unlock()
}

func (r *NacosResolver) ResolveNow(opts resolver.ResolveNowOptions) {
    r.doResolve(opts)
}

func (r *NacosResolver) Close() {
    r.namingClient.Unsubscribe(&vo.SubscribeParam{
        ServiceName: r.serviceName,
        GroupName:   r.group,
    })
}

func (r *NacosResolver) watch() {
    r.namingClient.Subscribe(&vo.SubscribeParam{
        ServiceName: r.serviceName,
        GroupName:   r.group,
        SubscribeCallback: func(services []model.SubscribeService, err error) {
            fmt.Printf("subcallback: %#v\n", services)
            r.doResolve(resolver.ResolveNowOptions{})
        },
    })
}

这里的一个重要实现是ResolveNow和watch都调用的doResolve方法,该方法通过nacos-go sdk中的SelectAllInstances获取demo-service3的所有实例,并将得到的enabled(=true)和权重(weight)不为0的合法实例集合更新给ClientConn(r.cc.UpdateState)。

在NacosResolver的watch方法中,我们通过nacos-go sdk中的Subscribe方法订阅demo3-service并提供了一个回调函数。这样每当demo3-service的实例发生变化时,该回调会被调用。在该回调中我们可以基于传回的最新的service实例集合(services []model.SubscribeService)来更新ClientConn,但在这里我们复用了doResolve方法,即又去nacos获取一次demo-service3的实例。

编译运行demo3下greeter_server:

$cd grpc-client/demo3/greeter_server
$make
$goreman start
06:06:02 demo3-server3 | Starting demo3-server3 on port 5200
06:06:02 demo3-server1 | Starting demo3-server1 on port 5000
06:06:02 demo3-server2 | Starting demo3-server2 on port 5100
06:06:02 demo3-server3 | 2021-09-12T06:06:02.913+0800   INFO    nacos_client/nacos_client.go:87 logDir:</tmp/nacos/log/50053>   cacheDir:</tmp/nacos/cache/50053>
06:06:02 demo3-server2 | 2021-09-12T06:06:02.913+0800   INFO    nacos_client/nacos_client.go:87 logDir:</tmp/nacos/log/50052>   cacheDir:</tmp/nacos/cache/50052>
06:06:02 demo3-server1 | 2021-09-12T06:06:02.913+0800   INFO    nacos_client/nacos_client.go:87 logDir:</tmp/nacos/log/50051>   cacheDir:</tmp/nacos/cache/50051>

运行greeter_server后,我们在nacos dashboard上会看到demo-service3的所有实例信息:


编译运行demo3下greeter_client:

$cd grpc-client/demo3/greeter_client
$make
$./demo3-client
2021-09-12T06:08:25.551+0800    INFO    nacos_client/nacos_client.go:87 logDir:</Users/tonybai/go/src/github.com/bigwhite/experiments/grpc-client/demo3/greeter_client/log>   cacheDir:</Users/tonybai/go/src/github.com/bigwhite/experiments/grpc-client/demo3/greeter_client/cache>
2021/09/12 06:08:25 Greeting: Hello world-1
2021/09/12 06:08:27 Greeting: Hello world-2
2021/09/12 06:08:29 Greeting: Hello world-3
2021/09/12 06:08:31 Greeting: Hello world-4
2021/09/12 06:08:33 Greeting: Hello world-5
2021/09/12 06:08:35 Greeting: Hello world-6
... ...

由于采用了round robin负载策略,greeter_server侧每个server(权重都为1)都会平等的收到rpc请求:

06:06:36 demo3-server1 | 2021/09/12 06:06:36 Received: world-1
06:06:38 demo3-server3 | 2021/09/12 06:06:38 Received: world-2
06:06:40 demo3-server2 | 2021/09/12 06:06:40 Received: world-3
06:06:42 demo3-server1 | 2021/09/12 06:06:42 Received: world-4
06:06:44 demo3-server3 | 2021/09/12 06:06:44 Received: world-5
06:06:46 demo3-server2 | 2021/09/12 06:06:46 Received: world-6
... ...

这时我们可以通过nacos dashboard调整demo3-service的实例权重或下线某个实例,比如下线service instance-2(端口50052),之后我们会看到greeter_client回调函数执行,之后greeter_server侧将只有实例1和实例3收到rpc请求。重新上线service instance-2后,一切会恢复正常。

3. 自定义客户端balancer

现实中服务端的实例所部署的主机(虚拟机/容器)算力可能不同,如果所有实例都使用相同权重1,那么肯定是不科学且存在算力浪费。但grpc-go内置的balancer实现有限,不能满足我们需求,我们就需要自定义一个可以满足我们需求的balancer了。

这里我们以自定义一个Weighted Round Robin(wrr) Balancer为例,看看自定义balancer的步骤(我们参考grpc-go中内置round_robin的实现)。

和resolver包相似,balancer也是通过一个Builder(创建模式)来实例化的,并且balancer的Balancer接口与resolver.Balancer差不多:

// github.com/grpc/grpc-go/balancer/balancer.go 

// Builder creates a balancer.
type Builder interface {
    // Build creates a new balancer with the ClientConn.
    Build(cc ClientConn, opts BuildOptions) Balancer
    // Name returns the name of balancers built by this builder.
    // It will be used to pick balancers (for example in service config).
    Name() string
}

通过Builder.Build方法我们构建一个Balancer接口的实现,Balancer接口定义如下:

// github.com/grpc/grpc-go/balancer/balancer.go 

type Balancer interface {
    // UpdateClientConnState is called by gRPC when the state of the ClientConn
    // changes.  If the error returned is ErrBadResolverState, the ClientConn
    // will begin calling ResolveNow on the active name resolver with
    // exponential backoff until a subsequent call to UpdateClientConnState
    // returns a nil error.  Any other errors are currently ignored.
    UpdateClientConnState(ClientConnState) error
    // ResolverError is called by gRPC when the name resolver reports an error.
    ResolverError(error)
    // UpdateSubConnState is called by gRPC when the state of a SubConn
    // changes.
    UpdateSubConnState(SubConn, SubConnState)
    // Close closes the balancer. The balancer is not required to call
    // ClientConn.RemoveSubConn for its existing SubConns.
    Close()
}

可以看到,Balancer要比Resolver要复杂很多。gRPC的核心开发者们也看到了这一点,于是他们提供了一个可简化自定义Balancer创建的包:google.golang.org/grpc/balancer/base。gRPC内置的round_robin Balancer也是基于base包实现的。

base包提供了NewBalancerBuilder可以快速返回一个balancer.Builder的实现:

// github.com/grpc/grpc-go/balancer/base/base.go 

// NewBalancerBuilder returns a base balancer builder configured by the provided config.
func NewBalancerBuilder(name string, pb PickerBuilder, config Config) balancer.Builder {
    return &baseBuilder{
        name:          name,
        pickerBuilder: pb,
        config:        config,
    }
}

我们看到,这个函数接收一个参数:pb,它的类型是PikcerBuilder,这个接口类型则比较简单:

// github.com/grpc/grpc-go/balancer/base/base.go 

// PickerBuilder creates balancer.Picker.
type PickerBuilder interface {
    // Build returns a picker that will be used by gRPC to pick a SubConn.
    Build(info PickerBuildInfo) balancer.Picker
}

我们仅需要提供一个PickerBuilder的实现以及一个balancer.Picker的实现即可,而Picker则是仅有一个方法的接口类型:

// github.com/grpc/grpc-go/balancer/balancer.go 

type Picker interface {
    Pick(info PickInfo) (PickResult, error)
}

嵌套的有些多,我们用下面这幅图来直观看一下balancer的创建和使用流程:

再简述一下大致流程:

  • 首先要注册一个名为”my_weighted_round_robin”的balancer Builder:wrrBuilder,该Builder由base包的NewBalancerBuilder构建;
  • base包的NewBalancerBuilder函数需要传入一个PickerBuilder实现,于是我们需要自定义一个返回Picker接口实现的PickerBuilder。
  • grpc.Dial调用时传入一个WithBalancerName(“my_weighted_round_robin”),grpc通过balancer Name从已注册的balancer builder中选出我们实现的wrrBuilder,并调用wrrBuilder创建Picker:wrrPicker。
  • 在grpc实施rpc调用SayHello时,wrrPicker的Pick方法会被调用,选出一个Connection,并在该connection上发送rpc请求。

由于用到的权重值,我们的resolver实现需要做一些变动,主要是在doResolve方法时将service instance的权重(weight)通过Attribute设置到ClientConnection中:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo4/greeter_client/resolver.go

func (r *NacosResolver) doResolve(opts resolver.ResolveNowOptions) {
    instances, err := r.namingClient.SelectAllInstances(vo.SelectAllInstancesParam{
        ServiceName: r.serviceName,
        GroupName:   r.group,
    })
    if err != nil {
        fmt.Println(err)
        return
    }

    if len(instances) == 0 {
        fmt.Printf("service %s has zero instance\n", r.serviceName)
        return
    }

    // update cc.States
    var addrs []resolver.Address
    for i, inst := range instances {
        if (!inst.Enable) || (inst.Weight == 0) {
            continue
        }

        addr := resolver.Address{
            Addr:       fmt.Sprintf("%s:%d", inst.Ip, inst.Port),
            ServerName: fmt.Sprintf("instance-%d", i+1),
        }
        addr.Attributes = addr.Attributes.WithValues("weight", int(inst.Weight)) //考虑权重并纳入cc的状态中
        addrs = append(addrs, addr)
    }

    if len(addrs) == 0 {
        fmt.Printf("service %s has zero valid instance\n", r.serviceName)
    }

    newState := resolver.State{
        Addresses: addrs,
    }

    r.Lock()
    r.cc.UpdateState(newState)
    r.Unlock()
}

接下来我们重点看看greeter_client中wrrPickerBuilder与wrrPicker的实现:

// https://github.com/bigwhite/experiments/tree/master/grpc-client/demo4/greeter_client/balancer.go

type wrrPickerBuilder struct{}

func (*wrrPickerBuilder) Build(info base.PickerBuildInfo) balancer.Picker {
    if len(info.ReadySCs) == 0 {
        return base.NewErrPicker(balancer.ErrNoSubConnAvailable)
    }

    var scs []balancer.SubConn
    // 提取已经就绪的connection的权重信息,作为Picker实例的输入
    for subConn, addr := range info.ReadySCs {
        weight := addr.Address.Attributes.Value("weight").(int)
        if weight <= 0 {
            weight = 1
        }
        for i := 0; i < weight; i++ {
            scs = append(scs, subConn)
        }
    }

    return &wrrPicker{
        subConns: scs,
        // Start at a random index, as the same RR balancer rebuilds a new
        // picker when SubConn states change, and we don't want to apply excess
        // load to the first server in the list.
        next: rand.Intn(len(scs)),
    }
}

type wrrPicker struct {
    // subConns is the snapshot of the roundrobin balancer when this picker was
    // created. The slice is immutable. Each Get() will do a round robin
    // selection from it and return the selected SubConn.
    subConns []balancer.SubConn

    mu   sync.Mutex
    next int
}

// 选出一个Connection
func (p *wrrPicker) Pick(info balancer.PickInfo) (balancer.PickResult, error) {
    p.mu.Lock()
    sc := p.subConns[p.next]
    p.next = (p.next + 1) % len(p.subConns)
    p.mu.Unlock()
    return balancer.PickResult{SubConn: sc}, nil
}

这是一个简单的Weighted Round Robin实现,加权算法十分简单,如果一个conn的权重为n,那么就在加权结果集中加入n个conn,这样在后续Pick时不需要考虑加权的问题,只需向普通Round Robin那样逐个Pick出来即可。

运行demo4 greeter_server后,我们在nacos将instance-1的权重改为5,我们后续就会看到如下输出:

$goreman start
09:20:18 demo4-server3 | Starting demo4-server3 on port 5200
09:20:18 demo4-server2 | Starting demo4-server2 on port 5100
09:20:18 demo4-server1 | Starting demo4-server1 on port 5000
09:20:18 demo4-server2 | 2021-09-12T09:20:18.633+0800   INFO    nacos_client/nacos_client.go:87 logDir:</tmp/nacos/log/50052>   cacheDir:</tmp/nacos/cache/50052>
09:20:18 demo4-server1 | 2021-09-12T09:20:18.633+0800   INFO    nacos_client/nacos_client.go:87 logDir:</tmp/nacos/log/50051>   cacheDir:</tmp/nacos/cache/50051>
09:20:18 demo4-server3 | 2021-09-12T09:20:18.633+0800   INFO    nacos_client/nacos_client.go:87 logDir:</tmp/nacos/log/50053>   cacheDir:</tmp/nacos/cache/50053>
09:20:23 demo4-server2 | 2021/09/12 09:20:23 Received: world-1
09:20:25 demo4-server3 | 2021/09/12 09:20:25 Received: world-2
09:20:27 demo4-server1 | 2021/09/12 09:20:27 Received: world-3
09:20:29 demo4-server2 | 2021/09/12 09:20:29 Received: world-4
09:20:31 demo4-server3 | 2021/09/12 09:20:31 Received: world-5
09:20:33 demo4-server1 | 2021/09/12 09:20:33 Received: world-6
09:20:35 demo4-server2 | 2021/09/12 09:20:35 Received: world-7
09:20:37 demo4-server3 | 2021/09/12 09:20:37 Received: world-8
09:20:39 demo4-server1 | 2021/09/12 09:20:39 Received: world-9
09:20:41 demo4-server2 | 2021/09/12 09:20:41 Received: world-10
09:20:43 demo4-server1 | 2021/09/12 09:20:43 Received: world-11
09:20:45 demo4-server2 | 2021/09/12 09:20:45 Received: world-12
09:20:47 demo4-server3 | 2021/09/12 09:20:47 Received: world-13
//这里将权重改为5后
09:20:49 demo4-server1 | 2021/09/12 09:20:49 Received: world-14
09:20:51 demo4-server1 | 2021/09/12 09:20:51 Received: world-15
09:20:53 demo4-server1 | 2021/09/12 09:20:53 Received: world-16
09:20:55 demo4-server1 | 2021/09/12 09:20:55 Received: world-17
09:20:57 demo4-server1 | 2021/09/12 09:20:57 Received: world-18
09:20:59 demo4-server2 | 2021/09/12 09:20:59 Received: world-19
09:21:01 demo4-server3 | 2021/09/12 09:21:01 Received: world-20
09:21:03 demo4-server1 | 2021/09/12 09:21:03 Received: world-21

注意:每次nacos的service instance发生变化后,balancer都会重新build一个新Picker实例,后续会使用新Picker实例在其Connection集合中Pick出一个conn。

4. 小结

在本文中我们了解了gRPC的四种通信模式。我们重点关注了在最常用的simple RPC(unary RPC)模式下gRPC Client侧需要考虑的事情,包括:

  • 如何实现一个helloworld的一对一的通信
  • 如何实现一个自定义的Resolver以实现一个client到一个静态服务实例集合的通信
  • 如何实现一个自定义的Resolver以实现一个client到一个动态服务实例集合的通信
  • 如何自定义客户端Balancer

本文代码仅做示例使用,并未考虑太多异常处理。

本文涉及的所有代码可以从这里下载:https://github.com/bigwhite/experiments/tree/master/grpc-client

5. 参考资料

  • gRPC Name Resolution – https://github.com/grpc/grpc/blob/master/doc/naming.md
  • Load Balancing in gRPC – https://github.com/grpc/grpc/blob/master/doc/load-balancing.md
  • 基于 gRPC的服务发现与负载均衡(基础篇)- https://pandaychen.github.io/2019/07/11/GRPC-SERVICE-DISCOVERY/
  • 比较 gRPC服务和HTTP API – https://docs.microsoft.com/zh-cn/aspnet/core/grpc/comparison

6. 附录

1) json vs. protobuf编解码性能基准测试结果

测试源码位于这里:https://github.com/bigwhite/experiments/tree/master/grpc-client/grpc-vs-httpjson/codec

我们使用了Go标准库json编解码、字节开源的sonic json编解码包以及minio开源的simdjson-go高性能json解析库与protobuf作对比的结果如下:

$go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/codec
cpu: Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz
BenchmarkSimdJsonUnmarshal-8           43304         28177 ns/op      113209 B/op         19 allocs/op
BenchmarkJsonUnmarshal-8              153214          7187 ns/op        1024 B/op          6 allocs/op
BenchmarkJsonMarshal-8                601590          2057 ns/op        2688 B/op          2 allocs/op
BenchmarkSonicJsonUnmarshal-8        1394211           861.1 ns/op      2342 B/op          2 allocs/op
BenchmarkSonicJsonMarshal-8          1592898           765.2 ns/op      2239 B/op          4 allocs/op
BenchmarkProtobufUnmarshal-8         3823441           317.0 ns/op      1208 B/op          3 allocs/op
BenchmarkProtobufMarshal-8           4461583           274.8 ns/op      1152 B/op          1 allocs/op
PASS
ok      github.com/bigwhite/codec   10.901s

benchmark测试结果印证了protobuf的编解码性能要远高于json编解码。但是在benchmark结果中,一个结果让我很意外,那就是号称高性能的simdjson-go的数据难看到离谱。谁知道为什么吗?simd指令没生效?字节开源的sonic的确性能很好,与pb也就2-3倍的差距,没有数量级的差距。

2) gRPC(insecure) vs. json over http

测试源码位于这里:https://github.com/bigwhite/experiments/tree/master/grpc-client/grpc-vs-httpjson/protocol

使用ghz对gRPC实现的server进行压测结果如下:

$ghz --insecure -n 100000 -c 500 --proto publish.proto --call proto.PublishService.Publish -D data.json localhost:10000

Summary:
  Count:    100000
  Total:    1.67 s
  Slowest:    48.49 ms
  Fastest:    0.13 ms
  Average:    6.34 ms
  Requests/sec:    59924.34

Response time histogram:
  0.133  [1]     |
  4.968  [40143] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  9.803  [47335] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  14.639 [11306] |∎∎∎∎∎∎∎∎∎∎
  19.474 [510]   |
  24.309 [84]    |
  29.144 [89]    |
  33.980 [29]    |
  38.815 [3]     |
  43.650 [8]     |
  48.485 [492]   |

Latency distribution:
  10 % in 3.07 ms
  25 % in 4.12 ms
  50 % in 5.49 ms
  75 % in 7.94 ms
  90 % in 10.24 ms
  95 % in 11.28 ms
  99 % in 15.52 ms

Status code distribution:
  [OK]   100000 responses

使用hey对使用fasthttp与sonic实现的http server进行压测结果如下:

$hey -n 100000 -c 500  -m POST -D ./data.json http://127.0.0.1:10001/

Summary:
  Total:    2.0012 secs
  Slowest:    0.1028 secs
  Fastest:    0.0001 secs
  Average:    0.0038 secs
  Requests/sec:    49969.9234

Response time histogram:
  0.000 [1]     |
  0.010 [96287] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
  0.021 [2639]  |■
  0.031 [261]   |
  0.041 [136]   |
  0.051 [146]   |
  0.062 [128]   |
  0.072 [43]    |
  0.082 [24]    |
  0.093 [10]    |
  0.103 [4]     |

Latency distribution:
  10% in 0.0013 secs
  25% in 0.0020 secs
  50% in 0.0031 secs
  75% in 0.0040 secs
  90% in 0.0062 secs
  95% in 0.0089 secs
  99% in 0.0179 secs

Details (average, fastest, slowest):
  DNS+dialup:    0.0000 secs, 0.0001 secs, 0.1028 secs
  DNS-lookup:    0.0000 secs, 0.0000 secs, 0.0000 secs
  req write:    0.0000 secs, 0.0000 secs, 0.0202 secs
  resp wait:    0.0031 secs, 0.0000 secs, 0.0972 secs
  resp read:    0.0005 secs, 0.0000 secs, 0.0575 secs

Status code distribution:
  [200]    99679 responses

我们看到:gRPC的性能(Requests/sec: 59924.34)要比http api性能(Requests/sec: 49969.9234)高出20%。

3) nacos docker安装

单机容器版nacos安装步骤如下:

$git clone https://github.com/nacos-group/nacos-docker.git
$cd nacos-docker
$docker-compose -f example/standalone-derby.yaml up

nacos相关容器启动成功后,可以打开浏览器访问http://localhost:8848/nacos,打开nacos仪表盘登录页面,输入nacos/nacos即可进入nacos web操作界面。


“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats