标签 接口 下的文章

聊聊Prometheus Gauge的增减操作实现

本文永久链接 – https://tonybai.com/2023/01/10/how-prometheus-gauge-add-and-sub

1. Gauge是啥?

熟悉Prometheus的小伙伴们都知道Prometheus提供了四大指标类型

  • Counter
  • Gauge
  • Histogram
  • Summary

Histogram和Summary是一类,但理解起来稍复杂一些,这里我们暂且不提。Counter顾名思义“计数器”,仅提供了Add方法,是一个一直递增的数值;而Gauge直译为“仪表盘”,它也是一个数值,但和Counter不同,它不仅提供Add方法,还提供了Sub方法。如果你的指标可增可减或是需要支持负数,那么Gauge显然是一个比Counter更适合的指标类型。

近期我们在测试时发现一个Gauge值为负的问题,Gauge本身是支持负值的,但我们系统中的这个指标值从业务含义上来说是不应该为负值的,为了fix掉这个问题,我深入看了一下Prometheus Go client包中Gauge的实现方式,Gauge的实现方式代表了一类问题的典型解决方法,这里简单聊聊。

2. Gauge增减操作的原理

在Prometheus Go client包中,我们看到Gauge是一个接口类型:

// github.com/prometheus/client_golang/prometheus/gauge.go
type Gauge interface {
    Metric
    Collector

    // Set sets the Gauge to an arbitrary value.
    Set(float64)
    // Inc increments the Gauge by 1. Use Add to increment it by arbitrary
    // values.
    Inc()
    // Dec decrements the Gauge by 1. Use Sub to decrement it by arbitrary
    // values.
    Dec()
    // Add adds the given value to the Gauge. (The value can be negative,
    // resulting in a decrease of the Gauge.)
    Add(float64)
    // Sub subtracts the given value from the Gauge. (The value can be
    // negative, resulting in an increase of the Gauge.)
    Sub(float64)

    // SetToCurrentTime sets the Gauge to the current Unix time in seconds.
    SetToCurrentTime()
}

client包还提供了该接口的默认实现类型gauge:

// github.com/prometheus/client_golang/prometheus/gauge.go
type gauge struct {
    // valBits contains the bits of the represented float64 value. It has
    // to go first in the struct to guarantee alignment for atomic
    // operations.  http://golang.org/pkg/sync/atomic/#pkg-note-BUG
    valBits uint64

    selfCollector

    desc       *Desc
    labelPairs []*dto.LabelPair
}

从gauge类型定义来看,作为仪表盘即时数值的gauge,其核心字段是uint64类型的valBits,该字段存储了gauge指标所代表的即时值

不过我们看到Gauge接口类型中的Add和Sub方法的参数都是float64类型。Gauge接口类型中的方法使用float64类型作为参数是无可厚非的,这是因为Gauge要支持浮点数,要支持小数,浮点数可以转化为整型,但整型却无法支持转换为带有小数部分的浮点数。

那么为什么gauge类型中使用了uint64类型而不是float64类型的字段来存储gauge代表的即时值呢?这就要从Prometheus go client的一个特性说起,那就是对Gauge即时值的修改要保证goroutine-safe。具体来说,gauge使用的是atomic包提供的原子操作来保证这种并发访问安全。但标准库的atomic包支持uint64类型的原子操作,而不支持float64类型的原子操作,恰float64和uint64的size又都是8字节,于是Prometheus go client利用了uint64支持原子操作以及uint64和float64类型都是64bits长度这两点实现了gauge类型的Add和Sub方法:

// github.com/prometheus/client_golang/prometheus/gauge.go

func (g *gauge) Add(val float64) {
    for {
        oldBits := atomic.LoadUint64(&g.valBits)
        newBits := math.Float64bits(math.Float64frombits(oldBits) + val)
        if atomic.CompareAndSwapUint64(&g.valBits, oldBits, newBits) {
            return
        }
    }
}

func (g *gauge) Sub(val float64) {
    g.Add(val * -1)
}

我们看到Sub方法实际调用的也是Add方法,只是将val值乘了个-1后作为Add方法的参数。我们接下来重点来看看gauge的Add方法。

gauge Add方法的实现是一个典型的CAS(CompareAndSwap)原子操作的使用模式,即在一个无限循环中,先原子读取当前即时值,然后将其与传入的增量值进行加和得到新值,最后通过CAS操作将新值设置为当前即时值。如果CAS操作失败,则重新走一遍循环。

不过值得我们关注的是Add方法中的float64与uint64类型各自的功用与相互的转换。Add方法先是利用atomic.LoadUint64原子读取valBits的值,然后通过math.Float64frombits将其转换为float64类型,之后用得到的float64类型即时值与val进行加法运算,得到我们想要的新值。接下来就是将其重新存储到valBits中。float64不支持原子操作,因此再调用CAS之前,Add方法还需将新值转换回uint64,这就是上面代码调用math.Float64bits的原因,之后通过atomic.CompareAndSwapUint64将保存了float64位模式的uint64类型的新值newBits写入valBits中。

大家一定很好奇,math.Float64frombits和math.Float64bits是如何做的uint64和float64间的转换,我们来看一下他们的实现:

// $GOROOT/src/math/unsafe.go

// Float64bits returns the IEEE 754 binary representation of f,
// with the sign bit of f and the result in the same bit position,
// and Float64bits(Float64frombits(x)) == x.
func Float64bits(f float64) uint64 { return *(*uint64)(unsafe.Pointer(&f)) }

// Float64frombits returns the floating-point number corresponding
// to the IEEE 754 binary representation b, with the sign bit of b
// and the result in the same bit position.
// Float64frombits(Float64bits(x)) == x.
func Float64frombits(b uint64) float64 { return *(*float64)(unsafe.Pointer(&b)) }

我们看到,这两个函数只是利用unsafe包进行了类型转换,而并没有做任何算术运算。

关于如何使用unsafe包进行安全的类型转换,可以参见我的《Go语言精进之路》一书的第58条“掌握unsafe包的安全使用模式”。

综上:

  • gauge结构体中uint64类型的valBits实质上只是用来做float64数值的“承载体”,并借助原子操作对其类型的支持实现即时值的更新,它本身并不参与任何整型或浮点型计算;
  • Add方法中的运算都是在浮点型之间进行的,Add方法通过math.Float64frombits将uint64中承载的符合IEEE 754的浮点数表示还原为一个浮点数类型,然后与同样是float64类型的输入参数进行加和计算,计算的结果再通过math.Float64bits函数转换为uint64类型,这个过程8字节字段的位模式没有发生任何变化,最后通过CAS操作将结果值(新的位模式)写入valBits。

valBits中存储的是满足IEEE 754的浮点数的位模式。IEEE 754规范中,一个浮点数是由“符号位+阶码+尾数”构成的。详情可参考我的《Go语言第一课》专栏的第12讲基本数据类型:Go原生支持的数值类型有哪些

3. 小结

gauge结构体以及其Add方法所使用的这种通过位模式转换实现float64原子操作的模式值得借鉴。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go类型系统:有何与众不同

本文永久链接 – https://tonybai.com/2022/12/18/go-type-system

Go是一门强类型的静态编程语言。使用Go编程,我们的每一行代码几乎都离不开类型。因此,深入学习Go,我们首先要对Go的类型系统(type system)有一个全面和深入的认知。Go类型系统可以给予我们一个全局整体的视角,以帮助我们更好地学习和理解Go语言中那些具体的与类型相关的内容。

一. 什么是类型系统

作为拥有一定Go编程经验的Gopher来说,大家对Go语言中的类型是有一定了解的,比如:Go内置了原生整型类型、浮点类型、复数类型、字符串类型、函数类型,提供了数组、切片、map、struct、channel等复合类型以及代表行为抽象的接口类型。通过Go提供的type关键字,我们还可以自定义类型等等。

那么大家是否想过这样的问题:为什么会有类型?类型可以带来哪些好处呢?回顾编程语言的发展史(见下图),我们发现:类型是高级语言有别于机器语言与低级语言的一种重要的抽象

从机器的视角来看,无论什么类型数据都是0101的二进制数据,但程序员直接用机器语言编码难度非常大且效率极其低下;汇编语言将层次提升到了面向多字节数据的编码,汇编指令的操作数都是固定长度字节的,比如:movb操作的是一个字节,movl操作的是四个字节。汇编指令并不关心真实存储的是什么数据,只是在各个地址之间搬移特定长度的数据。显然汇编的抽象层次依旧不高,直接用汇编写程序依然有很大难度以及较为低效。

高级语言之所以高级,就是因为它建立了类型这一重要抽象,类型抽象为开发者屏蔽了机器层面数据的复杂表示。类型下面的复杂的字节和bit操作由高级语言的编译器和运行时协助完成,开发人员只需面向类型进行编码即可,也就是说类型成为了开发者与编译器之间的“操作界面”

面向类型编程,开发者就要了解类型的能力、其所代表的抽象的含义以及遵循类型的使用规则/约束。类型决定了你可以在该类型实例中存储的值的范围;类型决定了你可以对该类型进行的操作;类型决定了该类型的变量需要的存储空间;类型决定了与其他类型间建立连接的方法:组合、“继承”还是接口实现等。

那么类型的这些能力、规则与约束是谁赋予的呢?没错,正是编程语言的类型系统

类型系统是高级语言的核心,它存在于语言规范中,向开发者明确了类型的能力、使用规则与约束;它存在于编译器中,保证开发者对类型的正确合规使用;它也存在于语言运行时里,为类型提供如多态这样的动态能力

可以说,高级编程语言用类型系统赋能类型并管理类型。不过,不同语言的类型系统的设计与实现是有较大差别的,那么Go语言的类型系统又有哪些与众不同之处呢?我们接下来就来重点看看Go的类型系统。

二. Go的类型系统

下面我们从类型定义、类型推导、类型检查、类型连接等多个方面说明一下Go类型系统具备的能力与不足。

1. 类型定义

大家知道Go支持几乎所有类型,下面是Go spec中的类型分类的列表截图:

同时,Go还支持使用type关键字定义的自定义类型以及类型别名(type alias):

type CustomType int // 底层类型为原生类型int的自定义类型CustomType

type S struct {
    a int
    b string
} // 基于struct的自定义类型S

type IntAlias = int // int的类型别名IntAlias

注:自定义类型与其底层类型(underlying type)是两个完全不同的类型,而类型别名并未引入新类型,与原类型等价。

不过有两种在其他语言中常见的类型,Go类型系统没有给予支持,一种是union联合类型,在这种类型中,其所有字段共享同一个内存空间:

// C代码

// 定义一个名为num的union类型
// 其三个成员m, ch, f共享同一个内存空间
// C编译器会以最大的字段的size为num类型变量分配内存空间
union num {
    int m;
    char ch;
    double f;
};
union num a, b, c; // 声明三个union类型变量

另外一种是enum枚举类型,不过enum枚举类型可一定程度上用const(可选加iota)来模拟:

// C语法
enum Weekday {
        SUNDAY,
        MONDAY,
        TUESDAY,
        WEDNESDAY,
        THURSDAY,
        FRIDAY,
        SATURDAY
};

// Go模拟实现Weekday
type Weekday int

const (
        Sunday Weekday = iota
        Monday
        Tuesday
        Wednesday
        Thursday
        Friday
        Saturday
)

Go从1.18版本开始支持泛型,这让Go类型系统具备定义带有类型参数(type parameters)的类型以及函数的能力。

2. 类型推导

Go类型系统支持自动类型推导能力,编译器可以推断出变量或函数的类型,而不需要我们明确指定:

var s = "hello" // s是string类型
a := 128        // a是int类型
f := 4.3567     // f是float64类型

除了支持普通类型推导,Go还支持泛型的自动类型实参推导,下面是一个来自go spec的例子:

func scale[Number ~int64|~float64|~complex128](v []Number, s Number) []Number

var vector []float64
scaledVector := scale(vector, 42)

例子中,通过scale调用时传入的实参类型,编译器可以自动推导出scale的类型参数Number的实参为float64。更多关于Go泛型的语法细节,可以参考《Go语言第一课》专栏的泛型篇

3. 类型检查

Go是一门强类型静态编程语言,意味着每个变量在使用之前都必须声明其类型。有了类型后,我们就可以按照Go类型系统规定的针对这个类型有效操作对其进行操作。

Go编译器以及运行时会分别在编译期间和运行期间对变量类型作检查,目的是确保操作只用于正确的类型,并且类型系统的规则被程序所遵守,保证类型安全等。

Go是强类型语言,并且没有隐式类型转换,所有类型转换都要以明确意图的显式类型转换来实施,Go编译器会在编译期间对类型转换进行检查,只有底层类型兼容的两个类型才可以实施显式转型:

type T1 int
type T2 struct{}

var i int = 5
var t T1
var s T2
t = i     // 错误,不是同一类型
t = T1(i) // ok,底层类型兼容
s = T2(t) // 错误,底层类型不兼容

除了编译期间的静态检查之外,Go类型系统还支持运行时动态类型检查,比如:检查传给接口变量的类型实例是否实现了该接口;在运行时对数组、切片类型的下标边界进行检查,确保下标不越界,保证内存安全等。

不过Go也提供了绕过类型系统检查的手段,比如unsafe.Pointer以及反射等。

4. 类型连接

Go并非经典OO语言,它的类型虽然可以拥有自己的方法(method),但Go却没有提供经典OO中的复杂的继承层次结构,没有父类,没有子类,更没有供类型初始化的构造函数。在Go的类型系统中,类型之间建立连接的方式只有组合,通过类型嵌入(type embedding),我们可以实现各类组合,可以嵌入非接口类型,亦可以嵌入接口来定义新组合后的类型。

通过类型组合,我们可以将各种类型连接在一起,共同对外提供聚合后的行为,包括多态能力。Go中标准的多态能力由interface类型实现,方法在运行时被分派,这取决于传给接口类型变量的具体类型。比如下面例子中AnimalQuackInForest中的Quack会依据传入的具体类型实例而分派,先后分派给Duck.Quack、Dog.Quack和Bird.Quack:

type QuackableAnimal interface {
    Quack()
}

type Duck struct{}

func (Duck) Quack() {
    println("duck quack!")
}

type Dog struct{}

func (Dog) Quack() {
    println("dog quack!")
}

type Bird struct{}

func (Bird) Quack() {
    println("bird quack!")
}                         

func AnimalQuackInForest(a QuackableAnimal) {
    a.Quack()
}                         

func main() {
    animals := []QuackableAnimal{new(Duck), new(Dog), new(Bird)}
    for _, animal := range animals {
        AnimalQuackInForest(animal)
    }
}

注:类型与接口之间的实现关系是隐式的,类型无需使用类implements关键字显式告知要实现的interface类型。

Go中的函数是一等公民,函数类型也可展现出一定的运行时多态能力,函数类型实例的最终执行结果取决于运行时传入的函数对象值。

三. 小结

Go提供了强大而又有趣的类型系统,不过Go没有提供enum、union类型,也不支持运算符重载(operator overloading)、函数重载、结构化错误处理以及可选/默认函数参数等。这与Go的设计者做出的保持Go简单的决策不无关系。同时类型系统在保证Go这门的语言的安全性方面也是功不可没。

如果你认真对待Go编程,你应该投入时间,了解它的类型系统和它的特殊性,这将是非常值得你花时间的。

四. 参考资料

  • Type Systems in Software Explained With Examples – https://thevaluable.dev/type-system-software-explained-example/
  • The Go type system for newcomers – https://rakyll.org/typesystem/
  • Deep Dive Into the Go Type System – https://code.tutsplus.com/tutorials/deep-dive-into-the-go-type-system–cms-29065
  • Understanding Golang Type System – https://thenewstack.io/understanding-golang-type-system/
  • A Closer Look at Golang From an Architect’s Perspective – https://thenewstack.io/a-closer-look-at-golang-from-an-architects-perspective/
  • https://go101.org/article/type-system-overview.html
  • https://baziotis.cs.illinois.edu/compilers/the-weird-type-system-of-golang.html
  • https://blog.ankuranand.com/2018/11/29/a-closer-look-at-go-golang-type-system/
  • 《Type Systems for Programming Languages》 – https://ropas.snu.ac.kr/~kwang/520/pierce_book.pdf
  • 《Programming with Types》 – https://book.douban.com/subject/35325133/
  • Type Systems in Programming Languages – https://www.tektutorialshub.com/programming/type-systems-in-programming-languages/
  • 《Category Theory for Programmers》 – https://book.douban.com/subject/30357114/
  • Type system(维基百科) – https://en.wikipedia.org/wiki/Type_system
  • 类型系统的比较 – https://en.wikipedia.org/wiki/Comparison_of_type_systems

“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats