标签 容器 下的文章

Kubernetes Dashboard集成Heapster

默认安装后的Kubernetes dashboard如下图所示,是无法图形化展现集群度量指标信息的:

img{512x368}

图形化展示度量指标的实现需要集成k8s的另外一个Addons组件:Heapster

Heapster原生支持K8s(v1.0.6及以后版本)和CoreOS,并且支持多种存储后端,比如:InfluxDBElasticSearchKafka等,这个风格和k8s的确很像:功能先不管完善与否,先让自己在各个平台能用起来再说^0^。这里我们使用的数据存储后端是InfluxDB。

一、安装步骤

我们的Heapster也是要放在pod里运行的。当前,Heapster的最新stable版本是v1.2.0,我们可以下载其源码包K8s cluster上的某个Node上。解压后,我们得到一个名为”heapster-1.2.0″的目录,进入该目录,我们可以看到如下内容:

root@node1:~/k8stest/dashboardinstall/heapster-1.2.0# ls
code-of-conduct.md  CONTRIBUTING.md  docs    Godeps   hooks     integration  LICENSE   metrics    riemann  version
common              deploy           events  grafana  influxdb  kafka        Makefile  README.md  vendor

InfluxDB为存储后端的Heapster部署yaml在deploy/kube-config/influxdb下面:

root@node1:~/k8stest/dashboardinstall/heapster-1.2.0# ls -l deploy/kube-config/influxdb/
total 28
-rw-r--r-- 1 root root  414 Sep 14 12:47 grafana-service.yaml
-rw-r--r-- 1 root root  942 Jan 20 15:15 heapster-controller.yaml
-rw-r--r-- 1 root root  249 Sep 14 12:47 heapster-service.yaml
-rw-r--r-- 1 root root 1465 Jan 19 21:39 influxdb-grafana-controller.yaml
-rw-r--r-- 1 root root  259 Sep 14 12:47 influxdb-service.yaml

这里有五个yaml(注意:与heapster源码库中最新的代码已经有所不同,最新代码将influxdb和grafana从influxdb-grafana-controller.yaml拆分开了)。其中的一些docker image在墙外,如果你有加速器,那么你可以直接执行create命令;否则最好找到一些替代品: 比如:用signalive/heapster_grafana:2.6.0-2替换gcr.io/google_containers/heapster_grafana:v2.6.0-2。

创建pod的操作很简单:

~/k8stest/dashboardinstall/heapster-1.2.0# kubectl create -f deploy/kube-config/influxdb/
service "monitoring-grafana" created
replicationcontroller "heapster" created
service "heapster" created
replicationcontroller "influxdb-grafana" created
service "monitoring-influxdb" created

如果image pull顺利的话,那么这些pod和service的启动是会很正常的。

//kube get pods -n kube-system
... ...
kube-system                  heapster-b1dwa                          1/1       Running   0          1h        172.16.57.9    10.46.181.146   k8s-app=heapster,version=v6
kube-system                  influxdb-grafana-8c0e0                  2/2       Running   0          1h        172.16.57.10   10.46.181.146   name=influxGrafana
... ...

我们用浏览器打开kubernetes的Dashboard,期待中的图形化和集群度量指标信息到哪里去了呢?Dashboard还是一如既往的如上面图示中那样“简朴”,显然我们遇到问题了!

二、TroubleShooting

问题在哪?我们需要逐个检视相关Pod的日志:

# kubectl logs -f pods/influxdb-grafana-xxxxxx influxdb -n kube-system
# kubectl logs -f pods/influxdb-grafana-xxxxxx grafana -n kube-system
# kubectl logs -f pods/heapster-xxxxx -n kube-system

在heapster-xxxxx这个pod中,我们发现了大量失败日志:

E0119 13:14:37.838900       1 reflector.go:203] k8s.io/heapster/metrics/heapster.go:319: Failed to list *api.Pod: the server has asked for the client to provide credentials (get pods)
E0119 13:14:37.838974       1 reflector.go:203] k8s.io/heapster/metrics/processors/node_autoscaling_enricher.go:100: Failed to list *api.Node: the server has asked for the client to provide credentials (get nodes)
E0119 13:14:37.839516       1 reflector.go:203] k8s.io/heapster/metrics/processors/namespace_based_enricher.go:84: Failed to list *api.Namespace: the server has asked for the client to provide credentials (get namespaces)

heapster无法连接apiserver,获取不要想要的信息。从kube-apiserver的日志(/var/log/upstart/kube-apiserver.log)也印证了这一点:

E0120 09:15:30.833928   12902 handlers.go:54] Unable to authenticate the request due to an error: crypto/rsa: verification error
E0120 09:15:30.834032   12902 handlers.go:54] Unable to authenticate the request due to an error: crypto/rsa: verification error
E0120 09:15:30.835324   12902 handlers.go:54] Unable to authenticate the request due to an error: crypto/rsa: verification error

从apiserver的日志来看,heapster是通过apiserver的secure port连接的,由于我们的API server设置有https client端证书校验机制,因此两者连接失败。

三、通过insecure-port连接kube-apiserver

现在我们就来解决上述问题。

首先,我们会想到:能否让heapster通过kube APIServer的insecure-port连接呢?在《Kubernetes集群的安全配置》一文中我们提到过,kube-apiserver针对insecure-port接入的请求没有任何限制机制,这样heapster就可以获取到它所想获取到的所有有用信息。

在heapster doc中的“Configuring Source”中,我们找到了连接kube-apiserver insecure-port的方法。不过在修改yaml之前,我们还是要先来看看当前heapster的一些启动配置的含义:

//deploy/kube-config/influxdb/heapster-controller.yaml
command:
        - /heapster
        - --source=kubernetes:https://kubernetes.default
        - --sink=influxdb:http://monitoring-influxdb:8086

我们看到heapster启动时有两个启动参数:
–source指示数据源,heapster是支持多种数据源的,这里用的是“kubernetes”类型的数据源,地址是:kubernetes.default。这个域名的全名是:kubernetes.default.svc.cluster.local,就是service “kubernetes”在cluster中的域名,而”kubernetes”服务就是kube-apiserver,它的信息如下:

# kubectl get services
NAME           CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
kubernetes     192.168.3.1     <none>        443/TCP        99d
... ...

# kubectl describe svc/kubernetes
Name:            kubernetes
Namespace:        default
Labels:            component=apiserver
            provider=kubernetes
Selector:        <none>
Type:            ClusterIP
IP:            192.168.3.1
Port:            https    443/TCP
Endpoints:        xxx.xxx.xxx.xxx:6443
Session Affinity:    ClientIP
No events.

因此,该域名在k8s DNS中会被resolve为clusterip:192.168.3.1。外加https的默认端口是443,因此实际上heapster试图访问的apiserver地址是:https://192.168.3.1:443。

heapster启动的另外一个参数是–sink,这个传入的就是存储后端,我们使用了InfluxDB,这里传入的就是上面创建的InfluxDB service的域名和端口号,我们在cluster中也能查找到该Service的信息:

# kubectl get services -n kube-system
NAME                   CLUSTER-IP      EXTERNAL-IP   PORT(S)             AGE
monitoring-influxdb    192.168.3.228   <none>        8083/TCP,8086/TCP   1h
... ...

前面提到过,我们的APIServer在secure port上是有client端证书校验的,那么以这样的启动参数启动的heapster连接不上kube-apiserver就“合情合理”了。

接下来,我们按照”Configuring Source”中的方法,将heapster与kube-apiserver之间的连接方式改为通过insecure port进行:

// kube-config/influxdb/heapster-controller.yaml
... ...
command:
        - /heapster
        - --source=kubernetes:http://10.47.136.60:8080?inClusterConfig=false
        - --sink=influxdb:http://monitoring-influxdb:8086

修改后重新create。重新启动后的heapster pod的日志输出如下:

# kubectl logs -f pod/heapster-hco5i  -n kube-system
I0120 02:03:46.014589       1 heapster.go:71] /heapster --source=kubernetes:http://10.47.136.60:8080?inClusterConfig=false --sink=influxdb:http://monitoring-influxdb:8086
I0120 02:03:46.014975       1 heapster.go:72] Heapster version v1.3.0-beta.0
I0120 02:03:46.015080       1 configs.go:60] Using Kubernetes client with master "http://10.47.136.60:8080" and version v1
I0120 02:03:46.015175       1 configs.go:61] Using kubelet port 10255
E0120 02:03:46.025962       1 influxdb.go:217] issues while creating an InfluxDB sink: failed to ping InfluxDB server at "monitoring-influxdb:8086" - Get http://monitoring-influxdb:8086/ping: dial tcp 192.168.3.239:8086: getsockopt: connection refused, will retry on use
I0120 02:03:46.026090       1 influxdb.go:231] created influxdb sink with options: host:monitoring-influxdb:8086 user:root db:k8s
I0120 02:03:46.026214       1 heapster.go:193] Starting with InfluxDB Sink
I0120 02:03:46.026286       1 heapster.go:193] Starting with Metric Sink
I0120 02:03:46.051096       1 heapster.go:105] Starting heapster on port 8082
I0120 02:04:05.211382       1 influxdb.go:209] Created database "k8s" on influxDB server at "monitoring-influxdb:8086"

之前的错误消失了!

我们再次打开Dashboard查看pod信息(这里需要等上一小会儿,因为采集cluster信息也是需要时间的),我们看到集群度量指标信息以图形化的方式展现在我们面前了(可对比本文开头那幅图示):

img{512x368}

四、通过secure port连接kube-apiserver

kube-apiserver的–insecure-port更多用来调试,生产环境下可是说关就关的,因此通过kube-apiserver的secure port才是“长治久安”之道。但要如何做呢?在heapster的”Configure Source”中给了一种使用serviceaccount的方法,但感觉略有些复杂啊。这里列出一下我自己探索到的方法: 使用kubeconfig文件!在《Kubernetes集群Dashboard插件安装》一文中,我们已经配置好了kubeconfig文件(默认位置:~/.kube/config),对于kubeconfig配置项还不是很了解的童鞋可以详细参考那篇文章,这里就不赘述了。

接下来,我们来修改heapster-controller.yaml:

// deploy/kube-config/influxdb/heapster-controller.yaml

... ...
spec:
      containers:
      - name: heapster
        image: kubernetes/heapster:canary
        volumeMounts:
        - mountPath: /srv/kubernetes
          name: auth
        - mountPath: /root/.kube
          name: config
        imagePullPolicy: Always
        command:
        - /heapster
        - --source=kubernetes:https://kubernetes.default?inClusterConfig=false&insecure=true&auth=/root/.kube/config
        - --sink=influxdb:http://monitoring-influxdb:8086
      volumes:
      - name: auth
        hostPath:
          path: /srv/kubernetes
      - name: config
        hostPath:
          path: /root/.kube
... ...

从上述文件内容中–source的值我们可以看到,我们又恢复到初始kubernetes service的地址:https://kubernetes.default,但后面又跟了几个参数:

inClusterConfig=false : 不使用service accounts中的kube config信息;
insecure=true:这里偷了个懒儿:选择对kube-apiserver发过来的服务端证书做信任处理,即不校验;
auth=/root/.kube/config:这个是关键!在不使用serviceaccount时,我们使用auth文件中的信息来对应kube-apiserver的校验。

上述yaml中,我们还挂载了两个path,以便pod可以访问到相应的配置文件(~/.kube/config)和/srv/kubernetes下的证书。

保存并重新创建相关pod后,Dashboard下的集群度量指标信息依然能以图形化的方式展现出来,可见这种方法是ok的!

理解Kubernetes网络之Flannel网络

第一次采用kube-up.sh脚本方式安装Kubernetes cluster目前运行良好,master node上的组件状态也始终是“没毛病”:

# kubectl get cs
NAME                 STATUS    MESSAGE              ERROR
controller-manager   Healthy   ok
scheduler            Healthy   ok
etcd-0               Healthy   {"health": "true"}

不过在第二次尝试用kubeadm安装和初始化Kubernetes cluster时遇到的各种网络问题还是让我“心有余悸”。于是趁上个周末,对Kubernetes的网络原理进行了一些针对性的学习。这里把对Kubernetes网络的理解记录一下和大家一起分享。

Kubernetes支持FlannelCalicoWeave network等多种cni网络Drivers,但由于学习过程使用的是第一个cluster的Flannel网络,这里的网络原理只针对k8s+Flannel网络。

一、环境+提示

凡涉及到Docker、Kubernetes这类正在active dev的开源项目的文章,我都不得不提一嘴,那就是随着K8s以及flannel的演化,本文中的一些说法可能不再正确。提醒大家:阅读此类技术文章务必结合“环境”。

这里我们使用的环境就是我第一次建立k8s cluster的环境:

# kube-apiserver --version
Kubernetes v1.3.7

# /opt/bin/flanneld -version
0.5.5

# /opt/bin/etcd -version
etcd Version: 3.0.12
Git SHA: 2d1e2e8
Go Version: go1.6.3
Go OS/Arch: linux/amd64

另外整个集群搭建在阿里云上,每个ECS上的OS及kernel版本:Ubuntu 14.04.4 LTS,3.19.0-70-generic。

在我的测试环境,有两个node:master node和一个minion node。master node参与workload的调度。所以你基本可以认为有两个minion node即可。

二、Kubernetes Cluster中的几个“网络”

之前的k8s cluster采用的是默认安装,即直接使用了配置脚本中(kubernetes/cluster/ubuntu/config-default.sh)自带的一些参数,比如:

//摘自kubernetes/cluster/ubuntu/config-default.sh

export nodes=${nodes:-"root@master_node_ip root@minion_node_ip"}
export SERVICE_CLUSTER_IP_RANGE=${SERVICE_CLUSTER_IP_RANGE:-192.168.3.0/24}
export FLANNEL_NET=${FLANNEL_NET:-172.16.0.0/16}

从这里我们能够识别出三个“网络”:

  • node network:承载kubernetes集群中各个“物理”Node(master和minion)通信的网络;
  • service network:由kubernetes集群中的Services所组成的“网络”;
  • flannel network: 即Pod网络,集群中承载各个Pod相互通信的网络。

node network自不必多说,node间通过你的本地局域网(无论是物理的还是虚拟的)通信。

service network比较特殊,每个新创建的service会被分配一个service IP,在当前集群中,这个IP的分配范围是192.168.3.0/24。不过这个IP并不“真实”,更像一个“占位符”并且只有入口流量,所谓的“network”也是“名不符实”的,后续我们会详尽说明。

flannel network是我们要理解的重点,cluster中各个Pod要实现相互通信,必须走这个网络,无论是在同一node上的Pod还是跨node的Pod。我们的cluster中,flannel net的分配范围是:172.16.0.0/16。

在进一步挖掘“原理”之前,我们先来直观认知一下service network和flannel network:

Service network(看cluster-ip一列):

# kubectl get services
NAME           CLUSTER-IP      EXTERNAL-IP   PORT(S)     AGE
index-api      192.168.3.168   <none>        30080/TCP   18d
kubernetes     192.168.3.1     <none>        443/TCP     94d
my-nginx       192.168.3.179   <nodes>       80/TCP      90d
nginx-kit      192.168.3.196   <nodes>       80/TCP      12d
rbd-rest-api   192.168.3.22    <none>        8080/TCP    60d

Flannel network(看IP那列):

# kubectl get pod -o wide
NAME                           READY     STATUS    RESTARTS   AGE       IP            NODE
my-nginx-2395715568-gpljv      1/1       Running   6          91d       172.16.99.3   {master node ip}
nginx-kit-3872865736-rc8hr     2/2       Running   0          12d       172.16.57.7   {minion node ip}
... ...

三、平坦的Flannel网络

1、Kubenetes安装后的网络状态

首先让我们来看看:kube-up.sh在安装k8s集群时对各个K8s Node都动了什么手脚!

a) 修改docker default配置

在ubuntu 14.04下,docker的配置都在/etc/default/docker文件中。如果你曾经修改过该文件,那么kube-up.sh脚本方式安装完kubernetes后,你会发现/etc/default/docker已经变样了,只剩下了一行:

master node:
DOCKER_OPTS=" -H tcp://127.0.0.1:4243 -H unix:///var/run/docker.sock --bip=172.16.99.1/24 --mtu=1450"

minion node:
DOCKER_OPTS=" -H tcp://127.0.0.1:4243 -H unix:///var/run/docker.sock --bip=172.16.57.1/24 --mtu=1450"

可以看出kube-up.sh修改了Docker daemon的–bip选项,使得该node上docker daemon在该node的fannel subnet范围以内为启动的Docker container分配IP地址。

b) 在etcd中初始化flannel网络数据

多个node上的Flanneld依赖一个etcd cluster来做集中配置服务,etcd保证了所有node上flanned所看到的配置是一致的。同时每个node上的flanned监听etcd上的数据变化,实时感知集群中node的变化。

我们可以通过etcdctl查询到这些配置数据:

master node:

//flannel network配置
# etcdctl --endpoints http://127.0.0.1:{etcd listen port} get  /coreos.com/network/config
{"Network":"172.16.0.0/16", "Backend": {"Type": "vxlan"}}

# etcdctl --endpoints http://127.0.0.1:{etcd listen port} ls  /coreos.com/network/subnets
/coreos.com/network/subnets/172.16.99.0-24
/coreos.com/network/subnets/172.16.57.0-24

//某一node上的flanne subnet和vtep配置
# etcdctl --endpoints http://127.0.0.1:{etcd listen port} get  /coreos.com/network/subnets/172.16.99.0-24
{"PublicIP":"{master node ip}","BackendType":"vxlan","BackendData":{"VtepMAC":"b6:bf:4c:81:cf:3b"}}

minion node:
# etcdctl --endpoints http://127.0.0.1:{etcd listen port} get  /coreos.com/network/subnets/172.16.57.0-24
{"PublicIP":"{minion node ip}","BackendType":"vxlan","BackendData":{"VtepMAC":"d6:51:2e:80:5c:69"}}

或用etcd 提供的rest api:

# curl -L http://127.0.0.1:{etcd listen port}/v2/keys/coreos.com/network/config
{"action":"get","node":{"key":"/coreos.com/network/config","value":"{\"Network\":\"172.16.0.0/16\", \"Backend\": {\"Type\": \"vxlan\"}}","modifiedIndex":5,"createdIndex":5}}
c) 启动flanneld

kube-up.sh在每个Kubernetes node上启动了一个flanneld的程序:

# ps -ef|grep flanneld

master node:
root      1151     1  0  2016 ?        00:02:34 /opt/bin/flanneld --etcd-endpoints=http://127.0.0.1:{etcd listen port} --ip-masq --iface={master node ip}

minion node:
root     11940     1  0  2016 ?        00:07:05 /opt/bin/flanneld --etcd-endpoints=http://{master node ip}:{etcd listen port} --ip-masq --iface={minion node ip}

一旦flanneld启动,它将从etcd中读取配置,并请求获取一个subnet lease(租约),有效期目前是24hrs,并且监视etcd的数据更新。flanneld一旦获取subnet租约、配置完backend,它会将一些信息写入/run/flannel/subnet.env文件。

master node:
# cat /run/flannel/subnet.env
FLANNEL_NETWORK=172.16.0.0/16
FLANNEL_SUBNET=172.16.99.1/24
FLANNEL_MTU=1450
FLANNEL_IPMASQ=true

minion node:
# cat /run/flannel/subnet.env
FLANNEL_NETWORK=172.16.0.0/16
FLANNEL_SUBNET=172.16.57.1/24
FLANNEL_MTU=1450
FLANNEL_IPMASQ=true

当然flanneld的最大意义在于根据etcd中存储的全cluster的subnet信息,跨node传输flannel network中的数据包,这个后面会详细说明。

d) 创建flannel.1 网络设备、更新路由信息

各个node上的网络设备列表新增一个名为flannel.1的类型为vxlan的网络设备:

master node:

# ip -d link show
4: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether b6:bf:4c:81:cf:3b brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local {master node local ip} dev eth0 port 0 0 nolearning ageing 300

minion node:

349: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether d6:51:2e:80:5c:69 brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local  {minion node local ip} dev eth0 port 0 0 nolearning ageing 300

从flannel.1的设备信息来看,它似乎与eth0存在着某种bind关系。这是在其他bridge、veth设备描述信息中所没有的。

flannel.1设备的ip:

master node:

flannel.1 Link encap:Ethernet  HWaddr b6:bf:4c:81:cf:3b
          inet addr:172.16.99.0  Bcast:0.0.0.0  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1450  Metric:1
          RX packets:5993274 errors:0 dropped:0 overruns:0 frame:0
          TX packets:5829044 errors:0 dropped:292 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:1689890445 (1.6 GB)  TX bytes:1144725704 (1.1 GB)

minion node:

flannel.1 Link encap:Ethernet  HWaddr d6:51:2e:80:5c:69
          inet addr:172.16.57.0  Bcast:0.0.0.0  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1450  Metric:1
          RX packets:6294640 errors:0 dropped:0 overruns:0 frame:0
          TX packets:5755599 errors:0 dropped:25 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:989362527 (989.3 MB)  TX bytes:1861492847 (1.8 GB)

可以看到两个node上的flannel.1的ip与k8s cluster为两个node上分配subnet的ip范围是对应的。

下面是两个node上的当前路由表:

master node:

# ip route
... ...
172.16.0.0/16 dev flannel.1  proto kernel  scope link  src 172.16.99.0
172.16.99.0/24 dev docker0  proto kernel  scope link  src 172.16.99.1
... ...

minion node:

# ip route
... ...
172.16.0.0/16 dev flannel.1
172.16.57.0/24 dev docker0  proto kernel  scope link  src 172.16.57.1
... ...

以上信息将为后续数据包传输分析打下基础。

e) 平坦的flannel network

从以上kubernetes和flannel network安装之后获得的网络信息,我们能看出flannel network是一个flat network。在flannel:172.16.0.0/16这个大网下,每个kubernetes node从中分配一个子网片段(/24):

master node:
  --bip=172.16.99.1/24

minion node:
  --bip=172.16.57.1/24

root@node1:~# etcdctl --endpoints http://127.0.0.1:{etcd listen port} ls  /coreos.com/network/subnets
/coreos.com/network/subnets/172.16.99.0-24
/coreos.com/network/subnets/172.16.57.0-24

用一张图来诠释可能更为直观:

img{512x368}

这个是不是有些像x86-64的虚拟内存寻址空间啊(同样是平坦内存地址访问模型)!

在平坦的flannel network中,每个pod都会被分配唯一的ip地址,且每个k8s node的subnet各不重叠,没有交集。不过这样的subnet分配模型也有一定弊端,那就是可能存在ip浪费:一个node上有200多个flannel ip地址(xxx.xxx.xxx.xxx/24),如果仅仅启动了几个Pod,那么其余ip就处于闲置状态。

2、Flannel网络通信原理

这里我们模仿flannel官方的那幅原理图,画了一幅与我们的实验环境匹配的图,作为后续讨论flannel网络通信流程的基础:

img{512x368}

如上图所示,我们来看看从pod1:172.16.99.8发出的数据包是如何到达pod3:172.16.57.15的(比如:在pod1的某个container中ping -c 3 172.16.57.15)。

a) 从Pod出发

由于k8s更改了docker的DOCKER_OPTS,显式指定了–bip,这个值与分配给该node上的subnet的范围是一致的。这样一来,docker引擎每次创建一个Docker container,该container被分配到的ip都在flannel subnet范围内。

当我们在Pod1下的某个容器内执行ping -c 3 172.16.57.15,数据包便开始了它在flannel network中的旅程。

Pod是Kubernetes调度的基本unit。Pod内的多个container共享一个network namespace。kubernetes在创建Pod时,首先先创建pause容器,然后再以pause的network namespace为基础,创建pod内的其他容器(–net=container:xxx),这样Pod内的所有容器便共享一个network namespace,这些容器间的访问直接通过localhost即可。比如Pod下A容器启动了一个服务,监听8080端口,那么同一个Pod下面的另外一个B容器通过访问localhost:8080即可访问到A容器下面的那个服务。

在之前的《理解Docker容器网络之Linux Network Namespace》一文中,我相信我已经讲清楚了单机下Docker容器数据传输的路径。在这个环节中,数据包的传输路径也并无不同。

我们看一下Pod1中某Container内的路由信息:

# docker exec ba75f81455c7 ip route
default via 172.16.99.1 dev eth0
172.16.99.0/24 dev eth0  proto kernel  scope link  src 172.16.99.8

目的地址172.16.57.15并不在直连网络中,因此数据包通过default路由出去。default路由的路由器地址是172.16.99.1,也就是上面的docker0 bridge的IP地址。相当于docker0 bridge以“三层的工作模式”直接接收到来自容器的数据包(而并非从bridge的二层端口接收)。

b) docker0与flannel.1之间的包转发

数据包到达docker0后,docker0的内核栈处理程序发现这个数据包的目的地址是172.16.57.15,并不是真的要送给自己,于是开始为该数据包找下一hop。根据master node上的路由表:

master node:

# ip route
... ...
172.16.0.0/16 dev flannel.1  proto kernel  scope link  src 172.16.99.0
172.16.99.0/24 dev docker0  proto kernel  scope link  src 172.16.99.1
... ...

我们匹配到“172.16.0.0/16”这条路由!这是一条直连路由,数据包被直接送到flannel.1设备上。

c) flannel.1设备以及flanneld的功用

flannel.1是否会重复docker0的套路呢:包不是发给自己,转发数据包?会,也不会。

“会”是指flannel.1肯定要将包转发出去,因为毕竟包不是给自己的(包目的ip是172.16.57.15, vxlan设备ip是172.16.99.0)。
“不会”是指flannel.1不会走寻常套路去转发包,因为它是一个vxlan类型的设备,也称为vtep,virtual tunnel end point。

那么它到底是怎么处理数据包的呢?这里涉及一些Linux内核对vxlan处理的内容,详细内容可参见本文末尾的参考资料。

flannel.1收到数据包后,由于自己不是目的地,也要尝试将数据包重新发送出去。数据包沿着网络协议栈向下流动,在二层时需要封二层以太包,填写目的mac地址,这时一般应该发出arp:”who is 172.16.57.15″。但vxlan设备的特殊性就在于它并没有真正在二层发出这个arp包,因为下面的这个内核参数设置:

master node:

# cat /proc/sys/net/ipv4/neigh/flannel.1/app_solicit
3

而是由linux kernel引发一个”L3 MISS”事件并将arp请求发到用户空间的flanned程序。

flanned程序收到”L3 MISS”内核事件以及arp请求(who is 172.16.57.15)后,并不会向外网发送arp request,而是尝试从etcd查找该地址匹配的子网的vtep信息。在前面章节我们曾经展示过etcd中Flannel network的配置信息:

master node:

# etcdctl --endpoints http://127.0.0.1:{etcd listen port} ls  /coreos.com/network/subnets
/coreos.com/network/subnets/172.16.99.0-24
/coreos.com/network/subnets/172.16.57.0-24

# curl -L http://127.0.0.1:{etcd listen port}/v2/keys/coreos.com/network/subnets/172.16.57.0-24
{"action":"get","node":{"key":"/coreos.com/network/subnets/172.16.57.0-24","value":"{\"PublicIP\":\"{minion node local ip}\",\"BackendType\":\"vxlan\",\"BackendData\":{\"VtepMAC\":\"d6:51:2e:80:5c:69\"}}","expiration":"2017-01-17T09:46:20.607339725Z","ttl":21496,"modifiedIndex":2275460,"createdIndex":2275460}}

flanneld从etcd中找到了答案:

subnet: 172.16.57.0/24
public ip: {minion node local ip}
VtepMAC: d6:51:2e:80:5c:69

我们查看minion node上的信息,发现minion node上的flannel.1 设备mac就是d6:51:2e:80:5c:69:

minion node:

#ip -d link show

349: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN mode DEFAULT group default
    link/ether d6:51:2e:80:5c:69 brd ff:ff:ff:ff:ff:ff promiscuity 0
    vxlan id 1 local 10.46.181.146 dev eth0 port 0 0 nolearning ageing 300

接下来,flanned将查询到的信息放入master node host的arp cache表中:

master node:

#ip n |grep 172.16.57.15
172.16.57.15 dev flannel.1 lladdr d6:51:2e:80:5c:69 REACHABLE

flanneld完成这项工作后,linux kernel就可以在arp table中找到 172.16.57.15对应的mac地址并封装二层以太包了。

到目前为止,已经呈现在大家眼前的封包如下图:

img{512x368}

不过这个封包还不能在物理网络上传输,因为它实际上只是vxlan tunnel上的packet。

d) kernel的vxlan封包

我们需要将上述的packet从master node传输到minion node,需要将上述packet再次封包。这个任务在backend为vxlan的flannel network中由linux kernel来完成。

flannel.1为vxlan设备,linux kernel可以自动识别,并将上面的packet进行vxlan封包处理。在这个封包过程中,kernel需要知道该数据包究竟发到哪个node上去。kernel需要查看node上的fdb(forwarding database)以获得上面对端vtep设备(已经从arp table中查到其mac地址:d6:51:2e:80:5c:69)所在的node地址。如果fdb中没有这个信息,那么kernel会向用户空间的flanned程序发起”L2 MISS”事件。flanneld收到该事件后,会查询etcd,获取该vtep设备对应的node的”Public IP“,并将信息注册到fdb中。

这样Kernel就可以顺利查询到该信息并封包了:

master node:

# bridge fdb show dev flannel.1|grep d6:51:2e:80:5c:69
d6:51:2e:80:5c:69 dst {minion node local ip} self permanent

由于目标ip是minion node,查找路由表,包应该从master node的eth0发出,这样src ip和src mac地址也就确定了。封好的包示意图如下:

img{512x368}

e) kernel的vxlan拆包

minion node上的eth0接收到上述vxlan包,kernel将识别出这是一个vxlan包,于是拆包后将flannel.1 packet转给minion node上的vtep(flannel.1)。minion node上的flannel.1再将这个数据包转到minion node上的docker0,继而由docker0传输到Pod3的某个容器里。

3、Pod内到外部网络

我们在Pod中除了可以与pod network中的其他pod通信外,还可以访问外部网络,比如:

master node:
# docker exec ba75f81455c7 ping -c 3 baidu.com
PING baidu.com (180.149.132.47): 56 data bytes
64 bytes from 180.149.132.47: icmp_seq=0 ttl=54 time=3.586 ms
64 bytes from 180.149.132.47: icmp_seq=1 ttl=54 time=3.752 ms
64 bytes from 180.149.132.47: icmp_seq=2 ttl=54 time=3.722 ms
--- baidu.com ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.586/3.687/3.752/0.072 ms

这个通信与vxlan就没有什么关系了,主要是通过docker引擎在iptables的POSTROUTING chain中设置的MASQUERADE规则:

mastre node:

#iptables -t nat -nL
... ...
Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination
MASQUERADE  all  --  172.16.99.0/24       0.0.0.0/0
... ...

docker将容器的pod network地址伪装为node ip出去,包回来时再snat回容器的pod network地址,这样网络就通了。

四、”不真实”的Service网络

每当我们在k8s cluster中创建一个service,k8s cluster就会在–service-cluster-ip-range的范围内为service分配一个cluster-ip,比如本文开始时提到的:

# kubectl get services
NAME           CLUSTER-IP      EXTERNAL-IP   PORT(S)     AGE
index-api      192.168.3.168   <none>        30080/TCP   18d
kubernetes     192.168.3.1     <none>        443/TCP     94d
my-nginx       192.168.3.179   <nodes>       80/TCP      90d
nginx-kit      192.168.3.196   <nodes>       80/TCP      12d
rbd-rest-api   192.168.3.22    <none>        8080/TCP    60d

这个cluster-ip只是一个虚拟的ip,并不真实绑定某个物理网络设备或虚拟网络设备,仅仅存在于iptables的规则中:

Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination
KUBE-SERVICES  all  --  0.0.0.0/0            0.0.0.0/0            /* kubernetes service portals */

# iptables -t nat -nL|grep 192.168.3
Chain KUBE-SERVICES (2 references)
target     prot opt source               destination
KUBE-SVC-XGLOHA7QRQ3V22RZ  tcp  --  0.0.0.0/0            192.168.3.182        /* kube-system/kubernetes-dashboard: cluster IP */ tcp dpt:80
KUBE-SVC-NPX46M4PTMTKRN6Y  tcp  --  0.0.0.0/0            192.168.3.1          /* default/kubernetes:https cluster IP */ tcp dpt:443
KUBE-SVC-AU252PRZZQGOERSG  tcp  --  0.0.0.0/0            192.168.3.22         /* default/rbd-rest-api: cluster IP */ tcp dpt:8080
KUBE-SVC-TCOU7JCQXEZGVUNU  udp  --  0.0.0.0/0            192.168.3.10         /* kube-system/kube-dns:dns cluster IP */ udp dpt:53
KUBE-SVC-BEPXDJBUHFCSYIC3  tcp  --  0.0.0.0/0            192.168.3.179        /* default/my-nginx: cluster IP */ tcp dpt:80
KUBE-SVC-UQG6736T32JE3S7H  tcp  --  0.0.0.0/0            192.168.3.196        /* default/nginx-kit: cluster IP */ tcp dpt:80
KUBE-SVC-ERIFXISQEP7F7OF4  tcp  --  0.0.0.0/0            192.168.3.10         /* kube-system/kube-dns:dns-tcp cluster IP */ tcp dpt:53
... ...

可以看到在PREROUTING环节,k8s设置了一个target: KUBE-SERVICES。而KUBE-SERVICES下面又设置了许多target,一旦destination和dstport匹配,就会沿着chain进行处理。

比如:当我们在pod网络curl 192.168.3.22 8080时,匹配到下面的KUBE-SVC-AU252PRZZQGOERSG target:

KUBE-SVC-AU252PRZZQGOERSG  tcp  --  0.0.0.0/0            192.168.3.22         /* default/rbd-rest-api: cluster IP */ tcp dpt:8080

沿着target,我们看到”KUBE-SVC-AU252PRZZQGOERSG”对应的内容如下:

Chain KUBE-SVC-AU252PRZZQGOERSG (1 references)
target     prot opt source               destination
KUBE-SEP-I6L4LR53UYF7FORX  all  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */ statistic mode random probability 0.50000000000
KUBE-SEP-LBWOKUH4CUTN7XKH  all  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */

Chain KUBE-SEP-I6L4LR53UYF7FORX (1 references)
target     prot opt source               destination
KUBE-MARK-MASQ  all  --  172.16.99.6          0.0.0.0/0            /* default/rbd-rest-api: */
DNAT       tcp  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */ tcp to:172.16.99.6:8080

Chain KUBE-SEP-LBWOKUH4CUTN7XKH (1 references)
target     prot opt source               destination
KUBE-MARK-MASQ  all  --  172.16.99.7          0.0.0.0/0            /* default/rbd-rest-api: */
DNAT       tcp  --  0.0.0.0/0            0.0.0.0/0            /* default/rbd-rest-api: */ tcp to:172.16.99.7:8080

Chain KUBE-MARK-MASQ (17 references)
target     prot opt source               destination
MARK       all  --  0.0.0.0/0            0.0.0.0/0            MARK or 0x4000

请求被按5:5开的比例分发(起到负载均衡的作用)到KUBE-SEP-I6L4LR53UYF7FORX 和KUBE-SEP-LBWOKUH4CUTN7XKH,而这两个chain的处理方式都是一样的,那就是先做mark,然后做dnat,将service ip改为pod network中的Pod IP,进而请求被实际传输到某个service下面的pod中处理了。

五、参考资料

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats