Gopher的Rust第一课:第一个Rust程序

本文永久链接 – https://tonybai.com/2024/05/27/gopher-rust-first-lesson-first-rust-program

经过上一章的学习,我想现在你已经成功安装好一个Rust开发环境了,是时候撸起袖子开始写Rust代码了!

程序员这个历史并不算悠久的行当,却有着一个历史悠久的传统,那就是每种编程语言都将一个名为“hello, world”的示例作为这门语言学习的第一个例子,这个传统始于20世纪70年代那本大名鼎鼎的由布莱恩·科尼根(Brian W. Kernighan)与C语言之父丹尼斯·里奇(Dennis M. Ritchie)合著的《C程序设计语言》。

在这一章中,我们也将遵从传统,从编写和运行一个可以打印出“hello, world”的Rust示例程序开始我们正式的Rust编码之旅。我希望通过这个示例程序你能够对Rust程序结构有一个直观且清晰的认识。

3.1 Hello, World

“Hello, World”是一门编程语言的最简单示例的表达形式。在Go中,我们可以像下面这样编写Go版本的Hello, World程序:

package main

func main() {
    println("Hello, World!")
}

为了简单,我们甚至没有使用fmt包的Printf系列函数(这样就可以减少一行导入包的语句),而是用了内置函数println来完成将“Hello, World”输出到控制台(更准确的说是标准错误(stderr))的任务。

Rust版本的Hello, World可以比Go还要简洁,我们在一个目录下(比如rust-guide-for-gopher/helloworld/rustc)创建一个hello_world.rs的文件。哦,没错!rust的源码文件都是以.rs作为源文件扩展名的。并且对于多个单词构成的文件名,rust的惯例是采用全小写单词+下划线连接的方式命名。这个hello_world.rs文件的内容如下:

fn main() {
    println!("Hello, World!");
}

相比于Go在每个源文件中都要使用package指定该文件归属的包名,Rust无需这样的一行。和Go一样,这里的main是函数,所有可执行的Rust程序都必须有一个main函数,它是Rust程序的入口函数。和Go使用func函数声明函数不同,Rust声明函数的关键字为fn。在这个main函数中,我们调用println!将“Hello, World!”输出到控制台上。

不过,和Go内置的println函数不同的是,这里的println!并非是一个函数,而是一个Rust宏(macro)

如果你只是学过Go,而没有学过C/C++语言,你甚至都不会知道宏(macro)是什么。在Rust中,宏是一种用于代码生成和转换的元编程工具。宏允许你在编译时根据一定的模式或规则来扩展代码。Rust宏分为声明宏(Declarative Macros)和过程宏(Procedural Macros)。println!就属于声明宏,它由macro_rules! 宏定义,我们在Rust标准库的源码中可以看到其定义:

// $(rustc --print sysroot)/lib/rustlib/src/rust/library/std/src/macros.rs

#[macro_export]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "println_macro")]
#[allow_internal_unstable(print_internals, format_args_nl)]
macro_rules! println {
    () => {
        $crate::print!("\n")
    };
    ($($arg:tt)*) => {{
        $crate::io::_print($crate::format_args_nl!($($arg)*));
    }};
}

在Rust源码编译过程中,声明宏是在最开始的预处理阶段进行扩展的,我们也可以通过nightly版的rustc命令来查看println!宏展开后的结果(-Z选项只能在nightly版本中使用):

$rustc +nightly-2022-07-14-x86_64-apple-darwin  -Zunpretty=expanded  hello_world.rs
#![feature(prelude_import)]
#![no_std]
#[prelude_import]
use ::std::prelude::rust_2015::*;
#[macro_use]
extern crate std;
fn main() {
    {
        ::std::io::_print(::core::fmt::Arguments::new_v1(&["Hello, World!\n"],
                &[]));
    };
}

我们看到:println!宏被替换为一个标准库下的函数(_print)的调用。btw,到这里,你可能和我一样,看不懂println!展开后的代码,没关系,我们后续会逐步学习并掌握这些语法的。此外,宏是Rust的高级特性,这里也不展开说了。

另外一个和Go在语法上有所不同的是,Rust在每行语句后面都要显式使用分号,对于Gopher而言,这个很容易遗忘。

接下来,我们来编译和运行一下这个Rust版的Hello,World!,编译运行Rust代码的最简单方法就是通过rustc编译器将rust源码文件编译为可执行程序:

$rustc hello_world.rs

$ls
hello_world*        hello_world.rs

我们看到,示例通过调用rustc将hello_world.rs编译为了hello_world可执行文件。

运行rustc编译后的可执行文件将得到下面输出结果:

$./hello_world
Hello, World!

我们看到”Hello, World!”被打印到控制台。

如果觉得默认编译出的hello_world文件名字较长,我们也可以像go build -o那样指定rustc编译后得到的目标可执行文件的名字,下面的命令通过-o选项将编译后的程序命名为hello:

$rustc -o hello hello_world.rs

rustc编译出来的二进制文件size并不大,仅有400多KB(而Go默认构建的Hello, World!有1.3MB,在我的macOS上):

$ls -lh
total 856
-rwxr-xr-x  1 tonybai  staff   423K  4 20 17:56 hello_world*

我们还可以通过去掉symbols的方式继续让其“瘦身”到不到300KB(通过go build -ldflags=”-s -w” helloworld.go去除符号表和调试信息的Go二进制程序还有近900K的大小):

$rustc -C strip=symbols hello_world.rs
$ll -h
total 608
-rwxr-xr-x  1 tonybai  staff   297K  4 20 17:57 hello_world*

上面的”Hello, World”程序虽然足够简单,也能够运行,但对于初学者而言,它有两个“不足”:一来这个例子的确“太简单”,简单到无法充分展示单个Rust源码文件的结构;二来这个示例只使用了一个单个源文件,与实际开发中那种由多个文件组成的Rust实用工程有差别,同样无法帮助我们理解实用性的Rust工程的结构。

为了更好地理解Rust工程与单个源文件的构成,我们将编写一个稍微复杂一点的版本,它将使用Rust的构建管理工具cargo建立,并使用Rust标准库中的std::io模块进行输入/输出操作。

3.2 cargo版本的Hello, World

在实际开发中,Rust程序通常由多个源文件组成,并使用Cargo作为构建系统和包管理器。Cargo可以帮助我们管理项目的源代码、依赖库、构建任务等。下面我们就来创建一个使用Cargo的”Hello, World”。

3.2.1 使用Cargo创建Hello,World

我们在一个目录下(比如:rust-guide-for-gopher/helloworld/cargo)执行下面命令来创建hello_world:

$cargo new hello_world
    Created binary (application) `hello_world` package

cargo默认创建了一个binary(application)类型的rust package,我们来看看初始情况下这个rust package下都有哪些内容:

$tree hello_world
hello_world
├── Cargo.toml
└── src
    └── main.rs

1 directory, 2 files

其中,Cargo.toml是Rust包的清单(manifest)文件。它包含有关包及其依赖项的元数据。以下是上面Cargo.toml文件的全部内容:

// Cargo.toml
[package]
name = "hello_world"
version = "0.1.0"
edition = "2021"

# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]

其中package下面的字段含义如下:

  • name: 包的名称;
  • version: 包的版本,遵循语义化版本控制规则;
  • edition: 包使用的Rust版本(edition)。在这里,它被设置为目前的最新edition:2021版。edition提供了一种向后兼容的方式来演化和改进Rust。每个edition都是向后兼容的,这意味着旧edition下编写的Rust代码可以继续在新edition版本的Rust下编译和运行,而无需进行修改。这样,开发者可以按照自己的节奏选择是否迁移到新的edition。

dependencies下面则是会记录该package对第三方依赖的情况,这个示例中并无三方依赖,因此这里为空。

我们的代码放在了src目录下,这也是rust包的标准布局。为了更好地理解Rust程序的构成,我们将编写一个稍微复杂一点的Hello, World!版本,它使用Rust标准库中的std::io模块进行输入/输出操作:

// rust-guide-for-gopher/helloworld/cargo/hello_world/src/main.rs
use std::io;
use std::io::Write;

fn main() {
    let mut output = io::stdout();
    output.write(b"Hello, World!").unwrap();
    output.flush().unwrap();
}

这个Rust的”Hello, World”程序展示了一个典型的Rust源文件结构,包括导入语句、主函数定义以及一系列的方法调用。它演示了如何使用标准库的io模块来向标准输出流打印”Hello, World!”。下面是对其程序结构的简单总结:

  1. 导入语句

源文件在最开始处使用use std::io; 和use std::io::Write;这两行导入了标准库中的io模块及其Write trait。这样程序就可以在后面的代码中直接使用io和Write,而无需完整地写出它们的命名空间。这里我们先不用关心trait是什么,你大可将其理解为和Go interface差不多的语法元素就行了。

  1. 主函数

main定义了程序的入口点。Rust 程序从main函数开始执行。

  1. 可变变量

let mut output = io::stdout(); 这行代码创建了一个可变变量output,它绑定到了一个标准输出流(stdout)。mut关键字表示该变量是可变的,可以在后续代码中修改它的值。关于变量以及绑定,我们在后面有专门的章节说明。这里要注意的是,和Go变量不同的是,Rust中的变量默认是不可变的,只有显式用mut声明的变量才是可变的。

  1. 方法调用

output.write(b”Hello, World!”).unwrap(); 调用了output的write方法,传递了一个字节串作为参数。该方法用于将字节写入输出流。unwrap方法用于处理方法调用可能产生的错误,它在这里表示“我相信这个方法调用会成功,如果不成功,就让程序 panic”。同理,output.flush().unwrap()也是这样的。关于错误以及异常处理的话题,我们会在后面进行专题性学习。

理解了源码后,我们来编译和运行一下这个程序,这次我们不再使用rustc,而是用cargo来实现。

3.2.2 使用Cargo构建Hello, World

要构建上面的示例程序,我们只需在项目根目录下运行下面命令:

$cargo build
   Compiling hello_world v0.1.0 (/Users/tonybai/Go/src/github.com/bigwhite/experiments/rust-guide-for-gopher/helloworld/cargo/hello_world)
    Finished dev [unoptimized + debuginfo] target(s) in 1.23s

构建成功后,我们再来查看一下当前项目下的结构变化:

$tree -F
.
├── Cargo.lock
├── Cargo.toml
├── src/
│   └── main.rs
└── target/
    ├── CACHEDIR.TAG
    └── debug/
        ├── build/
        ├── deps/
        │   ├── hello_world-07284f5d84374479*
        │   ├── hello_world-07284f5d84374479.1atc14vk0u28taij.rcgu.o
        │   ├── hello_world-07284f5d84374479.1bu89c2i9mazzqif.rcgu.o
        │   ├── hello_world-07284f5d84374479.26e3nxhmk9lhy9zy.rcgu.o
        │   ├── hello_world-07284f5d84374479.29l81xyv0i4g8s88.rcgu.o
        │   ├── hello_world-07284f5d84374479.41i7ln85cwseljfw.rcgu.o
        │   ├── hello_world-07284f5d84374479.4iz3ubiqrvegnjdp.rcgu.o
        │   ├── hello_world-07284f5d84374479.53vu8cjirf8g6rnw.rcgu.o
        │   ├── hello_world-07284f5d84374479.5f6ye0ayl23rccqv.rcgu.o
        │   └── hello_world-07284f5d84374479.d
        ├── examples/
        ├── hello_world*
        ├── hello_world.d
        └── incremental/
            └── hello_world-16yuztatbr0vh/
                ├── s-gvfwmugno5-1gy801r-1i2g78r4nmg489ix0nuktmqgb/
                │   ├── 1atc14vk0u28taij.o
                │   ├── 1bu89c2i9mazzqif.o
                │   ├── 26e3nxhmk9lhy9zy.o
                │   ├── 29l81xyv0i4g8s88.o
                │   ├── 41i7ln85cwseljfw.o
                │   ├── 4iz3ubiqrvegnjdp.o
                │   ├── 53vu8cjirf8g6rnw.o
                │   ├── 5f6ye0ayl23rccqv.o
                │   ├── dep-graph.bin
                │   ├── query-cache.bin
                │   └── work-products.bin
                └── s-gvfwmugno5-1gy801r.lock*

9 directories, 28 files

我们看到cargo build执行后,项目下多出了好多目录和文件。这些目录和文件都是做什么的呢?我们挑选主要的来看一下。

  • Cargo.lock文件

Cargo的锁定文件,用于记录每个依赖项的确切版本号,以保证构建的可重复性。

这个示例中由于没有使用第三方依赖,这个Cargo.lock文件中的内容不具典型性:

# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3

[[package]]
name = "hello_world"
version = "0.1.0"

另外Cargo.lock文件完全由cargo自动管理,开发人员不需要也不应该对其进行手动修改。

  • target目录

存放构建输出的目录,用于存储编译后的目标文件和可执行文件。

  • target/CACHEDIR.TAG

用于标记target目录为一个缓存目录的文件。它的内容如下:

$cat CACHEDIR.TAG
Signature: 8a477f597d28d172789f06886806bc55
# This file is a cache directory tag created by cargo.
# For information about cache directory tags see https://bford.info/cachedir/

这是一个符合Cache Directory Tagging Specification的Tag文件。

  • target/debug

调试模式下的构建输出目录,存储生成的可执行文件和相关文件。

  • target/debug/incremental

增量编译的目录,用于存储增量编译过程中的临时文件和缓存。

Rust编译过程缓慢,这个对比Go简直就是地下天上。在日常开发中,基于增量编译的文件进行增量构建可以大幅缩短编译时间。

  • target/debug/build

编译过程中生成的临时构建文件的目录。

  • target/debug/deps

存储编译生成的目标文件(.o 文件)和相关的依赖项。

  • target/debug/hello_world

调试模式下生成的可执行文件。

  • target/debug/hello_world.d

与hello_world相关的依赖关系信息的文件。

执行debug目录下的hello_world将得到如下输出:

$./target/debug/hello_world
Hello, World!

在Go中我们可以使用go run来直接编译和运行Go源码文件,cargo也提供了该功能,我们在项目根目录下运行cargo run也可以编译和执行hello_world:

$cargo run
    Finished dev [unoptimized + debuginfo] target(s) in 0.05s
     Running `target/debug/hello_world`
Hello, World!

无论是cargo run还是cargo build,默认构建的都是debug版本的可执行程序,程序中包含大量符号信息和调试信息,并且其优化级别也不是很高。发布到生产环境的程序应该是release模式下的,通过–release参数,我们可以构建release版本的可执行程序:

$cargo build --release
   Compiling hello_world v0.1.0 (/Users/tonybai/Go/src/github.com/bigwhite/experiments/rust-guide-for-gopher/helloworld/cargo/hello_world)
    Finished release [optimized] target(s) in 1.06s

构建后,target目录下会多出一个release目录,其下面的内容如下:

$tree -F target/release
target/release
├── build/
├── deps/
│   ├── hello_world-c41defdc625f9244*
│   └── hello_world-c41defdc625f9244.d
├── examples/
├── hello_world*
├── hello_world.d
└── incremental/

4 directories, 4 files

相对于debug版本,release版本由于实时了大量优化,通常其构建时间会比debug版本要长。但构建出的release版本的size则要小很多。

无论是debug,还是release版,target下面都生成了许多中间文件,如果要清理文件并重头构建,我们可以使用cargo clean命令将target彻底清除:

$cargo clean
     Removed 40 files, 2.1MiB total

当然cargo clean也支持一些命令行参数,可以选择清除哪些文件。

3.2.3 使用Cargo创建library类包

通过上面的例子,我们知道cargo new默认创建的binary类型的rust package,如果我们要创建library类型的rust package,我们需要向cargo new传递–lib选项。下面的命令创建一个名为foo的library类型的rust package:

$cargo new --lib foo
     Created library `foo` package

我们看一下foo package下的目录结构:

$tree -F foo
foo
├── Cargo.toml
└── src/
    └── lib.rs

1 directory, 2 files

和binary类不同的是,src目录下不再是main.rs,而是lib.rs,它是library类package的入口:

//rust-guide-for-gopher/helloworld/cargo/foo/lib.rs

pub fn add(left: usize, right: usize) -> usize {
    left + right
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn it_works() {
        let result = add(2, 2);
        assert_eq!(result, 4);
    }
}

lib.rs中只是一个library类package的入口模板,开发人员需要根据自己的需要对其进行调整。关于lib.rs中的内容,我们将在下一章讲解Rust代码组织时做细致说明,这里就不展开说了。

对于library类Rust package,我们同样可以通过cargo build和cargo build –release构建,下面是执行构建后目录文件情况:

$tree
.
├── Cargo.lock
├── Cargo.toml
├── src
│   └── lib.rs
└── target
    ├── CACHEDIR.TAG
    ├── debug
    │   ├── build
    │   ├── deps
    │   │   ├── foo-24c6d6228c521501.2k5t0f94hnorqpgh.rcgu.o
    │   │   ├── foo-24c6d6228c521501.d
    │   │   ├── libfoo-24c6d6228c521501.rlib
    │   │   └── libfoo-24c6d6228c521501.rmeta
    │   ├── examples
    │   ├── incremental
    │   │   └── foo-m2biu8poxl6i
    │   │       ├── s-gvg68shtlp-1oqrf4n-irxhgoe7rhwmtvj6jwexcu0h
    │   │       │   ├── 2k5t0f94hnorqpgh.o
    │   │       │   ├── dep-graph.bin
    │   │       │   ├── query-cache.bin
    │   │       │   └── work-products.bin
    │   │       └── s-gvg68shtlp-1oqrf4n.lock
    │   ├── libfoo.d
    │   └── libfoo.rlib
    └── release
        ├── build
        ├── deps
        │   ├── foo-9f2dd76beda509bd.d
        │   ├── libfoo-9f2dd76beda509bd.rlib
        │   └── libfoo-9f2dd76beda509bd.rmeta
        ├── examples
        ├── incremental
        ├── libfoo.d
        └── libfoo.rlib

14 directories, 20 files

我们看到,无论是debug还是release,cargo build构建的结果都是libfoo.rlib。.rlib文件是Rust的静态库文件,通常用于代码的模块化和重用,我们在后续章节讲解中,会详细说明如何使用这些构建出来的静态库。

3.3 小结

本文介绍了如何使用Rust编写”Hello, World”程序,并分别给出了rustc版和cargo版的hello, world程序版本。

在这个过程中,文章还介绍了Rust中的宏概念,并展示了如何使用println!宏来输出文本。

之后,文章聚焦于使用Cargo构建的hello,world程序版本,介绍了cargo的构建、清理、debug和release版本的区别等,最后还提及了如何使用cargo创建library类的Rust package。

cargo贯穿Rust程序的整个生命周期,在后续的每一章中可能都会提及cargo。

本章中涉及的源码可以在这里下载。


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go团队:Go是什么

本文永久链接 – https://tonybai.com/2024/05/19/what-the-go-team-think-go-is

2024年的Google I/O大会如期而至。

这届大会的核心主旨毫无疑问是坚定不移的以AI为中心:Google先是发布了上下文长度将达到惊人的200万token的Gemini 1.5 Pro,然后面对OpenAI GPT-4o的挑衅,谷歌在大会上直接甩出大杀器Project Astra,视觉识别和语音交互效果,跟OpenAI的GPT-4o不相上下;接着,谷歌又祭出文生视频模型Veo硬刚Sora,效果酷炫,时长超过1分钟,打破Sora纪录。最后Google CEO劈柴宣布:谷歌搜索将被Gemini重塑,形态从此彻底改变!用户不再需要自己点进搜索结果,而是由多步骤推理的AI Overview来代办一切。

不过,除了AI之外,Google在移动、Web和Cloud几个平台方面也为开发者带来了诸多精彩的内容,这其中就包括由Google Cloud团队带来的“Profile-guided optimization with Go”的演讲:

注:目前,Go团队已归入Google Cloud团队管理。

该演讲由Cameron Balahan、Michael Pratt和James Ma三个人共同完成。其中长相颇似电影“源代码”主角杰克·吉伦哈尔的Cameron Balahan在演讲中首先登场,阐述了Go团队眼中的Go究竟是什么

2022年,美国计算机学会通讯(Communications of the ACM)期刊2022年5月第65卷第5期将发表了一篇有关Go语言的综述类Paper:《Go编程语言与环境》,这篇文章由Russ Cox,Robert Griesemer,Rob Pike,Ian Lance Taylor和Ken Thompson等Go团队的大佬联合撰写,对10多年来Go演化发展进行了复盘,深入分析了那些对Go的成功最具决定性的设计哲学与决策,这算是Go团队第一次阐述Go究竟是什么。

而Cameron Balahan这次的演讲算是Go团队加入Google Cloud后对Go未来定位和演进上的一次说明,虽然简短,但对Gopher们也极具参考意义。在这篇文章中,我们就来看看Cameron Balahan所代表的的Go团队对Go语言的观点。

Go是构建生产系统的高效平台

Go团队认为的第一点,也可能是最重要的一点是:Go不仅仅是一种编程语言,它是一个完整的端到端构建生产系统的平台。这一直都是Go团队的愿景。Go从一开始就是为了在规模化的实际软件工程中提供便利。并且,Go团队在Google内部将该愿景简化成了下面幻灯片中的使命陈述:Go提供了构建生产系统的最高效平台。

说Go很高效(Go is productive),是因为Go易于学习和维护,并且可以在团队之间扩展(scale)。

说Go是一个平台(Go is a platform),是因为它不仅仅是一种语言,它是一种端到端的开发者体验,包括IDE集成,构建和部署工具,监控工具,运行时工具,漏洞扫描等等,这些都是开箱即用的。

说Go是生产就绪的(Go is production ready ),是因为它可靠(reliable)、高效(efficient)、稳定(stable)和安全(secure),这就是为什么大家会在企业中看到它的身影的原因,尤其是在关键业务系统和基础设施中,遍布整个云计算领域。实际上,这也是现代云计算本身建立在Go之上的原因。这并不仅仅指Google Cloud,我指的是所有主要的云服务提供商以及所有其他主要的参与者以及云工具和技术。

Go的无限双循环

无限双循环是一个很好的思考更广泛的软件开发生命周期的方式。左边的循环是内部开发循环,也就是大家编写代码的地方。你迭代地很快,寻求快速反馈和高效率。而右边的循环可以看作是外部循环,你已经部署了你的代码到生产中,你要监控和操作它。

因此,当Go团队将Go作为一个平台来考虑时,他们将考虑如何端到端地解决这整个过程,包括内部和外部循环。Cameron下面基于这个循环从developer velocity(开发人员效率)、security(安全)和performance(性能)等方面分别举一些Go如何解决这些问题的例子。

developer velocity(开发人员效率)

Go有一些旨在为了最大化你团队的开发人员效率的语言特性、工具和库。包括了从编写代码到将其推送到生产,再到之后可靠运维的整个过程。

Go团队提供IDE集成,包括为Visual Studio Code开发的插件,使其能够轻松利用其余工具链的特性。Go还提供了强大的并发模型,通过Goroutine实现。Go有内置的格式化工具、内置的测试框架和内置的调试器。Go编译器本身构建静态独立二进制文件,不依赖任何系统范围的依赖项或单独的运行时,这使得部署比其他语言更容易、更安全、更快。这是一种端到端的解决方案,用于获取和维护开发人员效率。

security(安全)

Go在安全性方面是领先者,这一点Go也是端到端解决的。如果你在关注最新的XZ软件供应链攻击新闻,你就会知道这是多么重要,也许比以往任何时候都更重要。这是Go团队非常重视的一个领域,因为他们已经看到在其他语言生态系统中,当一个流行的依赖项被破坏时会发生什么。

由于Go被用于云中所有这些关键基础设施,Go团队认识到安全性是Go应该提供的最重要的功能之一。从依赖管理系统开始,Go先后有了Go Module Mirror、Checksum Database和pkg.go.dev网站,它们都会警告你所依赖的库是否被篡改或遭受已知漏洞。

此外,Go的IDE集成很深入。如果你使用Go的VS Code插件,你会在IDE中就收到关于依赖项中的漏洞警告,包括你是否实际上从代码中调用了这些漏洞。这样,在真正依赖它们进入生产环境之前,你就知道了依赖项的安全态势。Go也是唯一一种将模糊测试内置并集成到其工具链中的主流语言。模糊测试就像一种自动化的测试类型,它会智能地操纵你程序的输入,以找出bug和漏洞。

最后,Go有兼容性承诺,从Go 1.0开始就确保没有破坏性更改。这意味着升级很容易,这使保持最新的安全修复变得容易,跟上增强功能也很容易。去年在Go 1.21中,Go团队在此基础上增加了向前和向后兼容性特性。Go团队确实将兼容性视为不仅仅是一种便利,更是一种关键的安全特性。

performance(性能)

Go的标准库功能丰富且健壮,并针对性能进行了优化。你可以真正构建任何东西,而无需导入一些重型库或框架。Go还有一个自我调优的垃圾收集器。如果你曾经花时间为Java调优垃圾收集器,你就会知道这简直就像是一份全职工作。它可能需要耗费的时间和你最初编写代码一样长。在Go中,垃圾收集器开箱即用,运行高效,并会自动调整以适应你的工作负载需求。 当然,还有Profile Guided Optimization(PGO),使用过PGO的开发者都很喜欢它。有些开发者甚至已经看到了令人印象深刻的性能提升。

开箱即用(out of the box)

图片中所有这些特性都符合开箱即用的端到端解决方案这一框架,正是这使Go成为构建生产系统最高效的平台。

Go团队在做所有这些的同时,也获得了来自用户的非常出色的反馈。大部分Go用户真的很喜欢Go。我们在调查中一直看到这一点,客户满意度水平(93%)实际上在业内是罕见的。

Go特性与客户价值定位

第一行可视为与生产力相关的内容。Go支持快速入门、快速迭代、快速构建真正可扩展的生产应用程序。所有这些都转化为你更快获得价值。

第二行是关于可靠性的,包括安全性、兼容性以及所有能够减少你长期维护和运维负担的内容。负担越小,你的总体拥有成本就越低,你就有更多时间和资源专注于推动业务增长的新事物。

第三行是关于云的。Go就像是为云量身定制的一样。Go启用的库、集成和架构都是为云而设计的,而不是后来才重新调整以适应云。因此,你将比使用其他语言时能更快更轻松地实现云的优势。

最后,Go用户是快乐的。他们无论在哪里都很开心。而且在Google Cloud上,他们尤其开心。每个人都喜欢开心的开发人员和运维人员。

小结

Google I/O 2024大会上Go团队代表对Go语言及其在软件工程领域的定位做了新的诠释:Go不仅是一种编程语言,更是一个端到端构建生产系统的高效平台

Go团队认为Go易学易维护,可扩展,同时可靠、高效、稳定和安全,适合在企业中使用,尤其是关键业务系统和基础设施领域。

文中介绍了将Go的愿景拆解为Go的”无限双循环”的理念。其中内循环侧重开发效率,外循环侧重可靠运维。Go在开发人员效率、安全性和性能等方面都有出色的解决方案。如IDE集成、并发模型、格式化工具、测试框架、调试器、静态部署等有助提高开发效率;依赖管理、漏洞扫描、模糊测试等确保安全性;垃圾回收、编译优化等提升性能。

此外,Go兼具快速入门、快速迭代、可扩展构建、安全可靠、低运维成本、云原生设计等特性,能让客户快速获得价值、降低总拥有成本、享受云优势,获得高客户满意度。Go可视为构建现代云基础设施的理想语言。


Gopher部落知识星球在2024年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。同时,我们也会加强代码质量和最佳实践的分享,包括如何编写简洁、可读、可测试的Go代码。此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats