标签 设计模式 下的文章

“香蕉、猴子和整片丛林”:我们是否深陷于 OOP 的“优雅”陷阱?

本文永久链接 – https://tonybai.com/2025/11/29/oop-the-worst-thing-that-happened-to-programming

大家好,我是Tony Bai。

Erlang 之父 Joe Armstrong 曾提出了一个关于面向对象编程(OOP)的、流传甚广的深刻比喻:

“你想要一根香蕉,但你得到的却是一只拿着香蕉的猴子,以及整片丛林。”

这个比喻辛辣地讽刺了 OOP 中继承(Inheritance)等机制带来的强耦合与不必要的复杂性。近日,一篇由 Alexander Danilov 撰写的、题为《OOP:编程史上发生的最糟糕的事》的文章,则以一种更系统、更“檄文”式的方式,为我们详细解剖了这只“猴子”和这片“丛林”的构成。

Danilov 的文章,如同一份详细的“丛林勘探报告”,迫使我们重新审视,我们最初只是想要的那根香蕉(代码复用),是如何让我们不知不觉地,深陷于一片由类、继承和“魔法”构成的、盘根错节的“优雅”陷阱之中的。

想要香蕉,却来了只猴子 (继承的“原罪”)

故事始于一个最简单的愿望:代码复用。Danilov 在文章中展示了一个典型的场景:我们有一个 User 类,现在想创建一个 Npc(非玩家角色),它也需要 User 的 name 和 surname 字段。

在 OOP 的世界里,最“优雅”的做法就是继承

// OOP - Inheritance (Danilov's example)
class User {
  id: string
  name: string
  surname: string
  address: string
  friends: User[]
  // ... a dozen other fields and methods ...
}

// “优雅"的陷阱:为了得到 name 和 surname (香蕉),
// 我们被迫继承了 User 的全部 (猴子)
class Npc extends User {
  constructor(name: string, surname: string) {
    // 我们被迫为那些根本不需要的字段提供空值
    super(name, surname, "", [])
  }
}

我们成功地拿到了香蕉,但代价是,我们必须同时领养一只我们不想要的猴子——User 的所有其他字段和方法,如 address, friends 等。这只猴子不仅增加了我们代码的认知负荷,更在内存中占用了不必要的空间。

Danilov 指出,与之相对,函数式/组合式的思路则要直接得多:

// FP/Composition
type BaseUser = { id: string; name: string; surname: string }
type User = BaseUser & { address: string; friendIds: string[] }
type Npc = BaseUser // Npc 只是 BaseUser 的一个别名

通过组合而非继承,我们可以像搭乐高积木一样,精确地选择自己需要的“零件”(香蕉),而不会被迫带上任何多余的“猴子”。

猴子带来了它的朋友们 (方法的强耦合)

Danilov 的批判并未止步于继承。他将矛头直指 OOP 的另一个核心——实例方法 (Instance Method)。他认为,一个实例方法,本质上就是一个被“绑架”了的函数,它的第一个参数被隐式地、硬编码地绑定到了一个特定的类实例 (this) 上。

这场“绑架”,直接导致了方法的可重用性极差。一个 User 类的 getDisplayName() 方法,无法被一个同样拥有 name 字段的 Dog 对象复用。方法与其所属的类(猴子)形成了不可分割的共生关系。

更糟糕的是,Danilov 还展示了 OOP 语言为了管理这种绑定关系而发明的、迷宫般复杂的重写 (Override) 规则(如 C# 中的 virtual, override, sealed),他讽刺道:“想出这个的人,显然觉得 OOP 中‘搬起石头砸自己脚’的方法还不够多。”

为了管理猴群,我们建了座丛林 (设计模式与 DI 容器)

当我们的代码库里充满了各种各样的猴子(类),它们之间有着复杂的亲缘关系(继承链)和社交网络(依赖关系)时,事情开始失控。于是,为了“优雅”地管理这群日益庞大的猴子,我们开始建造一座丛林

Danilov 对这座“丛林”的构成进行了无情的剖析:

  • 设计模式 (Design Patterns):他认为,绝大多数 GoF 的设计模式,都并非普适的智慧,而只是在 OOP 的种种限制下,为了实现本应简单的功能而发明的、复杂的“变通方案” 或“拐杖”。例如,“装饰器模式”就是为了在无法使用继承时,动态地为对象添加功能。

  • 依赖注入容器 (DI Containers):这是丛林里最“魔法”的部分。Danilov 回忆起他第一次面试 C# 时遇到的那段“童年阴影”代码,其中一个类的实例,通过静态构造函数和静态字段“自我创建”。他当时就感到困惑:“人类的大脑是如何以及为何会想出这种东西?” 后来他才明白,这只是通往 DI 容器“更深层魔法”的第一步。当一个 @Service 或 @Inject 注解就能让一个实例“凭空出现”时,你就失去了对程序启动和依赖关系最宝贵的洞察力——可预测性。当系统出错时,我们如同在伸手不见五指的丛林里,根本不知道那根有毒的香蕉,究竟是从哪棵树上掉下来的。

走出丛林 —— Go 语言的“反叛”与“重构”

在这场关于“香蕉、猴子与丛林”的寓言中,Go 语言扮演了一个“破局者”的角色。Danilov 在文章的最后,也将 Go 列为值得推荐的现代语言之一,正是因为它在设计上,系统性地回应并解决了 OOP 的诸多“原罪”。

Go 的方式并非简单粗暴地全盘否定,而是一种深刻的“反叛”与“重构”:它保留了 OOP 中部分有价值的表象(如 . 点号调用),却在底层彻底重构了其实现哲学。

没有继承,只有组合:直接砍掉“猴子”

这是 Go 最彻底的“反叛”。Go 完全废除了类型间的继承。取而代之的是更灵活的结构体嵌入 (Embedding)。你可以将一个 Nameable 结构体(香蕉)嵌入到 User 和 Npc 中,精确地实现复用,而不会被迫带上任何多余的“猴子”。这正是“组合优于继承”原则在语言层面的终极体现。

没有类,但有方法:将“被绑架的函数”解放出来

Go 确实有方法 (Method)。然而,Go 的方法与 OOP 的实例方法,在哲学上有着根本性的不同。

  • 在 OOP 中,方法是类定义的一部分,与数据紧密耦合。
  • 在 Go 中,方法是通过 func (receiver T) MethodName() 的语法,“附加”到一个类型上的。数据 (struct) 和行为 (func) 在定义上是分离的

这种“分离”的设计,使得 Go 的方法更像是一个以 receiver 作为第一个参数的、被赋予了特殊“点号调用”语法糖的普通函数

它巧妙地实现了“两全其美”:

  • 保留了便利性:我们依然可以写出 user.GetDisplayName() 这样符合直觉的代码。
  • 获得了灵活性:由于底层仍是函数,它鼓励我们思考更通用的、基于接口而非具体类型的解决方案,从而避免了 OOP 方法的强耦合问题。

隐式的、非侵入式的接口:重新定义“多态”

Go 的接口设计,是对传统 OOP 接口(如 Java 的 implements)的一次彻底革命。

  • 在传统 OOP 中,一个类必须在定义时就明确声明它要实现哪个接口。这是一种侵入式的、预先绑定的关系。
  • 在 Go 中,接口的实现是隐式的、非侵入式的。任何类型,只要它拥有一个接口所要求的所有方法,它就自动地、在事后满足了这个接口。

这种设计带来了巨大的灵活性,使得我们可以为任何(甚至是来自第三方库的)类型,定义我们自己的接口,而无需修改其源代码。这是对“依赖倒置原则”的终极实践。

拒绝“魔法”,拥抱显式

Danilov 所批判的 DI 容器和各种“魔法”,在 Go 的世界里几乎没有生存的土壤。

Go 的依赖管理就是简单的 import。一个包的 API,就是它导出的所有函数、类型和变量。一切都是显式的、可被静态分析的,没有注解驱动的“自动装配”,也就没有了那片需要“魔法”才能导航的丛林。

Danilov 引用了 Java 之父 James Gosling “后悔加入类”的传闻,以及 Linus Torvalds 禁止在 Linux 内核中使用 C++ 的决定,来佐证他的观点。而 Go 语言,似乎正是这些“巨人”反思的结晶。

Go 语言并非简单地回归到 C 语言那样的纯粹过程式编程。它更像是一位高明的外科医生,精准地解剖了 OOP 这具“巨人”的尸体,剔除了其中已经腐坏的组织(如继承),重构并解放了其依然有活力的器官(如方法和接口),最终创造出了一个更简单、更健壮、也更符合现代工程实践的新物种。

小结:简单,才是终极的优雅

Danilov 的文章,以一种辛辣而深刻的方式,揭示了 OOP 所承诺的“优雅”,在数十年的实践中,是如何常常演变成一个诱人的陷阱。它以“模拟现实世界”为名,引导我们构建起复杂的继承体系和对象网络,最终将我们自己困在了这片由“香蕉、猴子和丛林”组成的、难以维护的复杂性之中。

而 Go 语言的故事,则是一个关于“回归”的故事。它没有试图发明更聪明的“魔法”来隐藏复杂性,而是选择从根源上消除复杂性

它提醒我们,真正的优雅,并非来自于那些能够驾驭复杂丛林的精巧工具,而是来自于从一开始,就选择不走进那片丛林的智慧。

资料链接:https://alexanderdanilov.dev/en/articles/oop


聊聊你的“OOP”爱恨情仇:

  • 你是否也在项目中遇到过“香蕉、猴子和整片丛林”的困境?
  • 你认为OOP在哪些场景下依然是“最优解”?
  • 对于像Go/Rust等新一代编程语言的“反叛”与“重构”,你有哪些认同或不同的看法?

欢迎在评论区留下你的思考与争鸣,让我们一起探寻更优雅的编程之道!


你的Go技能,是否也卡在了“熟练”到“精通”的瓶颈期?

  • 想写出更地道、更健壮的Go代码,却总在细节上踩坑?
  • 渴望提升软件设计能力,驾驭复杂Go项目却缺乏章法?
  • 想打造生产级的Go服务,却在工程化实践中屡屡受挫?

继《Go语言第一课》后,我的《Go语言进阶课》终于在极客时间与大家见面了!

我的全新极客时间专栏 《Tony Bai·Go语言进阶课》就是为这样的你量身打造!30+讲硬核内容,带你夯实语法认知,提升设计思维,锻造工程实践能力,更有实战项目串讲。

目标只有一个:助你完成从“Go熟练工”到“Go专家”的蜕变! 现在就加入,让你的Go技能再上一个新台阶!


还在为“复制粘贴喂AI”而烦恼?我的新专栏 AI原生开发工作流实战 将带你:

  • 告别低效,重塑开发范式
  • 驾驭AI Agent(Claude Code),实现工作流自动化
  • 从“AI使用者”进化为规范驱动开发的“工作流指挥家”

扫描下方二维码,开启你的AI原生开发之旅。


商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。如有需求,请扫描下方公众号二维码,与我私信联系。

Go项目设计的“七宗罪”?警惕那些流行的“反模式”

本文永久链接 – https://tonybai.com/2025/04/21/go-project-design-antipatterns

大家好,我是Tony Bai。

在软件开发这个行当里,“最佳实践”、“设计模式”、“标准规范”这些词汇总是自带光环。它们总是承诺会带来更好的代码质量、可维护性和扩展性。然而,当这些“圣经”般的原则被生搬硬套到Go语言的语境下时,有时非但不能带来预期的好处,反而可能把我们引入“歧途”,滋生出一些看似“专业”实则有害的“反模式”。

最近我也拜读了几篇国外开发者关于Go项目布局和设计哲学的文章,结合我自己这些年的实践和观察,我愈发觉得,Go社区中确实存在一些需要警惕的、流行的设计“反模式”。这些“反模式”很多人都或多或少的使用过,包括曾经的我自己。

在这篇文章中,我就总结一下我眼中的Go项目设计“七宗罪”,希望能帮助大家在实践中保持清醒,做出更符合Go精神的决策。

第一宗罪:为了结构而结构——过度分层与分组

表现: 项目伊始,不假思索地创建pkg/、internal/、cmd/、util/、model/、handler/、service/ 等层层嵌套的目录,美其名曰“组织清晰”、“符合标准”。

危害:
* 违背简洁: Go 的核心哲学是简洁。不必要的目录层级增加了认知负担和导航成本。
* 过早抽象/耦合: 在需求尚不明确时就划分 service、handler 等,可能导致错误的抽象边界和不必要的耦合。
* pkg/ 的迷思: pkg/ 是一个过时的、缺乏语义的约定,Go官方在Go 1.4时将Go项目中的pkg层次去掉了,Go官方的module布局指南中也使用了更多有意义的名字代替了pkg。
* internal/ 的滥用: 它是 Go 工具链的一个特性,用于保护内部实现不被外部导入。但如果你的项目根本不作为库被外部依赖,或者需要保护的代码很少,强制使用 internal/ 只会徒增复杂性。
* cmd/ 的误用: 除非你的仓库包含多个独立的可执行文件,否则将单一的main.go放入cmd/毫无必要。

解药: 保持扁平!从根目录开始,根据实际的功能或领域需要创建有意义的包。让结构随着项目的增长有机演化,而不是一开始就套用模板。

注:笔者当年也是pkg的“忠实粉丝”,新创建一个项目,无论规模大小,总喜欢先将pkg目录预创建出来。现在是时候根据项目的演进和规模的增长来判断是否需要”pkg”这个有点像“namespace”的目录了,即当你有多个希望公开的库时,是否用pkg/作为一个顶层分组,这个是要基于项目的实际情况进行判断的。

第二宗罪:无效的“美化运动”——无价值的重构与移动

表现: 为了让代码看起来“更干净”、“更符合某种设计模式”或“消除Linter警告”,在没有明确收益(修复 Bug、增加功能、提升性能、解决安全问题)的情况下,大规模地移动代码、修改变量名、调整文件结构。

危害:
* 浪费时间精力: 投入大量时间做无意义的表面文章。
* 引入风险: 任何修改都有引入新 Bug 的风险,没有价值的修改更是得不偿失。
* 增加 Code Review 负担: 团队成员需要花费时间理解这些非功能性的变更。
* 违背价值驱动: 软件工程的核心是交付价值,而不是追求代码的“艺术感”。

解药: 坚持价值驱动的变更!在做任何结构或代码调整前,严格拷问自己:这个改动解决了什么真实的、当前存在的问题?它的收益是否能明确衡量并大于风险?

第三宗罪:接口的“原罪”——过早、过度的抽象

表现:
* 在只有一个具体实现的情况下,就为其定义接口。
* 定义庞大、臃肿的接口,包含过多方法。
* 为了“可测试性”而无脑地给所有东西加上接口。

危害:
* 不必要的抽象: 接口是为了解耦和多态。在不需要这些时引入接口,只会增加代码量和理解成本。
* 弱化抽象能力: “接口越大,抽象越弱”(来自Go谚语)。大接口难以实现和维护,它变得模糊,难以理解哪些方法是真正必要的,也失去了其作为“契约”的精准性。
* 阻碍演化: 过早定义接口可能锁定不成熟的设计,后续修改成本更高。
* 测试的借口: Go拥有强大的测试工具(如表驱动测试),很多时候并不需要接口来实现可测试性。为测试而引入的接口可能扭曲生产代码的设计。

解药:
* 拥抱具体: 先写具体实现。
* 发现接口,而非设计接口: 只有当你确实需要多种实现(包括测试中的Mock,但要谨慎对待),或者需要打破循环依赖时,才考虑提取接口。
* 保持接口小巧、正交: 遵循接口隔离原则。

第四宗罪:“大杂烩”的诱惑——utils/common/shared 黑洞

表现: 创建一个名为 utils、common、shared 或 helpers 的包,把各种看似“通用”的函数、类型塞进去。

危害:
* 职责不清: 这些包缺乏明确的领域或功能归属,成为代码的“垃圾抽屉”。
* 依赖洼地: 随着项目增长,这些包往往会依赖越来越多的其他包,同时也被越来越多的包依赖,极易引发循环依赖或成为构建瓶颈。
* 降低内聚性: 本应属于特定领域的功能被剥离出来,破坏了原有包的内聚性。

解药:
* 就近原则: 如果一个“工具函数”只被一个包使用,就把它放在那个包里(可以是私有的)。
* 功能归类: 如果一个“工具函数”被多个包使用,思考它真正属于哪个功能领域,为其创建一个有意义的新包(例如 applog 而不是 logutil)。
* 思考依赖方向: 真正通用的基础库(如自定义的 string 处理、时间处理)应该处于依赖关系图的底层,不应依赖上层业务逻辑。

注:坦白说,其他几项“罪过”或许还只是部分开发者的“偶发行为”,但这“第四宗罪”——随手创建 utils 或 common 包——恐怕是我们绝大多数人都曾犯过,甚至习以为常的“通病”。笔者也是如此:)。

第五宗罪:对 DRY 的“迷信”——为了“不重复”而引入不当依赖

表现: 为了避免几行相似代码的重复,强行提取公共函数或类型,并为此引入新的包依赖,有时甚至导致复杂的依赖关系或循环依赖。

危害:
* 错误的抽象: 有时看似重复的代码,在不同的上下文中可能有细微的差别或独立演化的需求。强行合并可能导致错误的抽象。
* 不必要的耦合: 为了共享几行代码而引入整个包的依赖,增加了耦合度,可能比少量重复代码的维护成本更高。
* 违背 Go 谚语: “A little copying is better than a little dependency.”(一点复制代码胜过一点点依赖)。Go 社区鼓励在权衡后接受适度的代码重复,以换取更低的耦合度和更高的独立性。

解药:
* 批判性看待重复: 看到重复代码时,先思考它们是否真的是“同一件事”?它们的演化趋势是否一致?
* 权衡成本: 引入依赖的成本(耦合、潜在冲突、维护负担)是否真的低于复制代码的成本?
* 优先考虑简单: 在不确定时,保持简单,适度复制代码通常更安全。

注:这种事儿,恐怕咱们自己或者团队里都遇到过不少:就为了用里面那一两个小函数,咔嚓一下,引入了一个庞大无比的依赖库。

第六宗罪:盲目崇拜与跟风——“伪标准”与“最佳实践”的陷阱

表现:
* 不加批判地复制某个“明星项目”或所谓的“Go 标准项目布局”(如已被社区诟病的golang-standards/project-layout)。
* 将其他语言(如 Java, C#)的复杂模式生搬硬套到 Go 项目中。
* 将任何 Linter 规则或所谓的“最佳实践”奉为圭臬,不考虑具体场景。

危害:
* 脱离实际: 别人的“最佳实践”是基于他们的特定问题和上下文演化而来的,未必适合你的项目。
* 扼杀思考: 放弃了基于自己项目需求进行独立思考和决策的机会。
* 违背Go文化: Go 推崇实用主义和具体问题具体分析,而非僵化的教条。

解药:
* 保持独立思考: 理解每个模式或实践要解决的原始问题是什么,它是否在你的项目中真实存在?
* 以我为主,兼收并蓄: 学习和借鉴,但最终决策要基于你自己的项目需求、团队情况和对 Go 语言的理解。
* 质疑“最佳”: 没有万能的“最佳实践”,只有在特定上下文中的“较好实践”。

注:确实,很多Go初学者(甚至一些老手,包括我自己)都曾长期困惑甚至“抱怨”:官方为何不给出一个项目布局的指导呢?这个呼声持续多年后,Go官方终于在2023年发布了一份官方布局指南。这份指南无疑是我们理解官方思路、开始设计Go项目布局的一个重要起点。

第七宗罪:与“引力”对抗——忽视 Go 的依赖约束

表现:
* 设计出隐含循环依赖的架构(例如,某些复杂的 ORM 模式,或者 Service 层与 Repository 层相互调用具体类型)。
* 当遇到 import cycle not allowed 错误时,不从根本上调整结构,而是通过滥用接口、全局变量或 init() 函数等“技巧”来绕过编译错误。

危害:
* 与语言对抗: Go禁止循环依赖是其核心设计之一,旨在强制形成清晰的、可管理的依赖关系图 (DAG)。试图绕过它,本质上是在与语言的设计哲学对抗。
* 隐藏的复杂性: 用“技巧”解决循环依赖,只是将问题扫到地毯下,使得真实的依赖关系变得模糊不清,增加了维护难度。
* 错失优化机会: 循环依赖往往是代码职责不清、耦合过度的信号。解决循环依赖的过程,本身就是一次优化架构、厘清职责的好机会。

解药:
* 拥抱 DAG: 理解并尊重 Go 的依赖规则,将其视为架构设计的“向导”。
* 分析依赖: 当出现循环依赖时,深入分析其根源,理解是哪个环节的职责划分或耦合出了问题。
* 结构性解决: 优先使用移动代码、提取新包(向上或向下)等结构性方法来打破循环。接口解耦是可用手段,但不应是首选或唯一手段。

小结:回归常识,拥抱简洁

Go语言的设计哲学是务实和简洁。许多所谓的“最佳实践”和“复杂模式”,在Go的世界里可能水土不服。识别并避免上述这些“反模式”,需要我们:

  • 保持批判性思维: 不盲从,不跟风,时刻追问“为什么”。
  • 坚持价值驱动: 让每一个设计决策都服务于解决真实问题。
  • 深刻理解Go: 尊重其核心约束(如无循环依赖),发挥其优势(如简洁性)。
  • 拥抱演化: 从简单开始,让架构随着需求的明确而有机生长。

希望这篇“七宗罪”的总结能给大家带来一些警示和启发。你是否也曾在项目中遇到过这些“反模式”?你认为还有哪些Go设计中需要警惕的“坑”?欢迎在评论区分享你的看法和经验!

也别忘了点个【赞】和【在看】,让更多Gopher看到这篇“反模式”的总结!


避开这些设计“反模式”是迈向Go高手的关键一步。如果你渴望更深层次地理解Go语言精髓,与顶尖Gopher交流切磋,并紧跟Go+AI前沿动态…

那么,我的 「Go & AI 精进营」知识星球 正是你需要的!在这里,你可以沉浸式学习【Go原理/进阶/避坑】等独家深度专栏,随时向我提问获
得解析,并与高活跃社区成员碰撞思想火花。

扫码加入,开启你的Go深度学习与精进之旅!

img{512x368}

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 AI原生开发工作流实战 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats