标签 runtime 下的文章

Go语言TCP Socket编程

Golang的主要 设计目标之一就是面向大规模后端服务程序,网络通信这块是服务端 程序必不可少也是至关重要的一部分。在日常应用中,我们也可以看到Go中的net以及其subdirectories下的包均是“高频+刚需”,而TCP socket则是网络编程的主流,即便您没有直接使用到net中有关TCP Socket方面的接口,但net/http总是用到了吧,http底层依旧是用tcp socket实现的。

网络编程方面,我们最常用的就是tcp socket编程了,在posix标准出来后,socket在各大主流OS平台上都得到了很好的支持。关于tcp programming,最好的资料莫过于W. Richard Stevens 的网络编程圣经《UNIX网络 编程 卷1:套接字联网API》 了,书中关于tcp socket接口的各种使用、行为模式、异常处理讲解的十分细致。Go是自带runtime的跨平台编程语言,Go中暴露给语言使用者的tcp socket api是建立OS原生tcp socket接口之上的。由于Go runtime调度的需要,golang tcp socket接口在行为特点与异常处理方面与OS原生接口有着一些差别。这篇博文的目标就是整理出关于Go tcp socket在各个场景下的使用方法、行为特点以及注意事项。

一、模型

从tcp socket诞生后,网络编程架构模型也几经演化,大致是:“每进程一个连接” –> “每线程一个连接” –> “Non-Block + I/O多路复用(linux epoll/windows iocp/freebsd darwin kqueue/solaris Event Port)”。伴随着模型的演化,服务程序愈加强大,可以支持更多的连接,获得更好的处理性能。

目前主流web server一般均采用的都是”Non-Block + I/O多路复用”(有的也结合了多线程、多进程)。不过I/O多路复用也给使用者带来了不小的复杂度,以至于后续出现了许多高性能的I/O多路复用框架, 比如libeventlibevlibuv等,以帮助开发者简化开发复杂性,降低心智负担。不过Go的设计者似乎认为I/O多路复用的这种通过回调机制割裂控制流 的方式依旧复杂,且有悖于“一般逻辑”设计,为此Go语言将该“复杂性”隐藏在Runtime中了:Go开发者无需关注socket是否是 non-block的,也无需亲自注册文件描述符的回调,只需在每个连接对应的goroutine中以“block I/O”的方式对待socket处理即可,这可以说大大降低了开发人员的心智负担。一个典型的Go server端程序大致如下:

//go-tcpsock/server.go
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        // ... ...
        // write to the connection
        //... ...
    }
}

func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        fmt.Println("listen error:", err)
        return
    }

    for {
        c, err := l.Accept()
        if err != nil {
            fmt.Println("accept error:", err)
            break
        }
        // start a new goroutine to handle
        // the new connection.
        go handleConn(c)
    }
}

用户层眼中看到的goroutine中的“block socket”,实际上是通过Go runtime中的netpoller通过Non-block socket + I/O多路复用机制“模拟”出来的,真实的underlying socket实际上是non-block的,只是runtime拦截了底层socket系统调用的错误码,并通过netpoller和goroutine 调度让goroutine“阻塞”在用户层得到的Socket fd上。比如:当用户层针对某个socket fd发起read操作时,如果该socket fd中尚无数据,那么runtime会将该socket fd加入到netpoller中监听,同时对应的goroutine被挂起,直到runtime收到socket fd 数据ready的通知,runtime才会重新唤醒等待在该socket fd上准备read的那个Goroutine。而这个过程从Goroutine的视角来看,就像是read操作一直block在那个socket fd上似的。具体实现细节在后续场景中会有补充描述。

二、TCP连接的建立

众所周知,TCP Socket的连接的建立需要经历客户端和服务端的三次握手的过程。连接建立过程中,服务端是一个标准的Listen + Accept的结构(可参考上面的代码),而在客户端Go语言使用net.Dial或DialTimeout进行连接建立:

阻塞Dial:

conn, err := net.Dial("tcp", "google.com:80")
if err != nil {
    //handle error
}
// read or write on conn

或是带上超时机制的Dial:

conn, err := net.DialTimeout("tcp", ":8080", 2 * time.Second)
if err != nil {
    //handle error
}
// read or write on conn

对于客户端而言,连接的建立会遇到如下几种情形:


1、网络不可达或对方服务未启动

如果传给Dial的Addr是可以立即判断出网络不可达,或者Addr中端口对应的服务没有启动,端口未被监听,Dial会几乎立即返回错误,比如:

//go-tcpsock/conn_establish/client1.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")
}

如果本机8888端口未有服务程序监听,那么执行上面程序,Dial会很快返回错误:

$go run client1.go
2015/11/16 14:37:41 begin dial...
2015/11/16 14:37:41 dial error: dial tcp :8888: getsockopt: connection refused

2、对方服务的listen backlog满

还有一种场景就是对方服务器很忙,瞬间有大量client端连接尝试向server建立,server端的listen backlog队列满,server accept不及时((即便不accept,那么在backlog数量范畴里面,connect都会是成功的,因为new conn已经加入到server side的listen queue中了,accept只是从queue中取出一个conn而已),这将导致client端Dial阻塞。我们还是通过例子感受Dial的行为特点:

服务端代码:

//go-tcpsock/conn_establish/server2.go
... ...
func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        log.Println("error listen:", err)
        return
    }
    defer l.Close()
    log.Println("listen ok")

    var i int
    for {
        time.Sleep(time.Second * 10)
        if _, err := l.Accept(); err != nil {
            log.Println("accept error:", err)
            break
        }
        i++
        log.Printf("%d: accept a new connection\n", i)
    }
}

客户端代码:

//go-tcpsock/conn_establish/client2.go
... ...
func establishConn(i int) net.Conn {
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Printf("%d: dial error: %s", i, err)
        return nil
    }
    log.Println(i, ":connect to server ok")
    return conn
}

func main() {
    var sl []net.Conn
    for i := 1; i < 1000; i++ {
        conn := establishConn(i)
        if conn != nil {
            sl = append(sl, conn)
        }
    }

    time.Sleep(time.Second * 10000)
}

从程序可以看出,服务端在listen成功后,每隔10s钟accept一次。客户端则是串行的尝试建立连接。这两个程序在Darwin下的执行 结果:

$go run server2.go
2015/11/16 21:55:41 listen ok
2015/11/16 21:55:51 1: accept a new connection
2015/11/16 21:56:01 2: accept a new connection
... ...

$go run client2.go
2015/11/16 21:55:44 1 :connect to server ok
2015/11/16 21:55:44 2 :connect to server ok
2015/11/16 21:55:44 3 :connect to server ok
... ...

2015/11/16 21:55:44 126 :connect to server ok
2015/11/16 21:55:44 127 :connect to server ok
2015/11/16 21:55:44 128 :connect to server ok

2015/11/16 21:55:52 129 :connect to server ok
2015/11/16 21:56:03 130 :connect to server ok
2015/11/16 21:56:14 131 :connect to server ok
... ...

可以看出Client初始时成功地一次性建立了128个连接,然后后续每阻塞近10s才能成功建立一条连接。也就是说在server端 backlog满时(未及时accept),客户端将阻塞在Dial上,直到server端进行一次accept。至于为什么是128,这与darwin 下的默认设置有关:

$sysctl -a|grep kern.ipc.somaxconn
kern.ipc.somaxconn: 128

如果我在ubuntu 14.04上运行上述server程序,我们的client端初始可以成功建立499条连接。

如果server一直不accept,client端会一直阻塞么?我们去掉accept后的结果是:在Darwin下,client端会阻塞大 约1分多钟才会返回timeout:

2015/11/16 22:03:31 128 :connect to server ok
2015/11/16 22:04:48 129: dial error: dial tcp :8888: getsockopt: operation timed out

而如果server运行在ubuntu 14.04上,client似乎一直阻塞,我等了10多分钟依旧没有返回。 阻塞与否看来与server端的网络实现和设置有关。

3、网络延迟较大,Dial阻塞并超时

如果网络延迟较大,TCP握手过程将更加艰难坎坷(各种丢包),时间消耗的自然也会更长。Dial这时会阻塞,如果长时间依旧无法建立连接,则Dial也会返回“ getsockopt: operation timed out”错误。


在连接建立阶段,多数情况下,Dial是可以满足需求的,即便阻塞一小会儿。但对于某些程序而言,需要有严格的连接时间限定,如果一定时间内没能成功建立连接,程序可能会需要执行一段“异常”处理逻辑,为此我们就需要DialTimeout了。下面的例子将Dial的最长阻塞时间限制在2s内,超出这个时长,Dial将返回timeout error:

//go-tcpsock/conn_establish/client3.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.DialTimeout("tcp", "104.236.176.96:80", 2*time.Second)
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")
}

执行结果如下(需要模拟一个延迟较大的网络环境):

$go run client3.go
2015/11/17 09:28:34 begin dial...
2015/11/17 09:28:36 dial error: dial tcp 104.236.176.96:80: i/o timeout

三、Socket读写

连接建立起来后,我们就要在conn上进行读写,以完成业务逻辑。前面说过Go runtime隐藏了I/O多路复用的复杂性。语言使用者只需采用goroutine+Block I/O的模式即可满足大部分场景需求。Dial成功后,方法返回一个net.Conn接口类型变量值,这个接口变量的动态类型为一个*TCPConn:

//$GOROOT/src/net/tcpsock_posix.go
type TCPConn struct {
    conn
}

TCPConn内嵌了一个unexported类型:conn,因此TCPConn”继承”了conn的Read和Write方法,后续通过Dial返回值调用的Write和Read方法均是net.conn的方法:

//$GOROOT/src/net/net.go
type conn struct {
    fd *netFD
}

func (c *conn) ok() bool { return c != nil && c.fd != nil }

// Implementation of the Conn interface.

// Read implements the Conn Read method.
func (c *conn) Read(b []byte) (int, error) {
    if !c.ok() {
        return 0, syscall.EINVAL
    }
    n, err := c.fd.Read(b)
    if err != nil && err != io.EOF {
        err = &OpError{Op: "read", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
    }
    return n, err
}

// Write implements the Conn Write method.
func (c *conn) Write(b []byte) (int, error) {
    if !c.ok() {
        return 0, syscall.EINVAL
    }
    n, err := c.fd.Write(b)
    if err != nil {
        err = &OpError{Op: "write", Net: c.fd.net, Source: c.fd.laddr, Addr: c.fd.raddr, Err: err}
    }
    return n, err
}

下面我们先来通过几个场景来总结一下conn.Read的行为特点。


1、Socket中无数据

连接建立后,如果对方未发送数据到socket,接收方(Server)会阻塞在Read操作上,这和前面提到的“模型”原理是一致的。执行该Read操作的goroutine也会被挂起。runtime会监视该socket,直到其有数据才会重新
调度该socket对应的Goroutine完成read。由于篇幅原因,这里就不列代码了,例子对应的代码文件:go-tcpsock/read_write下的client1.go和server1.go。

2、Socket中有部分数据

如果socket中有部分数据,且长度小于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回,而不是等待所有期望数据全部读取后再返回。

Client端:

//go-tcpsock/read_write/client2.go
... ...
func main() {
    if len(os.Args) <= 1 {
        fmt.Println("usage: go run client2.go YOUR_CONTENT")
        return
    }
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    time.Sleep(time.Second * 2)
    data := os.Args[1]
    conn.Write([]byte(data))

    time.Sleep(time.Second * 10000)
}

Server端:

//go-tcpsock/read_write/server2.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        var buf = make([]byte, 10)
        log.Println("start to read from conn")
        n, err := c.Read(buf)
        if err != nil {
            log.Println("conn read error:", err)
            return
        }
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

我们通过client2.go发送”hi”到Server端:
运行结果:

$go run client2.go hi
2015/11/17 13:30:53 begin dial...
2015/11/17 13:30:53 dial ok

$go run server2.go
2015/11/17 13:33:45 accept a new connection
2015/11/17 13:33:45 start to read from conn
2015/11/17 13:33:47 read 2 bytes, content is hi
...

Client向socket中写入两个字节数据(“hi”),Server端创建一个len = 10的slice,等待Read将读取的数据放入slice;Server随后读取到那两个字节:”hi”。Read成功返回,n =2 ,err = nil。

3、Socket中有足够数据

如果socket中有数据,且长度大于等于一次Read操作所期望读出的数据长度,那么Read将会成功读出这部分数据并返回。这个情景是最符合我们对Read的期待的了:Read将用Socket中的数据将我们传入的slice填满后返回:n = 10, err = nil。

我们通过client2.go向Server2发送如下内容:abcdefghij12345,执行结果如下:

$go run client2.go abcdefghij12345
2015/11/17 13:38:00 begin dial...
2015/11/17 13:38:00 dial ok

$go run server2.go
2015/11/17 13:38:00 accept a new connection
2015/11/17 13:38:00 start to read from conn
2015/11/17 13:38:02 read 10 bytes, content is abcdefghij
2015/11/17 13:38:02 start to read from conn
2015/11/17 13:38:02 read 5 bytes, content is 12345

client端发送的内容长度为15个字节,Server端Read buffer的长度为10,因此Server Read第一次返回时只会读取10个字节;Socket中还剩余5个字节数据,Server再次Read时会把剩余数据读出(如:情形2)。

4、Socket关闭

如果client端主动关闭了socket,那么Server的Read将会读到什么呢?这里分为“有数据关闭”和“无数据关闭”。

“有数据关闭”是指在client关闭时,socket中还有server端未读取的数据,我们在go-tcpsock/read_write/client3.go和server3.go中模拟这种情况:

$go run client3.go hello
2015/11/17 13:50:57 begin dial...
2015/11/17 13:50:57 dial ok

$go run server3.go
2015/11/17 13:50:57 accept a new connection
2015/11/17 13:51:07 start to read from conn
2015/11/17 13:51:07 read 5 bytes, content is hello
2015/11/17 13:51:17 start to read from conn
2015/11/17 13:51:17 conn read error: EOF

从输出结果来看,当client端close socket退出后,server3依旧没有开始Read,10s后第一次Read成功读出了5个字节的数据,当第二次Read时,由于client端 socket关闭,Read返回EOF error。

通过上面这个例子,我们也可以猜测出“无数据关闭”情形下的结果,那就是Read直接返回EOF error。

5、读取操作超时

有些场合对Read的阻塞时间有严格限制,在这种情况下,Read的行为到底是什么样的呢?在返回超时错误时,是否也同时Read了一部分数据了呢?这个实验比较难于模拟,下面的测试结果也未必能反映出所有可能结果。我们编写了client4.go和server4.go来模拟这一情形。

//go-tcpsock/read_write/client4.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    data := make([]byte, 65536)
    conn.Write(data)

    time.Sleep(time.Second * 10000)
}

//go-tcpsock/read_write/server4.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection
        time.Sleep(10 * time.Second)
        var buf = make([]byte, 65536)
        log.Println("start to read from conn")
        c.SetReadDeadline(time.Now().Add(time.Microsecond * 10))
        n, err := c.Read(buf)
        if err != nil {
            log.Printf("conn read %d bytes,  error: %s", n, err)
            if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
                continue
            }
            return
        }
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}

在Server端我们通过Conn的SetReadDeadline方法设置了10微秒的读超时时间,Server的执行结果如下:

$go run server4.go

2015/11/17 14:21:17 accept a new connection
2015/11/17 14:21:27 start to read from conn
2015/11/17 14:21:27 conn read 0 bytes,  error: read tcp 127.0.0.1:8888->127.0.0.1:60970: i/o timeout
2015/11/17 14:21:37 start to read from conn
2015/11/17 14:21:37 read 65536 bytes, content is

虽然每次都是10微秒超时,但结果不同,第一次Read超时,读出数据长度为0;第二次读取所有数据成功,没有超时。反复执行了多次,没能出现“读出部分数据且返回超时错误”的情况。


和读相比,Write遇到的情形一样不少,我们也逐一看一下。


1、成功写

前面例子着重于Read,client端在Write时并未判断Write的返回值。所谓“成功写”指的就是Write调用返回的n与预期要写入的数据长度相等,且error = nil。这是我们在调用Write时遇到的最常见的情形,这里不再举例了。

2、写阻塞

TCP连接通信两端的OS都会为该连接保留数据缓冲,一端调用Write后,实际上数据是写入到OS的协议栈的数据缓冲的。TCP是全双工通信,因此每个方向都有独立的数据缓冲。当发送方将对方的接收缓冲区以及自身的发送缓冲区写满后,Write就会阻塞。我们来看一个例子:client5.go和server.go。

//go-tcpsock/read_write/client5.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    defer conn.Close()
    log.Println("dial ok")

    data := make([]byte, 65536)
    var total int
    for {
        n, err := conn.Write(data)
        if err != nil {
            total += n
            log.Printf("write %d bytes, error:%s\n", n, err)
            break
        }
        total += n
        log.Printf("write %d bytes this time, %d bytes in total\n", n, total)
    }

    log.Printf("write %d bytes in total\n", total)
    time.Sleep(time.Second * 10000)
}

//go-tcpsock/read_write/server5.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()
    time.Sleep(time.Second * 10)
    for {
        // read from the connection
        time.Sleep(5 * time.Second)
        var buf = make([]byte, 60000)
        log.Println("start to read from conn")
        n, err := c.Read(buf)
        if err != nil {
            log.Printf("conn read %d bytes,  error: %s", n, err)
            if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
                continue
            }
        }

        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

Server5在前10s中并不Read数据,因此当client5一直尝试写入时,写到一定量后就会发生阻塞:

$go run client5.go

2015/11/17 14:57:33 begin dial...
2015/11/17 14:57:33 dial ok
2015/11/17 14:57:33 write 65536 bytes this time, 65536 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 131072 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 196608 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 262144 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 327680 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 393216 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 458752 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 524288 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 589824 bytes in total
2015/11/17 14:57:33 write 65536 bytes this time, 655360 bytes in total

在Darwin上,这个size大约在679468bytes。后续当server5每隔5s进行Read时,OS socket缓冲区腾出了空间,client5就又可以写入了:

$go run server5.go
2015/11/17 15:07:01 accept a new connection
2015/11/17 15:07:16 start to read from conn
2015/11/17 15:07:16 read 60000 bytes, content is
2015/11/17 15:07:21 start to read from conn
2015/11/17 15:07:21 read 60000 bytes, content is
2015/11/17 15:07:26 start to read from conn
2015/11/17 15:07:26 read 60000 bytes, content is
....

client端:

2015/11/17 15:07:01 write 65536 bytes this time, 720896 bytes in total
2015/11/17 15:07:06 write 65536 bytes this time, 786432 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 851968 bytes in total
2015/11/17 15:07:16 write 65536 bytes this time, 917504 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 983040 bytes in total
2015/11/17 15:07:27 write 65536 bytes this time, 1048576 bytes in total
.... ...

3、写入部分数据

Write操作存在写入部分数据的情况,比如上面例子中,当client端输出日志停留在“write 65536 bytes this time, 655360 bytes in total”时,我们杀掉server5,这时我们会看到client5输出以下日志:

...
2015/11/17 15:19:14 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:19:16 write 24108 bytes, error:write tcp 127.0.0.1:62245->127.0.0.1:8888: write: broken pipe
2015/11/17 15:19:16 write 679468 bytes in total

显然Write并非在655360这个地方阻塞的,而是后续又写入24108后发生了阻塞,server端socket关闭后,我们看到Wrote返回er != nil且n = 24108,程序需要对这部分写入的24108字节做特定处理。

4、写入超时

如果非要给Write增加一个期限,那我们可以调用SetWriteDeadline方法。我们copy一份client5.go,形成client6.go,在client6.go的Write之前增加一行timeout设置代码:

conn.SetWriteDeadline(time.Now().Add(time.Microsecond * 10))

启动server6.go,启动client6.go,我们可以看到写入超时的情况下,Write的返回结果:

$go run client6.go
2015/11/17 15:26:34 begin dial...
2015/11/17 15:26:34 dial ok
2015/11/17 15:26:34 write 65536 bytes this time, 65536 bytes in total
... ...
2015/11/17 15:26:34 write 65536 bytes this time, 655360 bytes in total
2015/11/17 15:26:34 write 24108 bytes, error:write tcp 127.0.0.1:62325->127.0.0.1:8888: i/o timeout
2015/11/17 15:26:34 write 679468 bytes in total

可以看到在写入超时时,依旧存在部分数据写入的情况。


综上例子,虽然Go给我们提供了阻塞I/O的便利,但在调用Read和Write时依旧要综合需要方法返回的n和err的结果,以做出正确处理。net.conn实现了io.Reader和io.Writer接口,因此可以试用一些wrapper包进行socket读写,比如bufio包下面的Writer和Reader、io/ioutil下的函数等。

Goroutine safe

基于goroutine的网络架构模型,存在在不同goroutine间共享conn的情况,那么conn的读写是否是goroutine safe的呢?在深入这个问题之前,我们先从应用意义上来看read操作和write操作的goroutine-safe必要性。

对于read操作而言,由于TCP是面向字节流,conn.Read无法正确区分数据的业务边界,因此多个goroutine对同一个conn进行read的意义不大,goroutine读到不完整的业务包反倒是增加了业务处理的难度。对与Write操作而言,倒是有多个goroutine并发写的情况。不过conn读写是否goroutine-safe的测试不是很好做,我们先深入一下runtime代码,先从理论上给这个问题定个性:

net.conn只是*netFD的wrapper结构,最终Write和Read都会落在其中的fd上:

type conn struct {
    fd *netFD
}

netFD在不同平台上有着不同的实现,我们以net/fd_unix.go中的netFD为例:

// Network file descriptor.
type netFD struct {
    // locking/lifetime of sysfd + serialize access to Read and Write methods
    fdmu fdMutex

    // immutable until Close
    sysfd       int
    family      int
    sotype      int
    isConnected bool
    net         string
    laddr       Addr
    raddr       Addr

    // wait server
    pd pollDesc
}

我们看到netFD中包含了一个runtime实现的fdMutex类型字段,从注释上来看,该fdMutex用来串行化对该netFD对应的sysfd的Write和Read操作。从这个注释上来看,所有对conn的Read和Write操作都是有fdMutex互斥的,从netFD的Read和Write方法的实现也证实了这一点:

func (fd *netFD) Read(p []byte) (n int, err error) {
    if err := fd.readLock(); err != nil {
        return 0, err
    }
    defer fd.readUnlock()
    if err := fd.pd.PrepareRead(); err != nil {
        return 0, err
    }
    for {
        n, err = syscall.Read(fd.sysfd, p)
        if err != nil {
            n = 0
            if err == syscall.EAGAIN {
                if err = fd.pd.WaitRead(); err == nil {
                    continue
                }
            }
        }
        err = fd.eofError(n, err)
        break
    }
    if _, ok := err.(syscall.Errno); ok {
        err = os.NewSyscallError("read", err)
    }
    return
}

func (fd *netFD) Write(p []byte) (nn int, err error) {
    if err := fd.writeLock(); err != nil {
        return 0, err
    }
    defer fd.writeUnlock()
    if err := fd.pd.PrepareWrite(); err != nil {
        return 0, err
    }
    for {
        var n int
        n, err = syscall.Write(fd.sysfd, p[nn:])
        if n > 0 {
            nn += n
        }
        if nn == len(p) {
            break
        }
        if err == syscall.EAGAIN {
            if err = fd.pd.WaitWrite(); err == nil {
                continue
            }
        }
        if err != nil {
            break
        }
        if n == 0 {
            err = io.ErrUnexpectedEOF
            break
        }
    }
    if _, ok := err.(syscall.Errno); ok {
        err = os.NewSyscallError("write", err)
    }
    return nn, err
}

每次Write操作都是受lock保护,直到此次数据全部write完。因此在应用层面,要想保证多个goroutine在一个conn上write操作的Safe,需要一次write完整写入一个“业务包”;一旦将业务包的写入拆分为多次write,那就无法保证某个Goroutine的某“业务包”数据在conn发送的连续性。

同时也可以看出即便是Read操作,也是lock保护的。多个Goroutine对同一conn的并发读不会出现读出内容重叠的情况,但内容断点是依 runtime调度来随机确定的。存在一个业务包数据,1/3内容被goroutine-1读走,另外2/3被另外一个goroutine-2读 走的情况。比如一个完整包:world,当goroutine的read slice size < 5时,存在可能:一个goroutine读到 “worl”,另外一个goroutine读出”d”。

四、Socket属性

原生Socket API提供了丰富的sockopt设置接口,但Golang有自己的网络架构模型,golang提供的socket options接口也是基于上述模型的必要的属性设置。包括

  • SetKeepAlive
  • SetKeepAlivePeriod
  • SetLinger
  • SetNoDelay (默认no delay)
  • SetWriteBuffer
  • SetReadBuffer

不过上面的Method是TCPConn的,而不是Conn的,要使用上面的Method的,需要type assertion:

tcpConn, ok := c.(*TCPConn)
if !ok {
    //error handle
}

tcpConn.SetNoDelay(true)

对于listener socket, golang默认采用了 SO_REUSEADDR,这样当你重启 listener程序时,不会因为address in use的错误而启动失败。而listen backlog的默认值是通过获取系统的设置值得到的。不同系统不同:mac 128, linux 512等。

五、关闭连接

和前面的方法相比,关闭连接算是最简单的操作了。由于socket是全双工的,client和server端在己方已关闭的socket和对方关闭的socket上操作的结果有不同。看下面例子:

//go-tcpsock/conn_close/client1.go
... ...
func main() {
    log.Println("begin dial...")
    conn, err := net.Dial("tcp", ":8888")
    if err != nil {
        log.Println("dial error:", err)
        return
    }
    conn.Close()
    log.Println("close ok")

    var buf = make([]byte, 32)
    n, err := conn.Read(buf)
    if err != nil {
        log.Println("read error:", err)
    } else {
        log.Printf("read % bytes, content is %s\n", n, string(buf[:n]))
    }

    n, err = conn.Write(buf)
    if err != nil {
        log.Println("write error:", err)
    } else {
        log.Printf("write % bytes, content is %s\n", n, string(buf[:n]))
    }

    time.Sleep(time.Second * 1000)
}

//go-tcpsock/conn_close/server1.go
... ...
func handleConn(c net.Conn) {
    defer c.Close()

    // read from the connection
    var buf = make([]byte, 10)
    log.Println("start to read from conn")
    n, err := c.Read(buf)
    if err != nil {
        log.Println("conn read error:", err)
    } else {
        log.Printf("read %d bytes, content is %s\n", n, string(buf[:n]))
    }

    n, err = c.Write(buf)
    if err != nil {
        log.Println("conn write error:", err)
    } else {
        log.Printf("write %d bytes, content is %s\n", n, string(buf[:n]))
    }
}
... ...

上述例子的执行结果如下:

$go run server1.go
2015/11/17 17:00:51 accept a new connection
2015/11/17 17:00:51 start to read from conn
2015/11/17 17:00:51 conn read error: EOF
2015/11/17 17:00:51 write 10 bytes, content is

$go run client1.go
2015/11/17 17:00:51 begin dial...
2015/11/17 17:00:51 close ok
2015/11/17 17:00:51 read error: read tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection
2015/11/17 17:00:51 write error: write tcp 127.0.0.1:64195->127.0.0.1:8888: use of closed network connection

从client1的结果来看,在己方已经关闭的socket上再进行read和write操作,会得到”use of closed network connection” error;
从server1的执行结果来看,在对方关闭的socket上执行read操作会得到EOF error,但write操作会成功,因为数据会成功写入己方的内核socket缓冲区中,即便最终发不到对方socket缓冲区了,因为己方socket并未关闭。因此当发现对方socket关闭后,己方应该正确合理处理自己的socket,再继续write已经无任何意义了。

六、小结

本文比较基础,但却很重要,毕竟golang是面向大规模服务后端的,对通信环节的细节的深入理解会大有裨益。另外Go的goroutine+阻塞通信的网络通信模型降低了开发者心智负担,简化了通信的复杂性,这点尤为重要。

本文代码实验环境:go 1.5.1 on Darwin amd64以及部分在ubuntu 14.04 amd64。

本文demo代码在这里可以找到。

Go 1.5中值得关注的几个变化

GopherCon2015开幕之 际,Google Go Team终于放出了Go 1.5Beta1版本的安装包。在go 1.5Beta1的发布说明中,Go Team也诚恳地承认Go 1.5将打破之前6个月一个版本的发布周期,这是因为Go 1.5变动太大,需要更多时间来准备这次发布(fix bug, Write doc)。关于Go 1.5的变化,之前Go Team staff在各种golang技术会议的slide  中暴露不少,包括:

- 编译器和运行时由C改为Go(及少量汇编语言)重写,实现了Go的self Bootstrap(自举)
- Garbage Collector优化,大幅降低GC延迟(Stop The World),实现Gc在单独的goroutine中与其他user goroutine并行运行。
- 标准库变更以及一些go tools的引入。

每项变动都会让gopher激动不已。但之前也只是激动,这次beta1出来后,我们可以实际体会一下这些变动带来的“快感”了。Go 1.5beta1的发布文档目前还不全,有些地方还有“待补充”字样,可能与最终go 1.5发布时的版本有一定差异,不过大体内容应该是固定不变的了。这篇文章就想和大家一起浅显地体验一下go 1.5都给gophers们带来了哪些变化吧。

一、语言

【map literal】

go 1.5依旧兼容Go 1 language specification,但修正了之前的一个“小疏忽”。

Go 1.4及之前版本中,我们只能这么来写代码:

//testmapliteral.go
package main

import (
    "fmt"
)

type Point struct {
    x int
    y int
}

func main() {
    var sl = []Point{{3, 4}, {5, 6}}
    var m = map[Point]string{
        Point{3,4}:"foo1",
        Point{5,6}:"foo2",
    }
    fmt.Println(sl)
    fmt.Println(m)
}

可以看到,对于Point这个struct来说,在初始化一个slice时,slice value literal中无需显式的带上元素类型Point,即

var sl = []Point{{3, 4}, {5, 6}}

而不是

var sl = []Point{Point{3, 4}, Point{5, 6}}

但当Point作为map类型的key类型时,初始化map时则要显式带上元素类型Point。Go team承认这是当初的一个疏忽,在本次Go 1.5中将该问题fix掉了。也就是说,下面的代码在Go 1.5中可以顺利编译通过:

func main() {
    var sl = []Point{{3, 4}, {5, 6}}
    var m = map[Point]string{
        {3,4}:"foo1",
        {5,6}:"foo2",
    }
    fmt.Println(sl)
    fmt.Println(m)
}

【GOMAXPROCS】

就像这次GopherCon2015上现任Google Go project Tech Lead的Russ Cox的开幕Keynote中所说的那样:Go目标定位于高度并发的云环境。Go 1.5中将标识并发系统线程个数的GOMAXPROCS的初始值由1改为了运行环境的CPU核数。

// testgomaxprocs.go
package main

import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Println(runtime.GOMAXPROCS(-1))
    fmt.Println(runtime.NumGoroutine())
}

这个代码在Go 1.4下(Mac OS X 4核)运行结果是:

$go run testgomaxprocs.go
1
4

而在go 1.5beta1下,结果为:

$go run testgomaxprocs.go
4
4

二、编译

【简化跨平台编译】

1.5之前的版本要想实现跨平台编译,需要到$GOROOT/src下重新执行一遍make.bash,执行前设置好目标环境的环境变量(GOOS和 GOARCH),Go 1.5大大简化这个过程,使得跨平台编译几乎与普通编译一样简单。下面是一个简单的例子:

//testcrosscompile.go
package main

import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Println(runtime.GOOS)
}

在我的Mac上,本地编译执行:
$go build -o testcrosscompile_darwin testcrosscompile.go
$testcrosscompile_darwin
darwin

跨平台编译linux amd64上的目标程序:

$GOOS=linux GOARCH=amd64 go build -o testcrosscompile_linux testcrosscompile.go

上传testcrosscompile_linux到ubuntu 14.04上执行:
$testcrosscompile_linux
linux

虽然从用户角度跨平台编译命令很简单,但事实是go替你做了很多事情,我们可以通过build -x -v选项来输出编译的详细过程,你会发现go会先进入到$GOROOT/src重新编译runtime.a以及一些平台相关的包。编译输出的信息 太多,这里就不贴出来了。但在1.5中这个过程非常快(10秒以内),与1.4之前版本的跨平台编译相比,完全不是一个级别,这也许就是编译器用Go重写完的好处之一吧。

除了直接使用go build,我们还可以使用go tool compile和go tool link来编译程序,实际上go build也是调用这两个工具完成编译过程的。

$go tool compile testcrosscompile.go
testcrosscompile.o
$go tool link testcrosscompile.o
a.out
$a.out
darwin

go 1.5移除了以前的6a,6l之类的编译连接工具,将这些工具整合到go tool中。并且go tool compile的输出默认改为.o文件,链接器输出默认改为了a.out。

【动态共享库】

个人不是很赞同Go语言增加对动态共享库的支持,.so和.dll这类十多年前的技术在如今内存、磁盘空间都“非常大”的前提下,似乎已经失去了以往的魅 力。并且动态共享库所带来的弊端:"DLL hell"会让程序后续的运维痛苦不已。Docker等轻量级容器的兴起,面向不变性的架构(immutable architecture)受到更多的关注。人们更多地会在container这一层进行操作,一个纯static link的应用在部署和维护方面将会有天然优势,.so只会增加复杂性。如果单纯从与c等其他语言互操作的角度,似乎用途也不会很广泛(但游戏或ui领域 可能会用到)。不过go 1.5还是增加了对动态链接库的支持,不过从go tool compile和link的doc说明来看,目前似乎还处于实验阶段。

既然go 1.5已经支持了shared library,我们就来实验一下。我们先规划一下测试repository的目录结构:

$GOPATH
    /src
        /testsharedlib
            /shlib
                – lib.go
        /app
            /main.go

lib.go中的代码很简单:

//lib.go
package shlib

import "fmt"

// export Method1
func Method1() {
    fmt.Println("shlib -Method1")
}

对于希望导出的方法,采用export标记。

我们来将这个lib.go编译成shared lib,注意目前似乎只有linux平台支持编译go shared library:

$ go build -buildmode=shared testsharedlib/shlib
# /tmp/go-build709704006/libtestsharedlib-shlib.so
warning: unable to find runtime/cgo.a

编译ok,那个warning是何含义不是很理解。

要想.so被其他go程序使用,需要将.so安装到相关目录下。我们install一下试试:

$ go install -buildmode=shared testsharedlib/shlib
multiple roots /home1/tonybai/test/go/go15/pkg/linux_amd64_dynlink & /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink

go工具居然纠结了,不知道选择放在哪里,一个是$GOPATH/pkg/linux_amd64_dynlink,另外一个则是$GOROOT/pkg/linux_amd64_dynlink,我不清楚这是不是一个bug。

在Google了之后,我尝试了网上的一个解决方法,先编译出runtime的动态共享库:

$go install -buildmode=shared runtime sync/atomic

编译安装后,你就会在$GOROOT/pkg下面看到多出来一个目录:linux_amd64_dynlink。这个目录下的结构如下:

$ ls -R
.:
libruntime,sync-atomic.so  runtime  runtime.a  runtime.shlibname  sync

./runtime:
cgo.a  cgo.shlibname

./sync:
atomic.a  atomic.shlibname

这里看到了之前warning提到的runtime/cgo.a,我们再来重新执行一下build,看看能不能消除warning:

$ go build -buildmode=shared testsharedlib/shlib
# /tmp/go-build086398801/libtestsharedlib-shlib.so
/home1/tonybai/.bin/go15beta1/go/pkg/tool/linux_amd64/link: cannot implicitly include runtime/cgo in a shared library

这回连warnning都没有了,直接是一个error。这里提示:无法在一个共享库中隐式包含runtime/cgo。也就是说我们在构建 testshared/shlib这个动态共享库时,还需要显式的link到runtime/cgo,这里就需要另外一个命令行标志:- linkshared。我们再来试试:

$ go build  -linkshared -buildmode=shared testsharedlib/shlib

这回build成功!我们再来试试install:

$ go install  -linkshared -buildmode=shared testsharedlib/shlib

同样成功了。并且我们在$GOPATH/pkg/linux_amd64_dynlink下发现了共享库:

$ ls -R
.:
libtestsharedlib-shlib.so  testsharedlib

./testsharedlib:
shlib.a  shlib.shlibname

$ ldd libtestsharedlib-shlib.so
    linux-vdso.so.1 =>  (0x00007fff93983000)
    libruntime,sync-atomic.so => /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink/libruntime,sync-atomic.so (0x00007fa150f1b000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa150b3f000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa150921000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fa1517a7000)

好了,既然共享库编译出来了。我们就来用一下这个共享库。

//app/main.go

package main

import (
    "testsharedlib/shlib"
)

func main() {
    shlib.Method1()
}

$ go build -linkshared main.go
$ ldd main
    linux-vdso.so.1 =>  (0x00007fff579f7000)
    libruntime,sync-atomic.so => /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink/libruntime,sync-atomic.so (0x00007fa8d6df2000)
    libtestsharedlib-shlib.so => /home1/tonybai/test/go/go15/pkg/linux_amd64_dynlink/libtestsharedlib-shlib.so (0x00007fa8d6962000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa8d6586000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa8d6369000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fa8d71ef000)

$ main
shlib -Method1

编译执行ok。从输出结果来看,我们可以清晰看到main依赖的.so以及so的路径。我们再来试试,如果将testsharedlib源码目录移除后,是否还能编译ok:

$ go build -linkshared main.go
main.go:4:2: cannot find package "testsharedlib/shlib" in any of:
    /home1/tonybai/.bin/go15beta1/go/src/testsharedlib/shlib (from $GOROOT)
    /home1/tonybai/test/go/go15/src/testsharedlib/shlib (from $GOPATH)

go编译器无法找到shlib,也就说即便是动态链接,我们也要有动态共享库的源码,应用才能编译通过。

internal package

internal包不是go 1.5的原创,在go 1.4中就已经提出对internal package的支持了。但go 1.4发布时,internal package只能用于GOROOT下的go core核心包,用户层面GOPATH不支持internal package。按原计划,go 1.5中会将internal包机制工作范围全面扩大到所有repository的。我原以为1.5beta1以及将internal package机制生效了,但实际结果呢,我们来看看示例代码:

测试目录结构如下:

testinternal/src
    mypkg/
        /internal
            /foo
                foo.go
        /pkg1
            main.go

    otherpkg/
            main.go

按照internal包的原理,预期mypkg/pkg1下的代码是可以import "mypkg/internal/foo"的,otherpkg/下的代码是不能import "mypkg/internal/foo"的。

//foo.go
package foo

import "fmt"

func Foo() {
    fmt.Println("mypkg/internal/foo")
}

//main.go
package main

import "mypkg/internal/foo"

func main() {
    foo.Foo()
}

在pkg1和otherpkg下分别run main.go:

mypkg/pkg1$ go run main.go
mypkg/internal/foo

otherpkg$ go run main.go
mypkg/internal/foo

可以看到在otherpkg下执行时,并没有任何build error出现。看来internal机制并未生效。

我们再来试试import $GOROOT下某些internal包,看看是否可以成功:

package main

import (
    "fmt"
    "image/internal/imageutil"
)

func main() {
    fmt.Println(imageutil.DrawYCbCr)
}

我们run这个代码:

$go run main.go
0x6b7f0

同样没有出现任何error。

不是很清楚为何在1.5beta1中internal依旧无效。难道非要等最终1.5 release版么?

【Vendor】
Vendor机制是go team为了解决go第三方包依赖和管理而引入的实验性技术。你执行以下go env:

$go env
GOARCH="amd64"
GOBIN="/Users/tony/.bin/go15beta1/go/bin"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="darwin"
GOOS="darwin"
GOPATH="/Users/tony/Test/GoToolsProjects"
GORACE=""
GOROOT="/Users/tony/.bin/go15beta1/go"
GOTOOLDIR="/Users/tony/.bin/go15beta1/go/pkg/tool/darwin_amd64"
GO15VENDOREXPERIMENT=""
CC="clang"
GOGCCFLAGS="-fPIC -m64 -pthread -fno-caret-diagnostics -Qunused-arguments -fmessage-length=0 -fno-common"
CXX="clang++"
CGO_ENABLED="1"

从结果中你会看到新增一个GO15VENDOREXPERIMENT变量,这个就是用来控制vendor机制是否开启的环境变量,默认不开启。若要开启,可以在环境变量文件中设置或export GO15VENDOREXPERIMENT=1临时设置。

vendor机制是在go 1.5beta1发布前不长时间临时决定加入到go 1.5中的,Russ Cox在Keith Rarick之前的一个Proposal的基础上重新做了设计而成,大致机制内容:

If there is a source directory d/vendor, then,
    when compiling a source file within the subtree rooted at d,
    import "p" is interpreted as import "d/vendor/p" if that exists.

    When there are multiple possible resolutions,
    the most specific (longest) path wins.

    The short form must always be used: no import path can
    contain “/vendor/” explicitly.

    Import comments are ignored in vendored packages.

下面我们来测试一下这个机制。首先我们临时开启vendor机制,export GO15VENDOREXPERIMENT=1,我们的测试目录规划如下:

testvendor
    vendor/
        tonybai.com/
            foolib/
                foo.go
    main/
        main.go

$GOPATH/src/tonybai.com/foolib/foo.go

//vendor/tonybai.com/foolib/foo.go
package foo

import "fmt"

func Hello() {
    fmt.Println("foo in vendor")
}

//$GOPATH/src/tonybai.com/foolib/foo.go
package foo

import "fmt"

func Hello() {
    fmt.Println("foo in gopath")
}

vendor和gopath下的foo.go稍有不同,主要在输出内容上,以方便后续区分。

现在我们编译执行main.go

//main/main.go
package main

import (
    "tonybai.com/foolib"
)

func main() {
    foo.Hello()
}

$go run main.go
foo in gopath

显然结果与预期不符,我们通过go list -json来看main.go的依赖包路径:

$go list -json
{
… …
    "Imports": [
        "tonybai.com/foolib"
    ],
    "Deps": [
        "errors",
        "fmt",
        "io",
        "math",
        "os",
        "reflect",
        "runtime",
        "strconv",
        "sync",
        "sync/atomic",
        "syscall",
        "time",
        "tonybai.com/foolib",
        "unicode/utf8",
        "unsafe"
    ]
}

可以看出并没有看到vendor路径,main.go import的是$GOPATH下的foo。难道是go 1.5beta1的Bug?于是翻看各种资料,最后在go 1.5beta1发布前最后提交的revison的commit log中得到了帮助:

cmd/go: disable vendoredImportPath for code outside $GOPATH
It was crashing.
This fixes the build for
GO15VENDOREXPERIMENT=1 go test -short runtime

Fixes #11416.

Change-Id: I74a9114cdd8ebafcc9d2a6f40bf500db19c6e825
Reviewed-on: https://go-review.googlesource.com/11964
Reviewed-by: Russ Cox <rsc@golang.org>

从commit log来看,大致意思是$GOPATH之外的代码的vendor机制被disable了(因为某个bug)。也就是说只有$GOPATH路径下的包在 import时才会考虑vendor路径,我们的代码的确没有在$GOPATH下,我们重新设置一下$GOPATH。

$export GOPATH=~/test/go/go15
[tony@TonydeMacBook-Air-2 ~/test/go/go15/src/testvendor/main]$go list -json
{
  
  … …
    "Imports": [
        "testvendor/vendor/tonybai.com/foolib"
    ],
    "Deps": [
        "errors",
        "fmt",
        "io",
        "math",
        "os",
        "reflect",
        "runtime",
        "strconv",
        "sync",
        "sync/atomic",
        "syscall",
        "testvendor/vendor/tonybai.com/foolib",
        "time",
        "unicode/utf8",
        "unsafe"
    ]
}

这回可以看到vendor机制生效了。执行main.go:

$go run main.go
foo in vendor

这回与预期结果就相符了。

前面提到,关闭GOPATH外的vendor机制是因为一个bug,相信go 1.5正式版发布时,这块会被enable的。

三、小结

Go 1.5还增加了很多工具,如trace,但因文档不全,尚不知如何使用。

Go 1.5标准库也有很多小的变化,这个只有到使用时才能具体深入了解。

Go 1.5更多是Go语言骨子里的变化,也就是runtime和编译器重写。语法由于兼容Go 1,所以基本frozen,因此从外在看来,基本没啥变动了。

至于Go 1.5的性能,官方的说法是,有的程序用1.5编译后会变得慢点,有的会快些。官方bench的结果是总体比1.4快上一些。但Go 1.5在性能方面主要是为了减少gc延迟,后续版本才会在性能上做进一步优化,优化空间还较大的,这次runtime、编译器由c变go,很多地方的go 代码并非是最优的,多是自动翻译,相信经过Go team的优化后,更idiomatic的Go code会让Go整体性能更为优异。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言进阶课 Go语言精进之路1 Go语言精进之路2 Go语言第一课 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats