标签 json 下的文章

Go语言开发者的Apache Arrow使用指南:扩展compute包

本文永久链接 – https://tonybai.com/2023/07/22/a-guide-of-using-apache-arrow-for-gopher-part5

在本系列文章的第4篇《Go语言开发者的Apache Arrow使用指南:数据操作》中我们遇到了大麻烦:Go的Arrow实现居然不支持像max、min、sum这样的简单聚合计算函数:(,分组聚合(grouped aggregation)就更是“遥不可期”。要想对从CSV读取的数据进行聚合操作和分析,我们只能“自己动手,丰衣足食” – 扩展Arrow Go实现中的compute包了

不过,Arrow的Go实现还是蛮复杂的,如果对其结构没有一个初步的认知,很难实现这类扩展。在这篇文章中,我们就来了解一下compute包的结构,并尝试为compute包添加几个简单的、仅能处理单一类型的聚合函数,先来完成一些从0到1的工作。

为了深入了解Go Arrow实现,我又翻阅了一下Arrow官方的文档,显然Arrow C++的文档是最丰富的。我快读了一下C++的Arrow文档,对Arrow的结构有了更深刻的认知,基于这些资料,我们先来做一下Arrow结构的回顾。

0. 回顾Arrow的各个layer

Arrow的C++文档使用layer来介绍各种Arrow的概念,我们挑几个重要的看一下:

  • 物理层(The physical layer)

物理层针对的是内存的分配管理,包括内存分配的方法(堆分配器、内存文件映射、静态内存区)等。这一层的一个最重要的概念就是我们之前在数据类型一文中提到的Buffer抽象,它代表了内存中的一块连续的数据存储区域

  • 一维表示层(The one-dimensional layer)

除了物理层,后续的层都是逻辑层。一维表示层是一个逻辑表示层,它定义了Arrow的最基本数据类型:array数据类型决定了物理层内存数据的解释方法,逻辑数据类型array在物理层投影为一个和多个内存buffer

我们在“高级数据结构”提到的chunked array也在这一层,chunked array由多个同构类型的array组成,Arrow将其理解为一个同构的(相同类型的)、逻辑上值连续的、更大的array,是array基础类型的一个更泛化的表示。

  • 二维表示层(The two-dimensional layer)

“高级数据结构”一文中除chunked array之外的概念,都在这一层,包括schema、table、record batch。

schema是用于描述一维数据(一列数据,即一个逻辑array)的元数据,包括列名、类型与其他元信息。

Table是schema+与schema元信息对应的多个chunked array,它是Arrow中数据集抽象能力最强的逻辑结构。

Record Batch则是schema+与schema元信息对应的多个array。还记得“高级数据结构”一文中的那副直观给出table与record batch差异的图么:

  • 计算层(The compute layer)

计算层一个重要的抽象是Datum,这是一个灵活的抽象,用于统一表示参与计算的各类输入参数和返回值。

计算层真正执行计算的函数被统一放在kernel这个“层次”中,这个层次的函数对Datum类型的输入参数进行计算并返回Datam类型的结果或以Datum类型的输出参数承载计算结果。

  • IPC层(The Inter-Process Communication (IPC) layer)

这是我们尚未接触过的一层,通过这一层,复合Arrow columnar format的数据可以在进程间(同一主机或不同主机)交互,并且这种交换可以保证尽可能少的内存copy。

  • 文件格式层(The file formats layer)

这一层负责读写文件,在之前的“数据操作”一篇中,我们接触过将CSV文件中的数据读到内存中并组织为Arrow列式存储格式,在后续篇章中,我们还将陆续介绍Arrow与CSV(写入)、Parquet文件的数据交互。

C++有关Arrow的介绍中还有设备层(the devices layer)、文件系统层(the file system layer)等,后续可能不会涉及,这里就不说了。

通过上述回顾,再对照本系列第一篇文章“数据类型”的内容,你对Arrow的理解是不是更深刻一点点了呢:)。

接下来,我们重点看看计算层(the compute layer)。

1. 计算层(the compute layer)的结构

Go语言的计算层在compute目录下。Go语言借鉴了C++计算层的设计,将计算层分为compute和kernel,这个从代码布局上也可以明显看出来:

$tree -F -L 2 compute|grep -v go
compute           --- compute层
├── exprs/
├── internal/
│   ├── exec/
│   └── kernels/  --- compute的kernel层

compute包采用了registry模式,初始化时将底层的kernel function包装成上层的Function并注册到registry中。用户调用某个function时,该function会在registry中查找对应的注册函数并调用。

下面我们通过Uniq这个array-wise函数作为例子来探索一下kernel function的注册与调用过程。下面是“数据操作”一文中的示例,这里再次借用一下:

// arrow/manipulation/unary_arraywise_function.go

func main() {
    data := []int32{5, 10, 0, 25, 2, 10, 2, 25}
    bldr := array.NewInt32Builder(memory.DefaultAllocator)
    defer bldr.Release()
    bldr.AppendValues(data, nil)
    arr := bldr.NewArray()
    defer arr.Release()

    dat, err := compute.Unique(context.Background(), compute.NewDatum(arr))
    if err != nil {
        fmt.Println(err)
        return
    }

    arr1, ok := dat.(*compute.ArrayDatum)
    if !ok {
        fmt.Println("type assert fail")
        return
    }
    fmt.Println(arr1.MakeArray()) // [5 10 0 25 2]
}

下面是Unique函数的注册和调用过程示意图:

很显然,整个过程包括两个明显的阶段:

  • 包装并向Registry注册kernel函数(AddFunction)
  • 在Registry中查找函数并调用(GetFunction)

当我们在用户层调用compute.Unique函数时,一个统一的CallFunction会被调用,其第二个参数”uniq”表明我们要调用registry中的名为”uniq”的包装函数。在这个过程中GetFunctionRegistry被调用以获取registry实例,在这个过程中,如果registry实例尚没有创建,GetFunctionRegistry会在sync.Once的保护下创建registry并进行初始注册工作(RegisterXXX)。”uniq”对应的包装函数是在RegisterVectorHash中被注册到registry中的。

RegisterVectorHash会通过kernel层提供的GetVectorHashKernels获取kernel层的”uniq”实现,并将其通过NewVectorFunction和AddKernel包装为uniqFn这一用户层的Function,该uniqFn Function最终会被AddFunction加入到registry中。

而CallFunction(ctx, “uniq”)也会从registry中将uniqFn查找出来并执行其Execute方法,该Execute方法实际上执行的是kernel层的”uniq”实现。

我们看到:通过示意图展示的Unique函数的注册与调用过程还是相对清晰的(但如果要阅读对应的代码,还是比较繁琐的)。

到这里我们也大致了解了compute包的结构以及与kernel层的关系,接下来我们就来尝试给compute包添加一些scalar aggregate函数,所谓scalar aggregate函数就是输入是array,输出是一个scalar值的函数,比如:max、min、sum等。

3. 添加Max、Min、Sum、Avg等Scalar Aggregate函数

在上一篇“数据操作”时提过,聚合函数分为Scalar聚合和grouped聚合,显然Scalar聚合函数要简单一些,这里我们就来向compute层添加scalar aggregate函数,以Max为例,我们希望用户层这样使用Max聚合函数:

// max_aggregate_function.go
func main() {
    data := []int64{5, 10, 0, 25, 2, 35, 7, 15}
    bldr := array.NewInt64Builder(memory.DefaultAllocator)
    defer bldr.Release()
    bldr.AppendValues(data, nil)
    arr := bldr.NewArray()
    defer arr.Release()

    dat, err := compute.Max(context.Background(), compute.NewDatum(arr))
    if err != nil {
        fmt.Println(err)
        return
    }

    ad, ok := dat.(*compute.ArrayDatum)
    if !ok {
        fmt.Println("type assert fail")
        return
    }
    arr1 := ad.MakeArray()
    fmt.Println(arr1) // [35]
}

注:这里有一个问题,那就是Max返回的Datum是一个ArrayDatum,而不是期望的ScalarDatum。

通过上面的compute layer的结构,我们知道,如果要添加Max、Min、Sum、Avg等Scalar Aggregate函数,我们需要在kernel层和compute层协作实现。下面是实现的具体步骤。

3.1 向kernel层添加scalar聚合函数实现

compute层要支持scalar聚合,需要kernel层线支持scalar聚合,这里我们先向compute/internal/kernels目录添加一个scalar_agg.go,用于在kernel层实现scalar聚合,以Max为例:

// compute/internal/kernels/scalar_agg.go

package kernels

import (
    "fmt"

    "github.com/apache/arrow/go/v13/arrow"
    "github.com/apache/arrow/go/v13/arrow/compute/internal/exec"
    "github.com/apache/arrow/go/v13/arrow/scalar"
)

func ScalarAggKernels(op ScalarAggOperator) (aggs []exec.ScalarKernel) {
    switch op {
    case AggMax:
        maxAggs := maxAggKernels()
        aggs = append(aggs, maxAggs...)
    case AggMin:
        minAggs := minAggKernels()
        aggs = append(aggs, minAggs...)
    case AggAvg:
        avgAggs := avgAggKernels()
        aggs = append(aggs, avgAggs...)
    case AggSum:
        sumAggs := sumAggKernels()
        aggs = append(aggs, sumAggs...)
    }

    return
}

func aggMax(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
    var max int64

    for _, v := range batch.Values {
        if !v.IsArray() {
            return fmt.Errorf("%w: input datum is not array", arrow.ErrInvalid)
        }

        if v.Array.Type != arrow.PrimitiveTypes.Int64 {
            return fmt.Errorf("%w: array type is not int64", arrow.ErrInvalid)
        }

        // for int64 array:
        //   first buffer is meta buffer
        //   second buffer is what we want
        int64s := exec.GetSpanValues[int64](&v.Array, 1)
        for _, v64 := range int64s {
            if v64 > max {
                max = v64
            }
        }
    }

    out.FillFromScalar(scalar.NewInt64Scalar(max))
    return nil
}

func maxAggKernels() (aggs []exec.ScalarKernel) {
    outType := exec.NewOutputType(arrow.PrimitiveTypes.Int64)
    in := exec.NewExactInput(arrow.PrimitiveTypes.Int64)
    aggs = append(aggs, exec.NewScalarKernel([]exec.InputType{in}, outType,
        aggMax, nil))

    return
}
... ...

上面的ScalarAggKernels函数就像上图中的GetVectorHashKernels一样,为compute层提供kernel层scalar agg函数的获取“渠道”。aggMax函数是实现聚合逻辑的那个函数,它针对输入的array进行操作,计算array中所有元素中的最大值,并将这个值包装成Datum作为out参数输出。

在compute/internal/kernels/types.go中,我们定义了如下枚举常量,用于compute层传入要选择的scalar聚合函数。

// compute/internal/kernels/types.go

//go:generate stringer -type=ScalarAggOperator -linecomment

type ScalarAggOperator int8

const (
    AggMax ScalarAggOperator = iota // max
    AggMin                          // min
    AggAvg                          // avg
    AggSum                          // sum
)

3.2 在compute层提供对kernel层聚合函数的包装

在compute层,我们也提供一个scalar_agg.go文件,用于对kernel层的聚合函数进行包装:

// compute/scalar_agg.go

package compute

import (
    "context"

    "github.com/apache/arrow/go/v13/arrow/compute/internal/kernels"
)

type aggFunction struct {
    ScalarFunction
}

func Max(ctx context.Context, values Datum) (Datum, error) {
    return CallFunction(ctx, "max", nil, values)
}
func Min(ctx context.Context, values Datum) (Datum, error) {
    return CallFunction(ctx, "min", nil, values)
}
func Avg(ctx context.Context, values Datum) (Datum, error) {
    return CallFunction(ctx, "avg", nil, values)
}
func Sum(ctx context.Context, values Datum) (Datum, error) {
    return CallFunction(ctx, "sum", nil, values)
}

func RegisterScalarAggs(reg FunctionRegistry) {
    maxFn := &aggFunction{*NewScalarFunction("max", Unary(), EmptyFuncDoc)}
    for _, k := range kernels.ScalarAggKernels(kernels.AggMax) {
        if err := maxFn.AddKernel(k); err != nil {
            panic(err)
        }
    }
    reg.AddFunction(maxFn, false)

    minFn := &aggFunction{*NewScalarFunction("min", Unary(), EmptyFuncDoc)}
    for _, k := range kernels.ScalarAggKernels(kernels.AggMin) {
        if err := minFn.AddKernel(k); err != nil {
            panic(err)
        }
    }
    reg.AddFunction(minFn, false)

    avgFn := &aggFunction{*NewScalarFunction("avg", Unary(), EmptyFuncDoc)}
    for _, k := range kernels.ScalarAggKernels(kernels.AggAvg) {
        if err := avgFn.AddKernel(k); err != nil {
            panic(err)
        }
    }
    reg.AddFunction(avgFn, false)

    sumFn := &aggFunction{*NewScalarFunction("sum", Unary(), EmptyFuncDoc)}
    for _, k := range kernels.ScalarAggKernels(kernels.AggSum) {
        if err := sumFn.AddKernel(k); err != nil {
            panic(err)
        }
    }
    reg.AddFunction(sumFn, false)
}

我们看到在这个源文件中,我们提供了供最终用户调用的Max等函数,这些函数是对kernel层scalar聚合函数的包装,通过CallFunction在registry中找到注册的kernel函数并执行它。

RegisterScalarAggs是用于向registry注册scalar聚合函数的函数。

3.3 在compute层将包装后的聚合函数注册到Registry中

我们修改一下compute/registry.go,在GetFunctionRegistry函数中增加对RegisterScalarAggs的调用,以实现对scalar聚合函数的注册:

// compute/registry.go

func GetFunctionRegistry() FunctionRegistry {
    once.Do(func() {
        registry = NewRegistry()
        RegisterScalarCast(registry)
        RegisterVectorSelection(registry)
        RegisterScalarBoolean(registry)
        RegisterScalarArithmetic(registry)
        RegisterScalarComparisons(registry)
        RegisterVectorHash(registry)
        RegisterVectorRunEndFuncs(registry)
        RegisterScalarAggs(registry)
    })
    return registry
}

3.4 运行示例

最初运行arrow/compute-extension/max_aggregate_function.go示例的结果并非我们预期,而是一个全0的数组:

$go run max_aggregate_function.go
[0 0 0 0 0 0 0 0]

经过print调试大法后,我发现compute/executor.go中的executeSpans的实现似乎有一个问题,我在arrow项目提了一个issue,并对executor.go做了如下修改:

diff --git a/go/arrow/compute/executor.go b/go/arrow/compute/executor.go
index d3f1a1fd4..e9bda7137 100644
--- a/go/arrow/compute/executor.go
+++ b/go/arrow/compute/executor.go
@@ -604,7 +604,7 @@ func (s *scalarExecutor) executeSpans(data chan<- Datum) (err error) {
                        return
                }

-               return s.emitResult(prealloc, data)
+               return s.emitResult(&output, data)
        }

        // fully preallocating, but not contiguously
(END)

修改后,再运行arrow/compute-extension/max_aggregate_function.go示例就得到了正确的结果:

$go run max_aggregate_function.go
[35]

3.5 To Be Done

到这里,我们从0到1的为arrow go实现的compute层添加了int64类型的scalar聚合函数的支持(以max为例),但这仅仅是验证了思路的可行性,上述对compute的修改可能是不合理的。此外,上述的改动不是production ready的,存在一些问题,比如:

  • Max返回的是array datam,而不是我们想要的scalar Datam;
  • 仅支持int64,不支持其他类型的max聚合,比如float64、string等;
  • 性能没有优化;
  • 对chunked array类型的scalar datam尚未给出验证示例。
  • … …

4. 小结

在本文中我们基于C++的资料,回顾了Arrow的一些基础抽象概念,从而对Arrow有了更为深刻的认知。之后,也是我们的重点,就是给出了compute层的结构以及基于该结构为compute层增加scalar聚合函数的一种思路和示例代码。

不过这种思路只是为了理解arrow的一种试验性方法,存在其不合理的地方,随着arrow演进,这种方法也许将不适用。同时,后续arrow官方可能会为go增加aggregate function的支持,那时请大家以官方实现为准。

C++版本Arrow实现完全支持各种聚合函数,考虑到Go arrow的实现参考了C++版本的思路,如果要为go arrow正式增加聚合函数支持,阅读c++源码并考虑迁移到Go才是正道。

本文示例代码可以在这里下载,同时增加了scalar function的arrow的fork版本可以在我的github项目arrow-extend-compute1下找到。

5. 参考资料

  • 计算层 – https://arrow.apache.org/docs/cpp/compute.html
  • 计算层教程 – https://arrow.apache.org/docs/cpp/tutorials/compute_tutorial.html
  • Arrow C++参考 – https://arrow.apache.org/docs/cpp/overview.html
  • Go unique kernel函数PR – https://github.com/apache/arrow/pull/34172

“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go语言反射编程指南

本文永久链接 – https://tonybai.com/2023/06/04/reflection-programming-guide-in-go

反射是一种编程语言的高级特性,它允许程序在运行时检视自身的结构和行为。通过反射,程序可以动态地获取类型(type)与值(value)等信息,并对它们进行操作,诸如修改字段、调用方法等,这使得程序具有更大的灵活性和可扩展性。

不过,反射虽然具有强大的功能,但也存在一些缺点。由于反射是在运行时进行的,因此它比直接调用代码的性能要差。此外,反射还可能导致代码的可读性和维护性降低,因为它使得程序行为更加难以预测和理解。因此,在使用反射时需要注意性能和可维护性。

Go从诞生伊始就在运行时支持了反射,并在标准库中提供了reflect包供开发者进行反射编程时使用。在这篇文章中,我们就来系统地了解一下如何在Go中通过reflect包实现反射编程。

注:我的Go语言精进之路一书有关于Go反射的进阶讲解,欢迎阅读。

1. Go语言反射基础

相对于C/C++等系统编程语言,Go的运行时承担的功能要更多一些,比如Goroutine调度Go内存垃圾回收(GC)等。同时反射也为开发者与运行时之间提供了一个方便的、合法的交互窗口。通过反射,开发者可以合法的窥探关于Go类型系统的一些元信息。

注:《Go语言第一课》专栏第31~34讲对Goroutine调度以及Go并发编程做了系统详细的讲解,欢迎阅读。

Go语言的反射包(reflect包)是一个内置的包,它提供了一组API,能够在运行时获取和修改Go语言程序的结构和行为。reflect包也是所有Go反射编程的基础API,是进行Go反射编程的必经之路。

在本节中,我们将会探讨reflect包的一些基础知识,包括Type和Value两个重要的反射包类型,以及如何使用TypeOf和ValueOf方法来获取类型信息和值信息。

1.1 Type和Value

在reflect包中,Type和Value是两个非常重要的概念,它们分别表示了反射世界中的类型信息和值信息。

Type表示一个类型的元信息,它包含了类型的名称、大小、方法集合等信息。在反射编程中,我们可以使用TypeOf函数来获取一个值的类型信息。

Value表示一个值的信息,它包含了值的类型、值本身以及对值进行操作的方法集合等信息。在反射中,我们可以使用ValueOf函数来获取一个值的Value信息。

reflect包的TypeOf和ValueOf两个函数是进入反射世界的基本入口。下面我们来看看这两个函数的基本用法示例。

1.2 如何获取类型信息(TypeOf)

获取类型信息是反射的一个重要功能。在Go语言中,我们可以使用reflect包的TypeOf函数来获取一个值的类型信息。TypeOf函数的签名如下:

func TypeOf(i any) Type

注:any是interface{}的alias type,是Go 1.18中引入的预定义标识符。

TypeOf函数接受一个任意类型的值作为参数,并返回该值的类型信息,即interface{}接口类型变量中存储的动态类型信息。例如,我们可以使用TypeOf函数获取一个字符串的类型信息:

import (
    "fmt"
    "reflect"
)

func main() {
    s := "hello, world!"
    t := reflect.TypeOf(s)
    fmt.Println(t.Name()) // string
}

用图直观表示如下:

1.4 如何获取值信息(ValueOf)

获取值信息是反射的另一个重要功能。在Go语言中,我们可以使用reflect包的ValueOf函数来获取一个值的Value信息。ValueOf函数的签名如下:

func ValueOf(i any) Value

ValueOf函数接受一个任意类型的值作为参数,并返回该值的Value信息,即interface{}接口类型变量中存储的动态类型的值的信息。例如,我们可以使用ValueOf函数获取一个整数的Value信息:

import (
    "fmt"
    "reflect"
)

func main() {
    i := 42
    v := reflect.ValueOf(i)
    fmt.Println(v.Int()) // 42
}

在上述示例中,我们首先定义了一个整数i,然后使用ValueOf函数获取其Value信息,并调用Int方法获取其值。

用图直观表示如下:

以上就是reflect包TypeOf和ValueOf函数的基本用法的示例,下面我们再来详细看看获取不同类型的类型信息和值信息的细节。

2. 检视类型信息和调用类型方法

reflect.Type实质上是一个接口类型,它封装了reflect可以提供的类型信息的所有方法(Go 1.20版本中的reflect.Type):

// $GOROOT/src/reflect/type.go

type Type interface {
    // Methods applicable to all types.

    // Align returns the alignment in bytes of a value of
    // this type when allocated in memory.
    Align() int

    // FieldAlign returns the alignment in bytes of a value of
    // this type when used as a field in a struct.
    FieldAlign() int

    // Method returns the i'th method in the type's method set.
    // It panics if i is not in the range [0, NumMethod()).
    //
    // For a non-interface type T or *T, the returned Method's Type and Func
    // fields describe a function whose first argument is the receiver,
    // and only exported methods are accessible.
    //
    // For an interface type, the returned Method's Type field gives the
    // method signature, without a receiver, and the Func field is nil.
    //
    // Methods are sorted in lexicographic order.
    Method(int) Method

    // MethodByName returns the method with that name in the type's
    // method set and a boolean indicating if the method was found.
    //
    // For a non-interface type T or *T, the returned Method's Type and Func
    // fields describe a function whose first argument is the receiver.
    //
    // For an interface type, the returned Method's Type field gives the
    // method signature, without a receiver, and the Func field is nil.
    MethodByName(string) (Method, bool)

    // NumMethod returns the number of methods accessible using Method.
    //
    // For a non-interface type, it returns the number of exported methods.
    //
    // For an interface type, it returns the number of exported and unexported methods.
    NumMethod() int

    // Name returns the type's name within its package for a defined type.
    // For other (non-defined) types it returns the empty string.
    Name() string

    // PkgPath returns a defined type's package path, that is, the import path
    // that uniquely identifies the package, such as "encoding/base64".
    // If the type was predeclared (string, error) or not defined (*T, struct{},
    // []int, or A where A is an alias for a non-defined type), the package path
    // will be the empty string.
    PkgPath() string

    // Size returns the number of bytes needed to store
    // a value of the given type; it is analogous to unsafe.Sizeof.
    Size() uintptr

    // String returns a string representation of the type.
    // The string representation may use shortened package names
    // (e.g., base64 instead of "encoding/base64") and is not
    // guaranteed to be unique among types. To test for type identity,
    // compare the Types directly.
    String() string

    // Kind returns the specific kind of this type.
    Kind() Kind

    // Implements reports whether the type implements the interface type u.
    Implements(u Type) bool

    // AssignableTo reports whether a value of the type is assignable to type u.
    AssignableTo(u Type) bool

    // ConvertibleTo reports whether a value of the type is convertible to type u.
    // Even if ConvertibleTo returns true, the conversion may still panic.
    // For example, a slice of type []T is convertible to *[N]T,
    // but the conversion will panic if its length is less than N.
    ConvertibleTo(u Type) bool

    // Comparable reports whether values of this type are comparable.
    // Even if Comparable returns true, the comparison may still panic.
    // For example, values of interface type are comparable,
    // but the comparison will panic if their dynamic type is not comparable.
    Comparable() bool

    // Methods applicable only to some types, depending on Kind.
    // The methods allowed for each kind are:
    //
    //  Int*, Uint*, Float*, Complex*: Bits
    //  Array: Elem, Len
    //  Chan: ChanDir, Elem
    //  Func: In, NumIn, Out, NumOut, IsVariadic.
    //  Map: Key, Elem
    //  Pointer: Elem
    //  Slice: Elem
    //  Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField

    // Bits returns the size of the type in bits.
    // It panics if the type's Kind is not one of the
    // sized or unsized Int, Uint, Float, or Complex kinds.
    Bits() int

    // ChanDir returns a channel type's direction.
    // It panics if the type's Kind is not Chan.
    ChanDir() ChanDir

    // IsVariadic reports whether a function type's final input parameter
    // is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's
    // implicit actual type []T.
    //
    // For concreteness, if t represents func(x int, y ... float64), then
    //
    //  t.NumIn() == 2
    //  t.In(0) is the reflect.Type for "int"
    //  t.In(1) is the reflect.Type for "[]float64"
    //  t.IsVariadic() == true
    //
    // IsVariadic panics if the type's Kind is not Func.
    IsVariadic() bool

    // Elem returns a type's element type.
    // It panics if the type's Kind is not Array, Chan, Map, Pointer, or Slice.
    Elem() Type

    // Field returns a struct type's i'th field.
    // It panics if the type's Kind is not Struct.
    // It panics if i is not in the range [0, NumField()).
    Field(i int) StructField

    // FieldByIndex returns the nested field corresponding
    // to the index sequence. It is equivalent to calling Field
    // successively for each index i.
    // It panics if the type's Kind is not Struct.
    FieldByIndex(index []int) StructField

    // FieldByName returns the struct field with the given name
    // and a boolean indicating if the field was found.
    FieldByName(name string) (StructField, bool)

    // FieldByNameFunc returns the struct field with a name
    // that satisfies the match function and a boolean indicating if
    // the field was found.
    //
    // FieldByNameFunc considers the fields in the struct itself
    // and then the fields in any embedded structs, in breadth first order,
    // stopping at the shallowest nesting depth containing one or more
    // fields satisfying the match function. If multiple fields at that depth
    // satisfy the match function, they cancel each other
    // and FieldByNameFunc returns no match.
    // This behavior mirrors Go's handling of name lookup in
    // structs containing embedded fields.
    FieldByNameFunc(match func(string) bool) (StructField, bool)

    // In returns the type of a function type's i'th input parameter.
    // It panics if the type's Kind is not Func.
    // It panics if i is not in the range [0, NumIn()).
    In(i int) Type

    // Key returns a map type's key type.
    // It panics if the type's Kind is not Map.
    Key() Type

    // Len returns an array type's length.
    // It panics if the type's Kind is not Array.
    Len() int

    // NumField returns a struct type's field count.
    // It panics if the type's Kind is not Struct.
    NumField() int

    // NumIn returns a function type's input parameter count.
    // It panics if the type's Kind is not Func.
    NumIn() int

    // NumOut returns a function type's output parameter count.
    // It panics if the type's Kind is not Func.
    NumOut() int

    // Out returns the type of a function type's i'th output parameter.
    // It panics if the type's Kind is not Func.
    // It panics if i is not in the range [0, NumOut()).
    Out(i int) Type

    common() *rtype
    uncommon() *uncommonType
}

我们看到这是一个“超级接口”,严格来说并不符合Go接口设计的惯例。

注:Go崇尚小接口。以Type接口为例,可以对Type接口做进一步分解,分解成若干内聚的小接口,然后将Type看成小接口的组合。

对于不同类型,Type接口的有些方法是冗余的,比如像上面的NumField、NumIn和NumOut方法对于一个int变量的类型信息来说就毫无意义。Type类型的注释中也提到:“Not all methods apply to all kinds of types”。

一旦通过TypeOf进入反射世界,拿到Type类型变量,那么我们就可以基于上述方法“翻看”类型的各种信息了。

对于像int、float64、string这样的基本类型来说,其类型信息的检视没有太多可说的。但对于其他类型,诸如复合类型、指针类型、函数类型等,还是有一些可聊聊的,我们下面逐一简单地看一下。

2.1 复合类型

2.1.1 数组类型

在Go中,数组类型是一种典型的复合类型,它有若干属性,包括数组长度、数组是否支持可比较、数组元素的类型等,看下面示例:

import (
    "fmt"
    "reflect"
)

func main() {
    arr := [5]int{1, 2, 3, 4, 5}
    typ := reflect.TypeOf(arr)
    fmt.Println(typ.Kind())       // array
    fmt.Println(typ.Len())        // 5
    fmt.Println(typ.Comparable()) // true

    elemTyp := typ.Elem()
    fmt.Println(elemTyp.Kind())       // int
    fmt.Println(elemTyp.Comparable()) // true
}

注:通过类型信息无法间接得到值信息,反之不然,稍后系统说明reflect.Value时会提到。

在这个例子,我们输出了arr这个数组类型变量的Kind信息。什么是Kind信息呢?reflect包中是如此定义的:

// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uint

const (
    Invalid Kind = iota
    Bool
    Int
    Int8
    Int16
    Int32
    Int64
    Uint
    Uint8
    Uint16
    Uint32
    Uint64
    Uintptr
    Float32
    Float64
    Complex64
    Complex128
    Array
    Chan
    Func
    Interface
    Map
    Pointer
    Slice
    String
    Struct
    UnsafePointer
)

我们可以将Kind当做是Go type信息的元信息,对于基本类型来说,如int、string、float64等,它的kind和它的type的表达是一致的。但对于像数组、切片等类型,kind更像是type的type。

以两个数组类型为例:

var arr1 [10]string
var arr2 [8]int

这两个数组类型的类型分别是[10]string和[8]int,但它们在反射世界的reflect.Type的Kind信息却都为Array。

再比如下面两个指针类型:

var p1 *float64
var p2 *MyFoo

这两个指针类型的类型分别是*float64和*MyFoo,但它们在反射世界的reflect.Type的Kind信息却都为Pointer。

Kind信息可以帮助开发人员在反射世界中区分类型,以对不同类型作不同的处理。比如对于Kind为Int的reflect.Type,你不能使用其Len()方法,否则会panic;但对于Kind为Array的则可以。开发人员使用反射提供的Kind信息可以处理不同类型的数据。

2.1.2 切片类型

在Go中切片是动态数组,可灵活、透明的扩容,多数情况下切片都能替代数组完成任务。在反射世界中通过reflect.Type我们可以获取切片类型的信息,包括元素类型等。下面是一个示例:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    s := make([]int, 5, 10)
    typ := reflect.TypeOf(s)
    fmt.Println(typ.Kind()) // slice
    fmt.Println(typ.Elem()) // int
}

如果我们使用上面的变量typ调用Type类型的Len和Cap方法会发生什么呢?在运行时,你将得到类似”panic: reflect: Len of non-array type []int”的报错!

那么问题来了!切片长度、容量到底是否是slice type的信息范畴呢? 我们来看一个例子:

var a = make([]int, 5, 10)
var b = make([]int, 7, 8) 

变量a和b的类型都是[]int。显然长度、容量等并不在切片类型的范畴,而是与切片变量值绑定的,下面的示例印证了这一点:

func main() {
    s := make([]int, 5, 10)
    val := reflect.ValueOf(s)
    fmt.Println(val.Len()) // 5
    fmt.Println(val.Cap()) // 10
}

我们获取了切片变量s的reflect.Value信息,通过Value我们得到了变量s的长度和容量信息。

2.1.3 结构体类型

结构体类型是与反射联合使用的重要类型,下面代码展示了如何通过reflect.Type获取结构体类型的相关信息:

package main

import (
    "fmt"
    "reflect"
)

type Person struct {
    Name string `json:"name"`
    Age  int    `json:"age"`
    gender  string
}

func (p Person) SayHello() {
    fmt.Printf("Hello, my name is %s, and I'm %d years old.\n", p.Name, p.Age)
}
func (p Person) unexportedMethod() {
}

func main() {
    p := Person{Name: "Tom", Age: 20, gender: "male"}
    typ := reflect.TypeOf(p)
    fmt.Println(typ.Kind())                   // struct
    fmt.Println(typ.NumField())               // 3
    fmt.Println(typ.Field(0).Name)            // Name
    fmt.Println(typ.Field(0).Type)            // string
    fmt.Println(typ.Field(0).Tag)             // json:"name"
    fmt.Println(typ.Field(1).Name)            // Age
    fmt.Println(typ.Field(1).Type)            // int
    fmt.Println(typ.Field(1).Tag)             // json:"age"
    fmt.Println(typ.Field(2).Name)            // gender
    fmt.Println(typ.Method(0).Name)           // SayHello
    fmt.Println(typ.Method(0).Type)           // func(main.Person)
    fmt.Println(typ.Method(0).Func)           // 0x109b6e0
    fmt.Println(typ.MethodByName("SayHello")) // {SayHello func(main.Person)}
    fmt.Println(typ.MethodByName("unexportedMethod")) // {  <nil> <invalid Value> 0} false
}

从上面例子可以看到,我们可以使用NumField、Field、NumMethod、Method和MethodByName等方法获取结构体的字段信息和方法信息。其中,Field方法返回的是StructField类型的值,包含了字段的名称、类型、标签等信息;Method方法返回的是Method类型的值,包含了方法的名称、类型和函数值等信息。

不过要注意:通过Type可以得到结构体中非导出字段的信息(如上面示例中的gender),但无法获取结构体类型的非导出方法信息(如上面示例中的unexportedMethod)

2.1.4 channel类型

channel是Go特有的类型,channel与切片很像,它的类型信息包括元素类型、chan读写特性,但channel的长度与容量与channel变量是绑定的,看下面示例:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    ch := make(chan<- int, 10)
    ch <- 1
    ch <- 2
    typ := reflect.TypeOf(ch)
    fmt.Println(typ.Kind())      // chan
    fmt.Println(typ.Elem())      // int
    fmt.Println(typ.ChanDir())   // chan<-

    fmt.Println(reflect.ValueOf(ch).Len()) // 2
    fmt.Println(reflect.ValueOf(ch).Cap()) // 10
}

基于反射和channel可以实现一些高级操作,比如之前写过一篇《使用反射操作channel》,大家可以移步看看。

2.1.5 map类型

map是go常用的内置的复合类型,它是一个无序键值对的集合,通过反射可以获取其键和值的类型信息:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    m := map[string]int{"a": 1, "b": 2, "c": 3}
    typ := reflect.TypeOf(m)
    fmt.Println(typ.Kind()) // map
    fmt.Println(typ.Key())  // string
    fmt.Println(typ.Elem()) // int        

    fmt.Println(reflect.ValueOf(m).Len()) // 3
}

我们看到,和切片一样,map变量的长度信息是与map变量的Value绑定的,另外要注意:map变量不能获取容量信息

2.2 指针类型

指针类型是一个大类,通过Type可以获得指针的kind和其指向的变量的类型信息:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    i := 10
    p := &i
    typ := reflect.TypeOf(p)
    fmt.Println(typ.Kind())                      // ptr
    fmt.Println(typ.Elem())                      // int
}

2.3 接口类型

接口即契约。在Go中非作为约束的接口类型本质就是一个方法集合,通过reflect.Type可以获得接口类型的这些信息:

package main

import (
    "fmt"
    "reflect"
)

type Animal interface {
    Speak() string
}

type Cat struct{}

func (c Cat) Speak() string {
    return "Meow"
}

func main() {
    var a Animal = Cat{}
    typ := reflect.TypeOf(a)
    fmt.Println(typ.Kind())         // struct
    fmt.Println(typ.NumMethod())    // 1
    fmt.Println(typ.Method(0).Name) // Speak
    fmt.Println(typ.Method(0).Type) // func(main.Cat) string
}

2.4 函数类型

函数在Go中是一等公民,我们可以将其像普通int类型那样去使用,传参、赋值、做返回值都是ok的。下面是通过Type获取函数类型信息的示例:

package main

import (
    "fmt"
    "reflect"
)

func foo(a, b int, c *int) (int, bool) {
    *c = a + b
    return *c, true
}

func main() {
    typ := reflect.TypeOf(foo)
    fmt.Println(typ.Kind())                      // func
    fmt.Println(typ.NumIn())                     // 3
    fmt.Println(typ.In(0), typ.In(1), typ.In(2)) // int int *int
    fmt.Println(typ.NumOut())                    // 2
    fmt.Println(typ.Out(0))                      // int
    fmt.Println(typ.Out(1))                      // bool
}

我们看到和其他类型不同,函数支持NumOut、NumIn、Out等方法。其中In是输出参数的集合,Out则是返回值参数的集合。

注:上述示例foo纯粹为了演示,不要计较其合理性问题。

3. 获取与修改值信息

掌握了如何在反射世界获取一个变量的类型信息后,我们再来看看如何在反射世界获取并修改一个变量的值信息。之前在《使用reflect包在反射世界里读写各类型变量》一文中详细讲解了使用reflect读写变量的值信息,大家可以移步那篇文章阅读。

注:并不是所有变量都可以修改值的,可以使用Value的CanSet方法判断值是否可以设置。

4. 调用函数与方法

通过反射我们可以在反射世界调用函数,也可以调用特定类型的变量的方法。

下面是一个通过reflect.Value调用函数的简单例子:

package main

import (
    "fmt"
    "reflect"
)

func add(a, b int) int {
    return a + b
}

func main() {
    // 获取函数类型变量
    val := reflect.ValueOf(add)
    // 准备函数参数
    args := []reflect.Value{reflect.ValueOf(1), reflect.ValueOf(2)}
    // 调用函数
    result := val.Call(args)
    fmt.Println(result[0].Int()) // 输出:3
}

从示例看到,我们通过Value的Call方法来调用函数add。add有两个入参,我们不能直接传入int类型,因为这是在反射世界,我们要用反射世界的“专用参数”,即ValueOf后的值。Call的结果就是反射世界的返回值的Value形式,通过Value.Int方法可以还原反射世界的Value为int。

注:通过reflect.Type无法调用函数和方法。

方法的调用与函数调用类似,下面是一个例子:

import (
    "fmt"
    "reflect"
)

type Rectangle struct {
    Width  float64
    Height float64
}

func (r Rectangle) Area(factor float64) float64 {
    return r.Width * r.Height * factor
}

func main() {
    r := Rectangle{Width: 10, Height: 5}
    val := reflect.ValueOf(r)
    method := val.MethodByName("Area")
    args := []reflect.Value{reflect.ValueOf(1.5)}
    result := method.Call(args)
    fmt.Println(result[0].Float()) // 输出:75
}

通过MethodByName获取反射世界的method value,然后同样是通过Call方法实现方法Area的调用。

注:reflect目前不支持对非导出方法的调用。

5. 动态创建类型实例

reflect更为强大的功能是可以在运行时动态创建各种类型的实例。下面是在反射世界动态创建各种类型实例的示例。

5.1 基本类型

下面以int、float64和string为例演示一下如何通过reflect在运行时动态创建基本类型的实例。

  • 创建int类型实例
func main() {
    val := reflect.New(reflect.TypeOf(0))
    val.Elem().SetInt(42)
    fmt.Println(val.Elem().Int()) // 输出:42
}
  • 创建float64类型实例
func main() {
    val := reflect.New(reflect.TypeOf(0.0))
    val.Elem().SetFloat(3.14)
    fmt.Println(val.Elem().Float()) // 输出:3.14
}
  • 创建string类型实例
func main() {
    val := reflect.New(reflect.TypeOf(""))
    val.Elem().SetString("hello")
    fmt.Println(val.Elem().String()) // 输出:hello
}

更为复杂的类型的实例,我们继续往下看。

5.2 数组类型

使用reflect在运行时创建一个[3]int类型的数组实例,并设置数组实例各个元素的值:

func main() {
    typ := reflect.ArrayOf(3, reflect.TypeOf(0))
    val := reflect.New(typ)
    arr := val.Elem()
    arr.Index(0).SetInt(1)
    arr.Index(1).SetInt(2)
    arr.Index(2).SetInt(3)
    fmt.Println(arr.Interface()) // 输出:[1 2 3]
    arr1, ok := arr.Interface().([3]int)
    if !ok {
        fmt.Println("not a [3]int")
        return
    }

    fmt.Println(arr1) // [1 2 3]
}

5.3 切片类型

使用reflect在运行时创建一个[]int类型的切片实例,并设置切片实例中各个元素的值:

func main() {
    typ := reflect.SliceOf(reflect.TypeOf(0)) // 切片元素类型
    val := reflect.MakeSlice(typ, 3, 3) // 动态创建切片实例
    val.Index(0).SetInt(1)
    val.Index(1).SetInt(2)
    val.Index(2).SetInt(3)
    fmt.Println(val.Interface()) // 输出:[1 2 3]

    sl, ok := val.Interface().([]int)
    if !ok {
        fmt.Println("sl is not a []int")
        return
    }
    fmt.Println(sl) // [1 2 3]
}

5.4 map类型

使用reflect在运行时创建一个map[string]int类型的实例,并设置map实例中键值对:

func main() {
    typ := reflect.MapOf(reflect.TypeOf(""), reflect.TypeOf(0))
    val := reflect.MakeMap(typ)
    key1 := reflect.ValueOf("one")
    value1 := reflect.ValueOf(1)
    key2 := reflect.ValueOf("two")
    value2 := reflect.ValueOf(2)
    val.SetMapIndex(key1, value1)
    val.SetMapIndex(key2, value2)
    fmt.Println(val.Interface()) // 输出:map[one:1 two:2]

    m, ok := val.Interface().(map[string]int)
    if !ok {
        fmt.Println("m is not a map[string]int")
        return
    }

    fmt.Println(m)
}

5.5 channel类型

使用reflect在运行时创建一个chan int类型的实例,并从该channel实例接收数据:

func main() {
    typ := reflect.ChanOf(reflect.BothDir, reflect.TypeOf(0))
    val := reflect.MakeChan(typ, 0)
    go func() {
        val.Send(reflect.ValueOf(42))
    }()

    ch, ok := val.Interface().(chan int)
    if !ok {
        fmt.Println("ch is not a chan int")
        return
    }
    fmt.Println(<-ch) // 42
}

5.6 结构体类型

使用reflect在运行时创建一个struct类型的实例,并设置该实例的字段值并调用该实例的方法:

type Person struct {
    Name string
    Age  int
}

func (p Person) Greet() {
    fmt.Printf("Hello, my name is %s and I am %d years old\n", p.Name, p.Age)
}

func (p Person) SayHello(name string) {
    fmt.Printf("Hello, %s! My name is %s\n", name, p.Name)
}

func main() {
    typ := reflect.StructOf([]reflect.StructField{
        {
            Name: "Name",
            Type: reflect.TypeOf(""),
        },
        {
            Name: "Age",
            Type: reflect.TypeOf(0),
        },
    })
    ptrVal := reflect.New(typ)
    val := ptrVal.Elem()
    val.FieldByName("Name").SetString("Alice")
    val.FieldByName("Age").SetInt(25)

    person := (*Person)(ptrVal.UnsafePointer())
    person.Greet()         // 输出:Hello, my name is Alice and I am 25 years old
    person.SayHello("Bob") // 输出:Hello, Bob! My name is Alice
}

我们看到:上面代码在反射世界中动态创建了一个带有两个字段Name和Age的struct类型,注意该struct类型与Person并非同一个类型,但他们的内存结构是一致的。这就是上面代码尾部基于反射世界创建出的匿名struct显式转换为Person类型后能正常工作的原因。

注:目前reflect不支持在运行时为动态创建的结构体类型添加新方法。

5.7 指针类型

使用reflect在运行时创建一个指针类型的实例,并通过指针设置其指向内存对象的值:

type Person struct {
    Name string
    Age  int
}

func main() {
    typ := reflect.PtrTo(reflect.TypeOf(Person{}))
    val := reflect.New(typ.Elem())
    val.Elem().FieldByName("Name").SetString("Alice")
    val.Elem().FieldByName("Age").SetInt(25)
    person := val.Interface().(*Person)
    fmt.Println(person.Name) // 输出:Alice
    fmt.Println(person.Age)  // 输出:25
}

5. 反射的使用场景

结合结构体标签,Go反射在实际开发中常用于以下两个场景中:

  • 序列化和反序列化

这是我们最熟悉的场景。

反射机制可以用于将数据结构序列化成二进制或文本格式,或者将序列化后的数据反序列化成原始数据结构。比如标准库的encoding/json包、xml包、gob包等就是使用反射机制实现的。

  • 实现ORM框架

反射机制可以用于在ORM(对象关系映射)中动态创建和修改对象,使得ORM能够根据数据库表结构自动创建对应的Go语言结构体。

注:我的Go语言精进之路一书关于Go反射的讲解中,有一个基于Go对象生成sql语句的例子。

当然reflect的应用不局限在上述场景中,凡是需要在运行时了解类型信息、值信息的都可以尝试使用reflect来实现,比如:编写可以处理多种类型的通用函数(可以用interface{}以及泛型替代)、利用通过reflect.Type.Kind的信息在代码中做类型断言、根据reflect得到的类型信息做代码自动生成等。

下面是一个利用reflect手动解析json的示例,我们来看一下:

6. 利用reflect手解json的例子

请注意:这不是一个可复用的完善的json解析代码,仅仅是为了演示而用。

例子代码如下:

package main

import (
    "fmt"
    "reflect"
    "strings"
)

type Person struct {
    Name      string
    Age       int
    IsStudent bool
}

func main() {
    jsonStr := `{
        "name": "John Doe",
        "age": 30,
        "isStudent": false
    }`

    person := Person{}
    parseJSONToStruct(jsonStr, &person)
    fmt.Printf("%+v\n", person)
}

func parseJSONToStruct(jsonStr string, v interface{}) {
    jsonLines := strings.Split(jsonStr, "\n")
    rv := reflect.ValueOf(v).Elem()

    for _, line := range jsonLines {
        line = strings.TrimSpace(line)
        if strings.HasPrefix(line, "{") || strings.HasPrefix(line, "}") {
            continue
        }

        parts := strings.SplitN(line, ":", 2)
        key := strings.TrimSpace(strings.Trim(parts[0], `"`))
        value := strings.TrimSpace(strings.Trim(parts[1], ","))

        // Find the corresponding field in the struct
        field := rv.FieldByNameFunc(func(fieldName string) bool {
            return strings.EqualFold(fieldName, key)
        })

        if field.IsValid() {
            switch field.Kind() {
            case reflect.String:
                field.SetString(strings.Trim(value, `"`))
            case reflect.Int:
                intValue, _ := strconv.Atoi(value)
                field.SetInt(int64(intValue))
            case reflect.Bool:
                boolValue := strings.ToLower(value) == "true"
                field.SetBool(boolValue)
            }
        }
    }
}

这段代码不是很难理解。

parseJSONToStruct函数首先将JSON字符串按行拆分,然后使用反射机制,获取v所对应的结构体的值,并将其保存在rv变量中。

接下来,函数遍历JSON字符串的每一行,如果该行以{或}开头,则直接跳过。否则,将该行按冒号:拆分成两部分,一部分是键(key),一部分是值(value)。

然后,函数使用反射机制,查找结构体中与该键对应的字段。这里使用了FieldByNameFunc方法,传入一个匿名函数作为参数,用于根据字段名查找对应的字段。如果找到了对应的字段,就根据该字段的类型,将值赋给该字段。这里支持了三种类型的字段:字符串、整数和布尔值。

最终,函数会将解析后的结果保存在v中,由于v是一个空接口类型的变量,实际上保存的是对应结构体的值的指针。所以在函数外部使用v时,需要将其转换为对应的结构体类型。

6. Go反射的不足

Go反射的优点在于它可以帮助我们实现更灵活和可扩展的程序设计。但是,Go反射也存在一些缺陷和局限性。其中,最主要的问题是性能。使用反射可能会导致程序性能下降,因为反射需要进行类型检查和动态分派,进出反射世界也需要额外的内存分配和装箱和拆箱操作。在编写高性能的Go程序时,应尽量避免使用反射机制。

此外,使用反射的代码可读性也相对较差,因为反射代码通常比较复杂和冗长。

7. 小结

Go反射是一种强大和灵活的机制,可以帮助我们实现运行时的类型和值信息获取、值操作、方法/函数调用以及动态创建类型实例,本文涵盖了所有这些操作的方法,希望能给大家带去帮助。

本文中涉及的代码可以在这里下载。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats