标签 goroutine 下的文章

十分钟入门Go语言

本文永久链接 – https://tonybai.com/2023/02/23/learn-go-in-10-min

本文旨在带大家快速入门Go语言,期望小伙伴们在花费十分钟左右通读全文后能对Go语言有一个初步的认知,为后续进一步深入学习Go奠定基础。

本文假设你完全没有接触过Go,你可能是一名精通其他编程语言的程序员,也可能是毫无编程经验、刚刚想转行为码农的热血青年。

编程简介

编程就是生产可在计算机上执行的程序的过程(如下图)。在这个过程中,程序员是“劳动力”,编程语言是工具,可执行的程序是生产结果。而Go语言就是程序员在编程生产过程中使用的一种优秀生产工具。

作为“劳动力”的程序员在这个过程中要做的就是使用某种编程语言作为生产工具,将事先设计好的执行逻辑组织和表达出来,这与一个作家将其大脑中设计好的故事情节用人类语言组织和书写在纸上的过程颇为类似(如下图)。

通过这个类比来看,学习一门编程语言,就好比学习一门人类语言,其词汇和语法将是我们的主要学习内容,本文就将围绕Go语言的主要“词汇”和语法形式进行快速说明。

Go简介

Go语言是由Google公司的三位大神级程序员Robert Griesemer、Rob Pike和Ken Thompson在2007年共同开发的一种新的后端编程语言,2009年,Go语言宣布开源。

Go语言的特点是简单易学、静态类型、编译速度快,运行效率高,代码简洁,并且原生支持并发编程。它还支持自动内存管理,可以让开发者更加专注于编程本身,而不用担心内存泄漏的问题。此外,Go语言还支持多核处理器,可以更好地利用多核处理器的优势,提高程序的运行效率。

经过十多年的发展,Go语言现在已经成为一种流行的编程语言,它可以用于开发各种应用程序,包括Web应用、网络服务、系统管理工具、移动应用、游戏开发、数据库管理等。Go语言常用于构建大型分布式系统,以及构建高性能的服务器端应用程序。Go为当前的云原生计算时代开发了一批“杀手级”应用,包括Docker、Kubernetes、Prometheus、InfluxDB、Cilium等。

安装Go

Go是静态语言,需要先编译,再执行,因此在开发Go程序之前,我们首先需要安装Go编译器以及相关工具链。安装的步骤很简单:

  • Go官网下载最新版本的Go语言安装包 – https://go.dev/dl/
  • 解压安装包,并将其复制到您想要安装的位置,例如:/usr/local/go;如果是Windows、MacOS平台,也可以下载图形化安装的安装包;
  • 设置环境变量,将Go语言的安装路径添加到PATH变量中;
  • 打开终端,输入go version,检查Go语言是否安装成功。如输出类似下面的内容,则表明安装成功!
$go version
go version go1.20 darwin/amd64

注:位于中国大陆的开发者们还需要一个额外的设置:export GOPROXY=’https://goproxy.cn’或将这个设置置于shell配置文件(比如.bashrc)中并使之生效。

第一个Go程序:Hello World

建立一个新目录,并在其中创建新文件helloworld.go,用任意编辑器打开helloworld.go,输入下面Go源码:

//helloworld.go

package main

import "fmt"

func main() {
    fmt.Println("Hello, World!")
}

Go支持直接运行某个源文件:

$go run helloworld.go
Hello, World!

但通常我们会先编译这个源文件(helloworld.go),生成可执行的二进制程序(./helloworld),然后再运行它:

$go build -o helloworld helloworld.go
$./helloworld
Hello, World!

Go包(package)

Go包是Go语言中的一种封装技术,它可以将一组Go语言源文件组织成一个可重用的单元,以便在其他Go程序中使用。同属于一个Go包的所有源文件放在一个目录下,并且按惯例该目录的名字与包名相同。以Go标准库的io包为例,其包内的源文件列表如下:

// $GOROOT/src/io目录下的文件列表:
io.go
multi.go
pipe.go

Go包也是Go编译的基本单元,Go编译器可以将包编译为可执行文件(如何该包为main包,且包含main函数实现),也可以编译为可重用的库文件(.a)。

包声明

Go包的声明通常是在每个Go源文件的开头,使用关键字package进行声明,例如:

// mypackage.go
package mypackage

... ...

package的名字按惯例通常为全小写的单个单词或缩略词,比如io、net、os、fmt、strconv、bytes等。

导入Go包

如果要复用已有的Go包,我们需要在源码中导入该包。要导入Go包,可以使用import关键字,例如:

import "fmt"                    // 导入标准库的fmt包

import "github.com/spf13/pflag" // 导入spf13开源的pflag包

import _ "net/http/pprof"       // 导入标准库net/http/pprof包,
                                // 但不显式使用该包中的类型、变量、函数等标识符

import myfmt "fmt"              // 将导入的包重命名为myfmt

Go模块

Go模块(module)是Go语言在1.11版本中引入的新特性,Go module是一组相关的Go package的集合,这个包集合被当做一个独立的单元进行统一版本管理。Go module这种新的依赖管理机制可以让开发者更轻松地管理Go语言项目的依赖关系,并且可以更好地支持多版本的依赖管理。在具有实用价值的Go项目中,我们都会使用Go module进行依赖管理。Go module有版本之分,Go module的版本依赖关系是建立在对语义版本(semver)严格遵守的前提下的。

Go使用go.mod文件来精确记录依赖关系要求,下面是go.mod中依赖关系的操作方法:

$go mod init demo // 创建一个module root为demo的go.mod
$go mod init github.com/bigwhite/mymodule // 创建一个module root为github.com/bigwhite/mymodule的go.mod

$go get github.com/bigwhite/foo@latest  // 向go.mod中添加一个依赖包github.com/bigwhite/foo的最新版本
$go get github.com/bigwhite/foo         // 与上面命令等价
$go get github.com/bigwhite/foo@v1.2.3  // 显式指定要获取v1.2.3版本

$go mod tidy   // 自动添加缺失的依赖包和清理不用的依赖包
$go mod verify // 确认所有依赖都有效

Go最小项目结构

Go官方并没有规定Go项目的标准结构布局,下面是Go核心团队技术负责人Russ Cox推荐的Go最小项目结构:

// 在Go项目仓库根路径下

- go.mod
- LICENSE
- README
- xx.go
- yy.go
... ...

// 在Go项目仓库根路径下

- go.mod
- LICENSE
- README
- package1/
    - package1.go
- package2/
    - package2.go
... ...

变量

Go语言有两种变量声明方式:

  • 使用var关键字

使用var关键字进行声明的方式适合所有场合。

var a int     // 声明一个int型变量a,初值为0
var b int = 5 // 声明一个int型变量b,初值为5
var c = 6     // Go会根据右值自动为变量c的赋予默认类型,默认的整型为int

var (         // 我们可以将变量声明统一放置在一个var块中,这与上面的声明方式等价
    a int
    b int = 5
    c = 6
)

注:Go变量声明采用变量在前,类型在后的方式,这与C、C++、Java等静态编程语言有较大不同。

  • 使用短声明方式声明变量
a := 5       // 声明一个变量a,Go会根据右值自动为变量a的赋予默认类型,默认的整型为int
s := "hello" // 声明一个变量s,Go会根据右值自动为变量s的赋予默认类型,默认的字符串类型为string

注:这种声明方式仅限于在函数或方法内使用,不能用于声明包级变量或全局变量。

常量

Go语言的常量使用const关键字进行声明:

const a int       // 声明一个int型常量a,其值为0
const b int = 5   // 声明一个int型常量b,其值为5
const c = 6       // 声明一个常量c,Go会根据右值自动为常量c的赋予默认类型,默认的整型为int
const s = "hello" // 声明一个常量s,Go会根据右值自动为常量s的赋予默认类型,默认的字符串类型为string

const (           // 我们可以将常量声明统一放置在一个const块中,这与上面的声明方式等价
    a int
    b int = 5
    c = 6
    s = "hello"
)

类型

Go原生内置了多种基本类型与复合类型。

基本类型

Go原生支持的基本类型包括布尔型、数值类型(整型、浮点型、复数类型)、字符串类型,下面是一些示例:

bool  // 布尔类型,默认值false

uint     // 架构相关的无符号整型,64位平台上其长度为8字节
int      // 架构相关的有符号整型,64位平台上其长度为8字节
uintptr  // 架构相关的用于表示指针值的类型,它是一个无符号的整数,大到足以存储一个任意类型的指针的值

uint8    // 架构无关的8位无符号整型
uint16   // 架构无关的16位无符号整型
uint32   // 架构无关的32位无符号整型
uint64   // 架构无关的64位无符号整型

int8     // 架构无关的8位有符号整型
int16    // 架构无关的16位有符号整型
int32    // 架构无关的32位有符号整型
int64    // 架构无关的64位有符号整型

byte     // uint8类型的别名
rune     // int32类型的别名,用于表示一个unicode字符(码点)

float32     // 单精度浮点类型,满足IEEE-754规范
float64     // 双精度浮点类型,满足IEEE-754规范

complex64   // 复数类型,其实部和虚部均为float32浮点类型
complex128  // 复数类型,其实部和虚部均为float64浮点类型

string      // 字符串类型,默认值为""

我们可以使用预定义函数complex来构造复数类型,比如:complex(1.0, -1.4)构造的复数为1 – 1.4i。

复合类型

Go原生支持的复合类型包括数组(array)、切片(slice)、结构体(struct)、指针(pointer)、函数(function)、接口(interface)、map、channel。

数组类型

数组类型是一组同构类型元素组成的连续体,它具有固定的长度(length),不能动态伸缩:

[8]int      // 一个元素类型为int、长度为16的数组类型
[32]byte    // 一个元素类型为byte、长度为32的数组类型
[2]string   // 一个元素类型为string、长度为2的数组类型
[N]T        // 一个元素类型为T、长度为N的数组类型

通过预定义函数len可以得到数组的长度:

var a = [8]int{11, 12, 13, 14, 15, 16, 17, 18}
println(len(a)) // 8

通过数组下标(从0开始)可以直接访问到数组中的任意元素:

println(a[0]) // 11
println(a[2]) // 13
println(a[7]) // 18

Go支持声明多维数组,即数组的元素类型依然为数组类型:

[2][3][5]float64  // 一个多维数组类型,等价于[2]([3]([5]float64))

切片类型

切片类型与数组类型类似,也是同构类型元素的连续体。不同的是切片类型的长度可变,我们在声明切片类型时无需传入长度属性:

[]int       // 一个元素类型为int的切片类型
[]string    // 一个元素类型为string的切片类型
[]T         // 一个元素类型为T的切片类型
[][][]float64 // 多维切片类型,等价于[]([]([]float64))

通过预定义函数len可以得到切片的当前长度:

var sl = []int{11, 12} // 一个元素类型为int的切片,其长度(len)为2, 其值为[11 12]
println(len(sl)) // 2

切片还有一个属性,那就是容量,通过预定义函数cap可以获得其容量值:

println(cap(sl)) // 2

和数组不同,切片可以动态伸缩,Go会根据元素的数量动态对切片容量进行扩展。我们可以通过append函数向切片追加元素:

sl = append(sl, 13)     // 向sl中追加新元素,操作后sl为[11 12 13]
sl = append(sl, 14)     // 向sl中追加新元素,操作后sl为[11 12 13 14]
sl = append(sl, 15)     // 向sl中追加新元素,操作后sl为[11 12 13 14 15]
println(len(sl), cap(sl)) // 5 8 追加后切片容量自动扩展为8

和数组一样,切片也是使用下标直接访问其中的元素:

println(sl[0]) // 11
println(sl[2]) // 13
println(sl[4]) // 15

结构体类型

Go的结构体类型是一种异构类型字段的聚合体,它提供了一种通用的、对实体对象进行聚合抽象的能力。下面是一个包含三个字段的结构体类型:

struct {
    name string
    age  int
    gender string
}

我们通常会给这样的一个结构体类型起一个名字,比如下面的Person:

type Person struct {
    name string
    age  int
    gender string
}

下面声明了一个Person类型的变量:

var p = Person {
    name: "tony bai",
    age: 20,
    gender: "male",
}

我们可以通过p.FieldName来访问结构体中的字段:

println(p.name) // tony bai
p.age = 21

结构体类型T的定义中可以包含类型为*T的字段成员,但不能递归包含T类型的字段成员:

type T struct {
    ... ...
    p *T    // ok
    t T     // 错误:递归定义
}

Go结构体亦可以在定义中嵌入其他类型:

type F struct {
    ... ...
}

type MyInt int

type T struct {
    MyInt
    F
    ... ...
}

嵌入类型的名字将作为字段名:

var t = T {
    MyInt: 5,
    F: F {
        ... ...
    },
}

println(t.MyInt) // 5

Go支持不包含任何字段的空结构体:

struct{}
type Empty struct{}        // 一个空结构体类型

空结构体类型的大小为0,这在很多场景下很有用(省去了内存分配的开销):

var t = Empty{}
println(unsafe.Sizeof(t)) // 0

指针类型

int类型对应的指针类型为*int,推而广之T类型对应的指针类型为*T。和非指针类型不同,指针类型变量存储的是内存单元的地址,*T指针类型变量的大小与T类型大小无关,而是和系统地址的表示长度有关。

*int     // 一个int指针类型
*[4]byte // 一个[4]byte数组指针类型

var a = 6
var p *T // 声明一个T类型指针变量p,默认值为nil
p = &a   // 用变量a的内存地址给指针变量p赋值
*p = 7   // 指针解引用,通过指针p将变量a的值由6改为7

n := new(int)  // 预定义函数返回一个*int类型指针
arr := new([4]int)  // 使用预定义函数new分配一个[4]int数组并返回一个*[4]int类型指针

map类型

map是Go语言提供的一种抽象数据类型,它表示一组无序的键值对,下面定义了一组map类型:

map[string]int                // 一个key类型为string,value类型为int的map类型
map[*T]struct{ x, y float64 } // 一个key类型为*T,value类型为struct{ x, y float64 }的map类型
map[string]interface{}        // 一个key类型为string,value类型为interface{}的map类型

我们可以用map字面量或make来创建一个map类型实例:

var m = map[string]int{}      // 声明一个map[string]int类型变量并初始化
var m1 = make(map[string]int) // 与上面的声明等价
var m2 = make(map[string]int, 100) // 声明一个map[string]int类型变量并初始化,其初始容量建议为100

操作map变量的方法也很简单:

m["key1"] = 5  // 添加/设置一个键值对
v, ok := m["key1"]  // 获取“key1”这个键的值,如果存在,则其值存储在v中,ok为true
delete(m, "key1") // 从m这个map中删除“key1”这个键以及其对应的值

其他类型

函数、接口、channel类型在后面有详细说明。

自定义类型

使用type关键字可以实现自定义类型:

type T1 int         // 定义一个新类型T1,其底层类型(underlying type)为int
type T2 string      // 定义一个新类型T2,其底层类型为string
type T3 struct{     // 定义一个新类型T3,其底层类型为一个结构体类型
    x, y int
    z string
}
type T4 []float64   // 定义一个新类型T4,其底层类型为[]float64切片类型
type T5 T4          // 定义一个新类型T5,其底层类型为[]float64切片类型

Go也支持为类型定义别名(alias),其形式如下;

type T1 = int       // 定义int的类型别名为T1,T1与int等价
type T2 = string    // 定义string的类型别名为T2,T2与string等价
type T3 = T2        // 定义T的类型别名为T3,T3与T2等价,也与string等价

类型转换

Go不支持隐式自动转型,如果要进行类型转换操作,我们必须显式进行,即便两个类型的底层类型相同也需如此:

type T1 int
type T2 int
var t1 T1
var n int = 5
t1 = T1(n)      // 显式将int类型变量转换为T1类型
var t2 T2
t2 = T2(t1)     // 显式将T1类型变量转换为T2类型

Go很多原生类型支持相互转换:

// 数值类型的相互转换

var a int16 = 16
b := int32(a)
c := uint16(a)
f := float64(a)

// 切片与数组的转换(Go 1.17版本及后续版本支持)

var a [3]int = [3]int([]int{1,2,3}) // 切片转换为数组
var pa *[3]int = (*[3]int)([]int{1,2,3}) // 切片转换为数组指针
sl := a[:] // 数组转换为切片

// 字符串与切片的相互转换

var sl = []byte{'h', 'e','l', 'l', 'o'}
var s = string(sl) // s为hello
var sl1 = []byte(s) // sl1为['h' 'e' 'l' 'l' 'o']
string([]rune{0x767d, 0x9d6c, 0x7fd4})  // []rune切片到string的转换

控制语句

Go提供了常见的控制语句,包括条件分支(if)、循环语句(for)和选择分支语句(switch)。

条件分支语句

// if ...

if a == 1 {
    ... ...
}

// if - else if - else

if a == 1 {

} else if b == 2 {

} else {

}

// 带有条件语句自用变量
if a := 1; a != 0 {

}

// if语句嵌套

if a == 1 {
    if b == 2 {

    } else if c == 3 {

    } else {

    }
}

循环语句

// 经典循环

for i := 0; i < 10; i++ {
    ...
}

// 模拟while ... do

for i < 10 {

}

// 无限循环

for {

}

// for range

var s = "hello"
for i, c := range s {

}

var sl = []int{... ...}
for i, v := range sl {

}

var m = map[string]int{}
for k, v := range m {

}

var c = make(chan int, 100)
for v := range c {

}

选择分支语句

var n = 5
switch n {
    case 0, 1, 2, 3:
        s1()
    case 4, 5, 6, 7:
        s2()
    default: // 默认分支
        s3()
}

switch n {
    case 0, 1:
        fallthrough  // 显式告知执行下面分支的动作
    case 2, 3:
        s1()
    case 4, 5, 6, 7:
        s2()
    default:
        s3()
}

switch x := f(); {
    case x < 0:
        return -x
    default:
        return x
}

switch {
    case x < y:
        f1()
    case x < z:
        f2()
    case x == 4:
        f3()
}

函数

Go使用func关键字来声明一个函数:

func greet(name string) string {
    return fmt.Sprintf("Hello %s", name)
}

函数由函数名、可选的参数列表和返回值列表组成。Go函数支持返回多个返回值,并且我们通常将表示错误值的返回类型放在返回值列表的最后面:

func Atoi(s string) (int, error) {
    ... ...
    return n, nil
}

在Go中函数是一等公民,因此函数自身也可以作为参数或返回值:

func MultiplyN(n int) func(x int) int {
  return func(x int) int {
    return x * n
  }
}

像上面MultiplyN函数中定义的匿名函数func(x int) int,它的实现中引用了它的外围函数MultiplyN的参数n,这样的匿名函数也被称为闭包(closure)

说到函数,我们就不能不提defer。在某函数F调用的前面加上defer,该函数F的执行将被“延后”至其调用者A结束之后:

func F() {
    fmt.Println("call F")
}

func A() {
    fmt.Println("call A")
    defer F()
    fmt.Println("exit A")
}

func main() {
    A()
}

上面示例输出:

call A
exit A
call F

在一个函数中可以多次使用defer:

func B() {
    defer F()
    defer G()
    defer H()
}

被defer修饰的函数将按照“先入后出”的顺序在B函数结束后被调用,上面B函数执行后将输出:

call H
call G
call F

方法

方法是带有receiver的函数。下面是Point类型的一个方法Length:

type Point struct {
    x, y float64
}

func (p Point) Length() float64 {
    return math.Sqrt(p.x * p.x + p.y * p.y)
}

而在func关键字与函数名之间的部分便是receiver。这个receiver也是Length方法与Point类型之间纽带。我们可以通过Point类型变量来调用Length方法:

var p = Point{3,4}
fmt.Println(p.Length())

亦可以将方法当作函数来用:

var p = Point{3,4}
fmt.Println(Point.Length(p)) // 这种用法也被称为方法表达式(method expression)

接口

接口是一组方法的集合,它代表一个“契约”,下面是一个由三个方法组成的方法集合的接口类型:

type MyInterface interface {
    M1(int) int
    M2(string) error
    M3()
}

Go推崇面向接口编程,因为通过接口我们可以很容易构建低耦合的应用。

Go还支持在接口类型(如I)中嵌套其他接口类型(如io.Writer、sync.Locker),其结果就是新接口类型I的方法集合为其方法集合与嵌入的接口类型Writer和Locker的方法集合的并集:

type I interface { // 一个嵌入了其他接口类型的接口类型
   io.Writer
   sync.Locker
}

接口实现

如果一个类型T实现了某个接口类型MyInterface方法集合中的所有方法,那么我们说该类型T实现了接口MyInterface,于是T类型的变量t可以赋值给接口类型MyInterface的变量i,此时变量i的动态类型为T:

var t T
var i MyInterface = t // ok

通过上述变量i可以调用T的方法:

i.M1(5)
i.M2("demo")
i.M3()

方法集合为空的接口类型interface{}被称为“空接口类型”,空白的“契约”意味着任何类型都实现了该空接口类型,即任何变量都可以赋值给interface{}类型的变量:

var i interface{} = 5 // ok
i = "demo"            // ok
i = T{}               // ok
i = &T{}              // ok
i = []T{}             // ok

注:Go 1.18中引入的新预定义标识符any与interface{}是等价类型。

接口的类型断言

Go支持通过类型断言从接口变量中提取其动态类型的值:

v, ok := i.(T) // 类型断言

如果接口变量i的动态类型确为T,那么v将被赋予该动态类型的值,ok为true;否则,v为T类型的零值,ok为false。

类型断言也支持下面这种语法形式:

v := i.(T)

但在这种形式下,一旦接口变量i之前被赋予的值不是T类型的值,那么这个语句将抛出panic。

接口类型的type switch

“type switch”这是一种特殊的switch语句用法,仅用于接口类型变量:

func main() {
    var x interface{} = 13
    switch x.(type) {
    case nil:
        println("x is nil")
    case int:
        println("the type of x is int") // 执行这一分支case
    case string:
        println("the type of x is string")
    case bool:
        println("the type of x is string")
    default:
        println("don't support the type")
    }
}

switch关键字后面跟着的表达式为x.(type),这种表达式形式是switch语句专有的,而且也只能在switch语句中使用。这个表达式中的x必须是一个接口类型变量,表达式的求值结果是这个接口类型变量对应的动态类型。

上述例子中switch后面的表达式也可由x.(type)换成了v := x.(type)。v中将存储变量x的动态类型对应的值信息:

var x interface{} = 13
switch x.(type) {
    case nil:
        println("v is nil")
    case int:
        println("the type of v is int, v =", v) // 执行这一分支case,v = 13
    ... ...
}

泛型

Go从1.18版本开始支持泛型。Go泛型的基本语法是类型参数(type parameter),Go泛型方案的实质是对类型参数的支持,包括:

  • 泛型函数(generic function):带有类型参数的函数;
  • 泛型类型(generic type):带有类型参数的自定义类型;
  • 泛型方法(generic method):泛型类型的方法。

泛型函数

下面是一个泛型函数max的定义:

type ordered interface {
    ~int | ~int8 | ~int16 | ~int32 | ~int64 |
        ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
        ~float32 | ~float64 |
        ~string
}

func max[T ordered](sl []T) T {
    ... ...
}

与普通Go函数相比,max函数在函数名称与函数参数列表之间多了一段由方括号括起的代码:[T ordered];max参数列表中的参数类型以及返回值列表中的返回值类型都是T,而不是某个具体的类型。

max函数中多出的[T ordered]就是Go泛型的类型参数列表(type parameters list),示例中这个列表中仅有一个类型参数T,ordered为类型参数的类型约束(type constraint)。

我们可以像普通函数一样调用泛型函数,我们可以显式指定类型实参:

var m int = max[int]([]int{1, 2, -4, -6, 7, 0})  // 显式指定类型实参为int
fmt.Println(m) // 输出:7

Go也支持自动推断出类型实参:

var m int = max([]int{1, 2, -4, -6, 7, 0}) // 自动推断T为int
fmt.Println(m) // 输出:7

泛型类型

所谓泛型类型,就是在类型声明中带有类型参数的Go类型:

type Set[T comparable] map[T]string

type element[T any] struct {
    next *element[T]
    val  T
}

type Map[K, V any] struct {
  root    *node[K, V]
  compare func(K, K) int
}

以泛型类型Set为例,其使用方法如下:

var s = Set[string]{}
s["key1"] = "value1"
println(s["key1"]) // value1

泛型方法

Go类型可以拥有自己的方法(method),泛型类型也不例外,为泛型类型定义的方法称为泛型方法(generic method)。

type Set[T comparable] map[T]string

func (s Set[T]) Insert(key T, val string) {
    s[key] = val
}

func (s Set[T]) Get(key T) (string, error) {
    val, ok := s[key]
    if !ok {
        return "", errors.New("not found")
    }
    return val, nil
}

func main() {
    var s = Set[string]{
        "key": "value1",
    }
    s.Insert("key2", "value2")
    v, err := s.Get("key2")
    fmt.Println(v, err) // value2 <nil>
}

类型约束

Go通过类型约束(constraint)对泛型函数的类型参数以及泛型函数中的实现代码设置限制。Go使用扩展语法后的interface类型来定义约束。

下面是使用常规接口类型作为约束的例子:

type Stringer interface {
    String() string
}

func Stringify[T fmt.Stringer](s []T) (ret []string) { // 通过Stringer约束了T的实参只能是实现了Stringer接口的类型
    for _, v := range s {
        ret = append(ret, v.String())
    }
    return ret
}

Go接口类型声明语法做了扩展,支持在接口类型中放入类型元素(type element)信息:

type ordered interface {
    ~int | ~int8 | ~int16 | ~int32 | ~int64 |
        ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
        ~float32 | ~float64 | ~string
}

func Less[T ordered](a, b T) bool {
    return a < b
}

type Person struct {
    name string
    age  int
}

func main() {
    println(Less(1, 2)) // true
    println(Less(Person{"tony", 11}, Person{"tom", 23})) // Person不满足ordered的约束,会导致编译错误
}

并发

Go语言原生支持并发,Go并没有使用操作系统线程作为并发的基本执行单元,而是实现了goroutine这一由Go运行时(runtime)负责调度的、轻量的用户级线程,为并发程序设计提供原生支持。

goroutine

通过go关键字+函数/方法的方式,我们便可以创建一个goroutine。创建后,新goroutine将拥有独立的代码执行流,并与创建它的goroutine一起被Go运行时调度。

go fmt.Println("I am a goroutine")

// $GOROOT/src/net/http/server.go
c := srv.newConn(rw)
go c.serve(connCtx)

goroutine的执行函数返回后,goroutine便退出。如果是主goroutine(执行main.main的goroutine)退出,那么整个Go应用进程将会退出,程序生命周期结束。

channel

Go提供了原生的用于goroutine之间通信的机制channel,channel的定义与操作方式如下:

// channel类型
chan T          // 一个元素类型为T的channel类型
chan<- float64  // 一个元素类型为float64的只发送channel类型
<-chan int      // 一个元素类型为int的只接收channel类型

var c chan int             // 声明一个元素类型为int的channel类型的变量,初值为nil
c1 := make(chan int)       // 声明一个元素类型为int的无缓冲的channel类型的变量
c2 := make(chan int, 100)  // 声明一个元素类型为int的带缓冲的channel类型的变量,缓冲大小为100
close(c)                   // 关闭一个channel

下面是两个goroutine基于channel通信的例子:

func main() {
    var c = make(chan int)
    go func(a, b int) {
        c <- a + b
    }(3,4)
    println(<-c) // 7
}

当涉及同时对多个channel进行操作时,Go提供了select机制。通过select,我们可以同时在多个channel上进行发送/接收操作:

select {
case x := <-ch1:     // 从channel ch1接收数据
  ... ...

case y, ok := <-ch2: // 从channel ch2接收数据,并根据ok值判断ch2是否已经关闭
  ... ...

case ch3 <- z:       // 将z值发送到channel ch3中:
  ... ...

default:             // 当上面case中的channel通信均无法实施时,执行该默认分支
}

错误处理

Go提供了简单的、基于错误值比较的错误处理机制,这种机制让每个开发人员必须显式地去关注和处理每个错误。

error类型

Go用error这个接口类型表示错误,并且按惯例,我们通常将error类型返回值放在返回值列表的末尾。

// $GOROOT/src/builtin/builtin.go
type error interface {
    Error() string
}

任何实现了error的Error方法的类型的实例,都可以作为错误值赋值给error接口变量。

Go提供了便捷的构造错误值的方法:

err := errors.New("your first demo error")
errWithCtx = fmt.Errorf("index %d is out of bounds", i)

错误处理形式

Go最常见的错误处理形式如下:

err := doSomething()
if err != nil {
    ... ...
    return err
}

通常我们会定义一些“哨兵”错误值来辅助错误处理方检视(inspect)错误值并做出错误处理分支的决策:

// $GOROOT/src/bufio/bufio.go
var (
    ErrInvalidUnreadByte = errors.New("bufio: invalid use of UnreadByte")
    ErrInvalidUnreadRune = errors.New("bufio: invalid use of UnreadRune")
    ErrBufferFull        = errors.New("bufio: buffer full")
    ErrNegativeCount     = errors.New("bufio: negative count")
)

func doSomething() {
    ... ...
    data, err := b.Peek(1)
    if err != nil {
        switch err {
        case bufio.ErrNegativeCount:
            // ... ...
            return
        case bufio.ErrBufferFull:
            // ... ...
            return
        case bufio.ErrInvalidUnreadByte:
            // ... ...
            return
        default:
            // ... ...
            return
        }
    }
    ... ...
}

Is和As

从Go 1.13版本开始,标准库errors包提供了Is函数用于错误处理方对错误值的检视。Is函数类似于把一个error类型变量与“哨兵”错误值进行比较:

// 类似 if err == ErrOutOfBounds{ … }
if errors.Is(err, ErrOutOfBounds) {
    // 越界的错误处理
}

不同的是,如果error类型变量的底层错误值是一个包装错误(Wrapped Error),errors.Is方法会沿着该包装错误所在错误链(Error Chain),与链上所有被包装的错误(Wrapped Error)进行比较,直至找到一个匹配的错误为止。

标准库errors包还提供了As函数给错误处理方检视错误值。As函数类似于通过类型断言判断一个error类型变量是否为特定的自定义错误类型:

// 类似 if e, ok := err.(*MyError); ok { … }
var e *MyError
if errors.As(err, &e) {
    // 如果err类型为*MyError,变量e将被设置为对应的错误值
}

如果error类型变量的动态错误值是一个包装错误,errors.As函数会沿着该包装错误所在错误链,与链上所有被包装的错误的类型进行比较,直至找到一个匹配的错误类型,就像errors.Is函数那样。

小结

读到这里,你已经对Go语言有了入门级的认知,但要想成为一名Gopher(对Go开发人员的称呼),还需要更进一步的学习与实践。我的极客时间专栏《Go语言第一课》是一个很好的起点,欢迎大家订阅学习^_^。

BTW,本文部分内容由ChatGPT生成!你能猜到是哪些部分吗^_^。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

2023年的Rust与Go[译]

本文永久链接 – https://tonybai.com/2023/02/22/rust-vs-go-in-2023

本文译自《Rust vs Go in 2023》

注:从2022年下半年开始,我们研发团队的产品研发不再局限于云端,车端也是将来的一个重要方向。于是我除了继续对Go语言保持常规的高度关注之外,也逐步开始留意Rust语言的发展。


Rust和Go哪个更好?Go还是Rust?在2023年,你应该为你的下一个项目选择哪种语言,为什么?两者在性能、简单性、安全性、功能、规模和并发性等方面如何比较?它们的共同点是什么,它们有哪些根本性的不同?让我们在这个友好而公平的Rust和Go的比较中找到答案。

Rust和Go都很棒

首先,我必须要说的是,Go和Rust都是绝对优秀的编程语言。它们都是现代的、强大的、被广泛采用的编程语言,并且都提供出色的性能。

你可能读过一些说Go比Rust好的文章,或者相反。但这真的没有意义;每一种编程语言都代表了一系列的权衡和取舍。每种语言都有自己的优化重点,所以你对语言的选择应该由适合你的东西和你想用它解决的问题决定。

在这篇文章中,我将尝试告诉你何时使用Go是理想选择以及何时使用Rust更佳。我也会试着介绍一下这两种语言的本质(如果你愿意的话,就是Go和Rust的道)。

虽然它们在语法和风格上有很大不同,但Rust和Go都是构建软件的一流工具。接下来,让我们仔细看看这两种语言。

Go和Rust的相似之处

Rust和Go有很多共同点,这也是你经常听到它们一起被提及的原因之一。两种语言的共同目标是什么呢?

Rust是一种低级静态类型的多范式编程语言,专注于安全和性能。 – Gints Dreimanis

Go是一种开源的编程语言,可以轻松构建简单、可靠、高效的软件。 – go.dev

内存安全

Go和Rust都属于现代编程语言,它们的首要任务是内存安全。经过几十年对C和C++等旧语言的使用,我们可以清楚地看到,导致错误和安全漏洞的最大原因之一是不安全地或不正确地访问内存。

Rust和Go以不同的方式处理这个问题,但它们的目标都是在管理内存方面比其他语言更聪明、更安全,并帮助你写出正确高性能的程序。

快速、紧凑的可执行文件

Go和Rust都是编译型语言,这意味着你的程序被直接翻译成可执行的机器码,因此你可以以单一二进制文件形式来部署你的程序;与Python和Ruby等解释型语言不同,你不需要将解释器和大量的库和依赖关系与你的程序一起分发,这是一个很大的优点。这也使得Rust和Go的程序与解释型语言相比都非常快。

通用语言

Rust和Go都是强大的、可扩展的通用编程语言,你可以用它们来开发各种现代软件,从网络应用到分布式微服务,或者从嵌入式微控制器到移动应用程序。

两者都有优秀的标准库、繁荣的第三方生态系统以及巨大的商业支持和庞大的用户基础。它们都已经存在了很多年,并将在未来几年内继续被广泛使用。今天学习Go或Rust将是对你时间和精力的合理投资。

务实的编程风格

Go和Rust都不是以函数式编程为主的语言(例如像Scala或Elixir),也不是完全面向对象的语言(像Java和C#)。相反,虽然Go和Rust都有与函数式和面向对象编程相关的特性,但它们是务实的语言,旨在以最合适的方式解决问题,而不是强迫你采用特定的做事方式。

如果你喜欢函数式编程风格,你会在Rust中发现更多对这种风格的支持,因为Rust在语法特性数量上要比Go更多。

我们可以讨论什么是“面向对象”语言,但可以说C++、Java或C#用户所期望的面向对象编程风格在Go或Rust中都不存在。 – Jack Mott

规模化的开发

Rust和Go都有一些有用的特性,使它们适合于大规模的编程,不管是指大型团队,还是大型代码库,或者两者兼具。

例如,C语言的程序员们多年来一直在争论将括号放在哪里,以及代码应该用制表符还是空格缩进,而Rust和Go通过使用标准的格式化工具(Go为gofmt,Rust为rustfmt)使用规范的风格自动重写你的代码,完全消除了这些问题。

这并不是说这种特殊的风格本身有多好:而是Rust和Go的程序员都喜欢这种标准化

gofmt的风格是没有人喜欢的,但gofmt却是所有人的最爱。 – Rob Pike

两种语言的另一个高分领域是构建管道(pipeline)。两种语言都有优秀的、内置的、高性能的标准构建和依赖管理工具;不再需要与复杂的第三方构建系统搏斗,也不再需要每隔几年就学习一个新的系统。

对于早期职业生涯以Java和Ruby为背景的我而言,构建Go和Rust代码感觉就像从我的肩上卸下了一个不可能的重担。当我在谷歌工作时,遇到用Go编写的服务是一种解脱,因为我知道它很容易构建和运行。Rust也是如此,尽管我只在较小规模的Rust项目上工作过。我希望可无限配置的构建系统的时代已经过去了,所有语言都会有自己专门的构建工具,开箱即可使用。- 山姆-罗斯

Rust还是Go?

综上可知,这两种语言都设计得很好、很强大,那么你可能会想知道那些关于两门语言的“圣战”究竟是怎么回事(我也是)。为什么人们对“Go vs.Rust”如此大惊小怪,在社交媒体上大打出手,并且写长篇博文说只有傻瓜才会使用Rust,或者Go不是真正的编程语言,或者其他什么。

这可能会让他们感觉好些,但这并不能完全帮助你,因为你正试图决定在你的项目中使用哪种语言,或者你应该学习哪种语言来推动你的编程生涯。一个明智的人不会根据谁喊得声最大来做出重要的选择。

现在让我们继续我们成熟的讨论,看看在某些领域,一个有理智的人可能更喜欢哪一种语言。

Go与Rust的性能对比

我们已经说过,Go和Rust都能生产出高性能的程序,因为它们被编译成了本地机器代码,而不必通过解释器或虚拟机。

然而,Rust的性能尤其突出。它可以与C和C++相媲美,这两种语言通常被认为是性能最高的编译语言,但与这些老语言不同的是,Rust还提供了内存安全和并发安全,并且基本上不会给执行速度上带去没有任何开销。Rust还允许你创建复杂的抽象,而不需要在运行时付出任何性能上的代价。

相比之下,尽管Go程序的性能也非常好,但Go主要是为开发速度(包括编译)而设计的,而不是执行速度。Go程序员更倾向于清晰的代码而不是快速的代码

Go编译器也不会花很多时间去尝试生成最有效的机器代码;它更关心的是快速编译大量代码。所以Rust通常会在运行时基准测试中击败Go。

Rust的运行时性能也是一致和可预测的,因为它不使用垃圾收集。Go的垃圾收集器非常高效,并且经过优化,使其“STW(停止世界)”的停顿时间尽可能短(每一个新的Go版本都会越来越短)。但是垃圾收集不可避免地在程序的行为方式中引入了一些不可预测的因素,这在某些应用中可能是一个严重的问题,例如嵌入式系统。

因为Rust旨在让程序员完全控制底层硬件,所以有可能将Rust程序优化到相当接近机器的最大理论性能。这使得Rust在执行速度胜过所有其他考虑因素的领域是一个很好的选择,比如游戏编程、操作系统内核、网络浏览器组件和实时控制系统。

简单性

如果没有人能够弄清楚如何使用一种编程语言,那么这种语言有多快也无所谓。Go语言是为了应对C++等语言不断增长的复杂性而特意设计的;它的语法非常少,关键字也非常少,事实上,功能特性也很少。

这意味着学习Go语言不需要很长时间,就可以用它来编写有用的程序。

Go是非常容易学习的。我知道这是一个经常被吹捧的好处,但我真的很惊讶于我能够如此迅速地提高工作效率。多亏了这个语言、文档和工具,我在两天后就写出了有趣的、可提交的代码。 – 一个Rust程序员对Go的早期印象

这里的关键词是简单性。当然,简单并不等同于容易,但是小而简单的语言比大而复杂的语言更容易学习。Go语言没有提供那么多不同的方法来做一件事情,所以所有写得好的Go代码往往看起来都一样。快速学习一个不熟悉的服务并理解它在做什么很容易。

fmt.Println("Gopher's Diner Breakfast Menu")
for dish, price := range menu {
    fmt.Println(dish, price)
}

在我的代码俱乐部视频系列中,我正是这样做的:从GitHub上半随机地挑选Go项目,并与一群Go初学者一起探索它们,看看我们能理解多少的代码。结果总是比我们预期的要多。

虽然核心语言很小,但Go的标准库却非常强大。这意味着你的学习曲线也需要包括你需要的标准库的部分,而不仅仅是Go语法。

另一方面,将功能从语言中转移到标准库中,意味着你可以只专注于学习与你现在相关的库。

Go也是为大规模的软件开发而设计的,支持有大型代码库的大型团队。在这种情况下,新的开发人员能够尽快上手是非常重要的。出于这个原因,Go社区十分看重:简单、明显、常规、直接的程序

使用Go,你可以快速完成工作。Go是我所使用过的生产力最高的语言之一。它的口号是:今天解决实际问题。 – 马蒂亚斯-恩德勒

特性

Rust比其他几种编程语言支持更多的复杂语法特性,因此,你可以用它实现更多。 – devathon

Rust是专门设计用来帮助程序员用最少的代码做最多的事情,它包括很多强大而有用的功能特性。例如,Rust的match功能可以让你以十分简洁地方式写出灵活的、富有表现力的逻辑:

fn is_prime(n: u64) -> bool {
    match n {
        0...1 => false,
        _ => !(2..n).any(|d| n % d == 0),
    }
}

因为Rust做了很多事情,这意味着有很多东西需要学习,特别是在开始的时候。但这没关系:在C++或Java中也有很多东西要学,而且你不会得到Rust的高级特性,比如内存安全。

批评Rust是一种复杂的语言忽略了一点:它被设计成具有表现力,这意味着有很多功能,而在许多情况下,这正是你想要的编程语言。

当然,Rust有一个学习曲线,但一旦你开始使用它,你就会好起来。

对于那些准备接受更复杂的语法和语义(以及可能更高的可读性成本)以换取最大可能的性能的程序员来说,Rust将与C++和D语言争夺思想份额。 – 戴夫-切尼

虽然Rust采用了Go的一些特性,而Go也在采用Rust的一些特性(尤其是泛型),但可以说Rust的特性很重,而Go的特性相对较轻。

并发

大多数语言都对并发编程(同时做多件事情)有某种形式的支持,但Go从一开始就是为这项工作而设计的。Go不使用操作系统的线程,而是提供了一个轻量级的替代方案:goroutine

每个goroutine是一个独立执行的Go函数,Go调度器会将其映射到其控制下的一个操作系统线程中。这意味着调度器可以非常有效地管理大量并发的goroutine,只使用有限的操作系统线程。

因此,你可以在一个程序中运行数百万个并发的goroutine,而不会产生严重的性能问题。这使得Go成为高规模并发应用程序的完美选择,如网络服务器和微服务。

Go还具有快速、安全、高效的功能特性,可以使用channel让goroutines进行通信和共享数据。Go的并发支持感觉设计得很好,使用起来也很愉快。

一般来说,对并发程序进行推断是很难的,而且在任何语言中建立可靠、正确的并发程序都是一个挑战。但由于它从一开始就内置于语言中,而不是事后才想到的,Go中的并发编程是最简单、最完整的。

Go语言可以很容易地建立一个很好的多因素的应用程序,充分利用并发性,同时作为一组微服务进行部署。Rust也可以做这些事情,但可以说它更难。 在某些方面,Rust对防止与内存有关的安全漏洞的痴迷意味着程序员必须不遗余力地执行那些在其他语言(包括Go)中会更简单的任务。 – Sonya Koptyev

相比之下,Rust中的并发故事是非常新的,而且还在稳定中,但它正处于非常积极的开发中,所以请关注这个领域。例如,Rust的rayon库提供了一种非常优雅和轻量级的方式来将顺序计算转化为并行计算。

拥有goroutines和使用channel的轻量级语法真的很好。这真的显示了语法的力量,这些小细节使并发编程比其他语言感觉好得多 – 一个Rust程序员对Go的早期印象

虽然在Rust中实现并发程序可能不那么简单,但还是有可能的,而且这些程序可以利用Rust的安全保证。

一个很好的例子是标准库的Mutex类:在Go中,你可以忘记在访问某些东西之前获得一个Mutex锁,但Rust不会让你这样做。

Go专注于将并发性作为一个一等公民的概念。这并不是说你不能在Rust中找到Go的面向actor的并发性,但这是留给程序员的一个练习。 – Dave Cheney

安全

我们在前面看到,Go和Rust都以不同的方式来防止一大类与内存管理有关的常见编程错误。但是Rust尤其努力确保你不会做一些你不想做的不安全的事情。

Rust的编译器非常严格和学究派,它检查你使用的每个变量和你引用的每个内存地址。它避免了可能的数据竞争条件,并告知你未定义的行为。并发和内存安全问题在Rust的安全子集中根本不可能发生。 – 为什么是Rust?

这将使Rust编程成为与几乎所有其他语言不同的体验,而且一开始可能是一种挑战。但对很多人来说,这种辛苦是值得的。

对我来说,Rust的关键优势是一种感觉,即编译器是我的后盾,不会让它可能检测到的任何错误通过(说真的,有时感觉就像魔法一样)。 – Grzegorz Nosek

包括Go在内的许多语言都有帮助程序员避免错误的设施,但Rust将这一点提高到了一个新的水平,因此可能不正确的程序甚至不会被编译。

有了Rust,库程序员有很多工具来防止他/她的用户犯错。Rust让我们有能力说,我们拥有一块特定的数据;其他东西不可能声称拥有,所以我们知道没有其他东西能够修改它。我想不出以前有什么时候我被赋予过这么多工具来防止意外的误用。这是一种奇妙的感觉。 – 山姆-罗斯

“与借用检查器(borrow checker)斗争”是Rust程序员新手的常见综合症,但在大多数情况下,它所发现的问题是你的代码中真正的bug(或至少是潜在的bug)。它可能会迫使你从根本上重构你的程序,以避免遇到这些问题;而当正确性和可靠性是你的首要任务时,这是件好事。

一个不改变你编程方式的语言有什么意义呢?当你用其他语言工作时,Rust所教授的关于安全的课程也是有用的。

如果你选择了Rust,通常你需要该语言提供的保证:针对空指针和数据竞争的安全,可预测的运行时行为,以及对硬件的完全控制。如果你不需要这些功能,Rust可能是你下一个项目的糟糕选择。这是因为这些保证是有代价的:入门时间。你需要戒掉坏习惯,学习新概念。有可能的是,当你开始的时候,你会经常和借用检查器斗争。 – Matthias Endler

你觉得Rust的编程模型有多大的挑战性,可能取决于你以前有哪些其他语言的经验。Python或Ruby程序员可能会发现它的限制性;其他人会很高兴。

如果你是一个花了几周的时间来追寻内存安全漏洞的C/C++程序员,你会非常欣赏Rust。”与借用检查器斗争”变成了”编译器可以检测到这个?酷!” -Grzegorz Nosek

规模化

今天的服务器程序由数千万行代码组成,由数百甚至数千名程序员进行构建,而且每天都在更新。Go的设计和开发是为了使在这种环境中工作更有成效。Go的设计考虑包括严格的依赖性管理,随着系统的发展,软件架构的适应性,以及组件之间的健壮性。 – Rob Pike

当你一个人或在小团队中处理问题时,选择简单的语言还是功能丰富的语言是一个偏好的问题。但是当软件越来越大,越来越复杂,团队越来越大时,差异就开始显现出来了。

对于大型应用程序和分布式系统来说,执行速度不如开发速度重要:像Go这样刻意简化的语言可以减少新开发人员的启动时间,并使他们更容易处理大型代码库的工作。

有了Go,作为初级开发者更容易提高工作效率,而作为中级开发者则更难引入会导致后续问题的脆弱抽象。由于这些原因,Rust在企业软件开发方面不如Go有说服力。 – Loris Cro

当涉及到大型的软件开发时,清晰的比聪明的好。Go的局限性实际上使它比Rust等更复杂和强大的语言更适合企业和大机构。

Rust和Go的不同点

虽然Rust和Go都是流行的、现代的、广泛使用的语言,但它们并不是真正的竞争对手,因为它们故意针对的是完全不同的使用情况。

Go的整个编程方法与Rust的完全不同,每一种语言都适合一些人,同时也会刺激另一些人。这完全没问题,如果Rust和Go都能以或多或少相同的方式做同样的事情,我们就不会真的需要两种不同的语言。

那么,我们是否可以通过发现Rust和Go所采取的截然不同的方法来了解它们各自的本性呢?让我们拭目以待。

垃圾回收

“要不要垃圾回收”是一个没有正确答案的问题。垃圾回收,以及一般的自动内存管理,使得开发可靠、高效的程序变得快速和容易,对于一些人来说,这至关重要。

但也有人说,垃圾回收及其性能开销和停顿,使程序在运行时表现得不可预测,并引入了不可接受的延迟。争论还在继续。

Go是一种与Rust非常不同的语言。虽然两者都可以被模糊地描述为系统语言或C语言的替代品,但它们有不同的目标和应用、语言设计的风格以及优先级。垃圾回收是一个真正巨大的区别。Go中的GC使语言更简单,更小,更容易推理。在Rust中没有GC会让它变得非常快(尤其是当你需要保证延迟,而不仅仅是高吞吐量的时候),并且可以实现Go中不可能实现的功能和编程模式(或者至少是在不牺牲性能的情况下)。 – PingCAP

接近机器

计算机编程的历史是一个越来越复杂的抽象的故事,它让程序员在解决问题时不用太担心底层机器的实际运作。

这使得程序更容易编写,也许更容易移植。但是对于许多程序来说,对硬件的访问以及对程序执行方式的精确控制更为重要。

Rust的目标是让程序员“更接近机器”,有更多的控制权,但Go抽象了架构细节,让程序员更接近问题。

两种语言都有不同的适用范围。Go在编写微服务和典型的”DevOps”任务方面表现出色,但它不是一种系统编程语言。Rust对于那些看重并发性、安全性和性能的任务中更强;但它的学习曲线比Go更陡峭。 – Matthias Endler

必须运行更快

许多人同意,对于大多数程序来说,性能不如可读性重要。但当性能确实重要时,它真的很重要。Rust做了一些设计上的权衡,以达到尽可能好的执行速度。

相比之下,Go更关注简单性,它愿意为此牺牲一些(运行时)性能。但是Go的构建速度是无可匹敌的,这对于大型代码库来说是非常重要的。

Rust比Go快。在基准测试中,Rust更快,在某些情况下,甚至是数量级的快。但在你选择用Rust写所有东西之前,考虑一下Go在许多基准测试中并不落后于它,而且它仍然比Java、C#、JavaScript、Python等快得多。如果你需要的是顶级的性能,那么选择这两种语言中的任何一种,你都会在游戏中领先。如果你正在构建一个处理高负载的网络服务,你希望能够在纵向和横向上进行扩展,那么这两种语言都会非常适合你。- 安德鲁-拉德

正确性

另一方面,如果一个程序不需要正常工作的话,它可以任意地快。大多数代码不是为长期而写的,但有些程序能在生产中运行多长时间往往是令人惊讶的:在某些情况下,可以保持几十年。

在这种情况下,值得在开发中多花一点时间,以确保程序的正确性、可靠性,并在未来不需要大量的维护。

Go和Rust都旨在帮助你编写正确的程序,但方式不同。例如,Go提供了一个极好的内置测试框架,而Rust则专注于使用其借用检查器消除运行时的错误。

我认为。Go适用于明天必须交付的代码,而Rust适用于必须在未来五年内保持运行不动的代码。 – Grzegorz Nosek

虽然Go和Rust对于任何严肃的项目来说都是很好的选择,但是让自己尽可能地了解每种语言及其特点是一个好主意。

归根结底,别人怎么想并不重要:只有你能决定哪种语言适合你和你的团队。

如果你想加快开发速度,也许是因为你有许多不同的服务需要编写,或者你有一个庞大的开发团队,那么Go是你的首选语言。Go把并发性作为第一等公民给你,并且不容忍不安全的内存访问(Rust也是如此),但不强迫你管理每一个细节。Go是快速和强大的,但它避免了使开发者陷入困境,而是专注于简单性和统一性。如果在另一方面,拧出每一盎司的性能是必要的,那么Rust应该是你的选择。 – 安德鲁-拉德

结论

我希望这篇文章能让你相信Rust和Go都值得你认真考虑。如果可能的话,你应该争取在这两种语言中至少获得一定程度的经验,因为它们对你的任何技术职业都会有极大的帮助,甚至如果你仅把编程作为一种业余爱好的话。

如果你只有时间投资学习一门语言,在你将Go和Rust用于各种不同类型的大小程序之前,不要做出最终决定。

而编程语言的知识实际上只是成为一名成功的软件工程师的一小部分。到目前为止,你需要的最重要的技能是设计、工程、架构、沟通和协作。如果你在这些方面表现出色,无论你选择哪种语言,你都会成为一名优秀的软件工程师。学习愉快!


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats