标签 C 下的文章

也谈C语言的内联函数

有这样一段代码:

/* foo.c */
#include  "stdio.h"

inline void foo() {
    printf("inline foo in %s\n", __FILE__);
}

int main() {
    foo();
    return 0;
}

我采用C99标准,并在不加任何优化选项的情况下编译之:

$ gcc -std=c99 foo.c -o foo
foo.c: In function ‘foo’:
/tmp/ccLGkuIK.o: In function `main':
foo.c:(.text+0×7): undefined reference to `foo'
collect2: ld returned 1 exit status

这样的结果出乎我的意料。我原以为用inline修饰的函数定义,如上面的foo函数,在编译器未开启内联优化时依旧可以作为外部函数定义被编译器使用。但通过上面gcc输出的错误信息来看,inline函数的定义并没有被看待为外部函数定义,这样链接器才无法找到foo这个符号。C99标准新增的inline似乎与我对inline语义的理解有所不同。

C语言原本是不支持inline的,但C++中原生对inline的支持让很多C编译器也为C语言实现了一些支持inline语义的扩展。C99将inline正式放入到标准C语言中,并提供了inline关键字。和C++中的inline一样,C99的inline也是对编译器的一个提示,提示编译器尽量使用函数的内联定义,去除函数调用带来的开销。inline只有在开启编译器优化选项时才会生效。正如上面的例子,当我们打开优化选项并重新编译时,我们会看到:

$ gcc -std=c99 foo.c -O2 -o foo
$./foo
$ inline foo in foo.c

在-O2的优化选项下,编译器进行了内联优化,并采用了foo的inline定义。通过汇编代码我们也可以看出:foo.s中并没有显式地使用call进行函数调用,函数调用被优化掉了:

/* foo.s : gcc -std=c99 foo.c -O2 -S */
    .file   "foo.c"
    .section    .rodata.str1.1,"aMS",@progbits,1
.LC0:
    .string "foo.c"
.LC1:
    .string "inline foo in %s\n"
    .text
    .p2align 4,,15
.globl main
    .type   main, @function
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    subl    $16, %esp
    movl    $.LC0, 8(%esp)
    movl    $.LC1, 4(%esp)
    movl    $1, (%esp)
    call    __printf_chk
    xorl    %eax, %eax
    leave
    ret
    .size   main, .-main
    .ident  "GCC: (Ubuntu 4.4.3-4ubuntu5) 4.4.3"
    .section    .note.GNU-stack,"",@progbits

我们在另外一个文件bar.c中提供一个foo的外部函数定义:

/* bar.c */
#include

void foo() {
    printf("global foo in %s\n", __FILE__);
}

我们将foo.c和bar.c放在一起编译(未开启优化选项):
$ gcc -std=c99 foo.c bar.c -o foo
$ ./foo
$ global foo in bar.c

链接器为foo.c中的符号foo选择了bar.c中的foo函数定义。这样看来我们甚至可以有两个同名(名字都是foo)的函数定义,只不过一个是inline定义,一个是外部定义,它们并不冲突。

再开启优化选项,我们得到:
$ gcc -std=c99 foo.c bar.c -o foo
$ ./foo
$ inline foo in foo.c

这一次编译器选择了foo的inline定义。

究其原因:foo.c和bar.c分处于两个不同的编译单元,在未开启内联优化的情况下,foo.c对应的目标文件foo.o中foo只是一个未定义的符号,而bar.o中的foo却是一个global符号,并对应一块独立的实现代码。链接器自然采用了bar.c中的foo函数定义。而在开启了内联优化的情况下,编译器在进行foo.o这个编译单元的编译期间就直接对foo进行了优化,并采用了foo的inline定义,直接放到了main函数的汇编代码中,没有显式地call foo,并且foo.o中并未为foo单独生成Global函数代码,这样在最后的链接阶段,bar.o就变成"打酱油"的了^_^。

以上只是为了说明C99内inline语义而做的试验。在现实开发中,我们绝不应该这么去做。我们要确保函数的inline定义和非inline定义的语义一致性。那能否做到让一份函数定义既可以作为inline定义,也可以作为外部函数定义呢?这意味着我们在开启内联优化时,既要在inline函数定义的编译单元里执行内联优化,也要为inline函数生成一份独立的global的函数定义(汇编码)。

我们增加一个头文件foo.h:
/* foo.h */
extern void foo();

/* foo.c */
#include
#include "foo.h"

inline void foo() {
    printf("foo in %s\n", __FILE__);
}

int main() {
    foo();
    return 0;
}

我们在开启优化和未开启优化两种情况下分别编译执行:
$ gcc -std=c99 foo.c -o foo
$ ./foo
$ foo in foo.c

$ gcc -std=c99 foo.c -o foo -O2
$ ./foo
$ foo in foo.c

我们看到:无论哪种情况,我们都可以顺利通过编译,并且得到正确的执行结果。我们来看看汇编码有何变化:

在未开启优化的情况下,我们得到如下汇编码:

.globl foo
    .type   foo, @function
foo:
    pushl   %ebp
    … …
    call    printf
    leave
    ret
    .size   foo, .-foo

    … …
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    call    foo
    … …
    ret

内联优化并未生效,main代码中进行了foo的函数调用。但与本文开始时的那个例子不同的是,编译器为foo生成了一份独立的global的函数定义汇编码块,这块代码可以直接被外部引用,也就是说在未开启优化的情况下,foo定义被看成了外部函数定义。

但开启优化选项的情况下,我们得到如下汇编码:
.globl foo
    .type   foo, @function
foo:
    pushl   %ebp
    … …
    call    __printf_chk
    leave
    ret
    … …
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    subl    $16, %esp
    movl    $.LC0, 8(%esp)
    movl    $.LC1, 4(%esp)
    movl    $1, (%esp)
    call    __printf_chk
    xorl    %eax, %eax
    leave
    ret

内联优化生效了,main代码中并未显式地进行foo的函数调用。并且编译器依旧为foo生成了一份独立的global的函数定义汇编码块,这块代码可以直接被外部引用,也就是说在开启优化的情况下,foo定义在本编译单元被看作内联定义,同时对其他编译单元而言,也是外部函数定义。

我们通过在头文件中增加一个外部函数声明实现了我们的目标!不过上面方法虽然实现了一份定义既可以当作inline定义,也可以作为外部定义,但inline定义仅局限于定义它的那个编译单元,其他编译单元即使在开启内联优化时,依旧无法实施内联优化。如果我们希望多个编译单元共享一份inline定义并且这份定义也可以同时作为外部函数定义,我们该如何做呢? – 那我们只能把inline定义放到头文件中了!见下面代码:

/* foo.h */
inline void foo() {
    printf ("foo in %s\n", __FILE__);
}

/* foo.c */
#include
#include "foo.h"

int main() {
    foo();
    return 0;
}

/* bar.c */
#include
#include "foo.h"

void bar() {
    foo();
}

$ gcc -std=c99 foo.c -S -O2
我们看看开启优化情况下的bar.c和foo.c对应的汇编代码,以foo.s为例:

/* foo.s */
… …
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    subl    $16, %esp
    movl    $.LC0, 8(%esp)
    movl    $.LC1, 4(%esp)
    movl    $1, (%esp)
    call    __printf_chk
    xorl    %eax, %eax
    leave
    ret
… …

内联优化生效,bar.s也是一样,不过编译器没有为我们生成foo的独立外部定义代码,这样的foo定义只能作为inline定义,而不能被作为外部函数定义。如果此时不开启优化选项编译,我们还会得到如下错误:
/tmp/ccpp1E7i.o: In function `main':
foo.c:(.text+0×7): undefined reference to `foo'
/tmp/ccQk872R.o: In function `bar':
bar.c:(.text+0×7): undefined reference to `foo'
collect2: ld returned 1 exit status

我们稍作改动,在foo.c和bar.c的文件开始处,我们加上这样一行代码:"extern inline void foo();",加上后,我们重新编译,这回foo在被内联优化的同时,也被生成了一份独立的外部函数定义。我们的目标又达到了!

总之,C99中inline相对比较怪异,使用时务必小心慎重。

Hello,Common Lisp

Paul Graham不愧被誉为Lisp的超级推手,他的煽动力真的是很强悍。这不才刚刚看完一遍他编写的《黑客与画家》后,我就决定将Common Lisp作为今年计划学习的那门新语言,而且从现在就开始。

去年曾囫囵吞枣般的学习过Haskell,一门通用且庞大的纯函数式编程语言。在惊叹于Haskell如此与众不同且功能强大的同时,也为Haskell Monad那魔鬼般的蹩脚语法所苦恼,而Monad的引入就是为了隔离副作用,并让你可以利用些过程式命令式语言解决问题的范式。

原以为Common Lisp也是一门函数式编程语言,应该与Haskell很像,但在看了《ANSI Common Lisp》一书后的前几章后我才发现其实不是那么回事儿。Common Lisp设计初衷其实是一门支持多范式的通用语言。除了语法上更接近于函数式编程范式外,你完全可以用Common Lisp写出具有过程式特点的代码(而且看起来也很容易)。另外Common Lisp Object System(CLOS)还给你提供了OO范式的选择。与Haskell相比,对于我这个C程序员来讲,Common Lisp带来思维跳跃似乎更小些,更有利于后续的学习和使用。

与Haskell的强类型和静态类型(即使你不显式指出类型,Haskell也会根据一些上下文的clue推导出类型,如果它发现类有不匹配,那么编译期间就会报错)不同,Common Lisp是动态类型和弱类型的,当然你也可以显式声明类型,但这么做也仅有利于编译器对代码的速度优化,并不能阻止什么。如:
> (declaim (type fixnum count))
> NIL
> (format t count)
*** – EVAL: variable COUNT has no value
> (setf count "hello lisp")
> "hello lisp"
> (format t count)
> hello lisp
> NIL

看到了吧,即使我们显式声明了count为fixnum类型,我们依然可以用字符串为其赋值。

Lisp语法十分简单:万物皆在括号内,无论代码还是数据。Lisp一直因括号泛滥而被诟病,不过对于我来说还好,也许是因为在C语言中也没少使用括号的缘故吧。另外现在的编辑器都支持高亮括号匹配,这样只要你细心些,写代码时基本不会出现因括号不匹配导致的一些问题。

编程语言影响思维习惯,但思维的转变不是一蹴而就的,也就是说用惯了C、Python等语言后,再去学习类似Common Lisp这类语言的确有些困难。遇到某问题时,或多或少还会首先以过程式的思维去考虑。另外Common Lisp也确实不是一门“小语言”,和Haskell一样,Common Lisp也很庞大,这也使得这些语言的学习曲线陡增。
  
之前一直认为Lisp也是一门解释性的语言,类似Python采用解析器的方式执行,性能不会很快。后来经了解后才得知诸多编译器(如CLisp)都是将源代码编译为某种格式的字节中间码,这样不仅性能得到了提升,可移植性还得到了兼顾。当然Lisp性能与C比起来还是要差出至少一个数量级的。Common Lisp的编译器我装了两个:CLisp和SBCL,目前来看似乎后者的开发更活跃一些。我个人则更多地使用CLisp。

这里必须得承认的是Lisp语言的应用还是比较小众的,甚至很多程序员都没有听说过有Lisp这门语言的存在。在实际商业开发中更是很少见到用Lisp实现的系统,这方面Haskell也有着同样的”感受“。不过近几年Lisp各种方言大有回升之势,Lisper们需要是耐心和时间。如果要想了解如何利用Common Lisp进行一些实际系统的开发,那么你就不能放过Peter Seibel于2005年编写的《Practical Common Lisp》一书。后来出版的《Real World Haskell》想必也是学习Peter Seibel试图为Haskell开发者们找到一条实际应用之道吧。

但有关Common Lisp的入门书,我还是觉得Paul Graham的《Ansi Common Lisp》更适合,另外在这之前可以先拜读一下Paul Graham的文章"The Roots of Lisp",这将对Lisp的学习大有裨益。

既然本文的主题为Hello,Common Lisp,那最后还是按学习新语言的惯例,在这里向大家展示一下用Common Lisp是如何编写Hello World的吧:

;; HelloWorld.lisp

(defun hello-world ()
  (format t "hello, world!"))

(hello-world)

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats