标签 信号 下的文章

为阻塞型函数调用添加超时机制

我们产品中的一个子模块在进行Oracle实时数据库查询时,常常因数据库性能波动或异常而被阻塞在OCI API的调用上,为此我们付出了“惨痛”的代价。说来说去还是我们的程序设计的不够完善,在此类阻塞型函数调用方面缺少微小粒度的超时机制。

调用阻塞多发生在I/O操作(磁盘、网络、低速设备)、第三方API调用等方面。对于文件/网络I/O操作,我们可利用在非阻塞文件描述符上select /poll的超时机制来替代针对阻塞型文件描述符的系统调用;但在第三方API方面,多数时候是无法用select/poll来进行超时的,我们可以选择 另外一种方法:利用setjmp和longjmp的非局部跳转机制来为特定阻塞调用添加超时机制。其原理大致是:利用定时器(alarm、setitimer)设置超时时间,在SIGALRM的handler中利用longjmp跳到阻塞型调用之前,达到超时跳出阻塞型函数调用的效果。同时这种方法通用性更好些。

这个机制实现起来并不难,但有些细节还是要考虑周全,否则很容易出错。我们的产品是需要运行在LinuxSolaris两个平台下的,因此机制的实现还要考虑移植性的问题。下面简要说说在实现这一机制过程中出现的一些问题与解决方法。

一、第一版

考虑到阻塞型函数的原型各不相同,且我们的产品中对阻塞调用有重试次数的要求,因此打算将这个机制包装成一个,大致是这个模样:

#define add_timeout_to_func(func, n, interval, ret, …) \…

其中func是函数名;n是重试的次数;interval是超时的时间,单位是秒;ret是函数成功调用后的返回值,若失败,也是这个宏的返回值。

我们可以像下面这样使用这个宏:

/* example.c */
int
main()
{
    #define MAXLINE 1024
    char line[MAXLINE];

    int ret = 0;
    int try_times = 3;
    int interval = 1000;
    add_timeout_to_func(read, try_times, interval, ret, STDIN_FILENO, line, MAXLINE);
    if (ret == E_CALL_TIMEOUT) {
        printf("invoke read timeouts for 3 times\n");
        return -1;
    } else if (ret == 0) {
        printf("invoke read ok\n");
        return 0;
    } else {
        printf("add_timeout_to_func error = %d\n", ret);
    }
}

add_timeout_to_func中为阻塞型函数添加的超时机制是利用setjmp/longjmp与信号的处理函数合作完成的。

/* timeout_wrapper.h */
 

#include <setjmp.h>
#include <stdarg.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <errno.h>

extern volatile int invoke_count;
extern jmp_buf invoke_env;

void timeout_signal_handler(int sig);
typedef void (*sighandler_t)(int);
#define E_CALL_TIMEOUT (-9)

#define add_timeout_to_func(func, n, interval, ret, ...) \
    { \
        invoke_count = 0; \
        sighandler_t h = signal(SIGALRM, timeout_signal_handler); \
        if (h == SIG_ERR) { \
            ret = errno; \
            goto end; \
        }  \
\
        if (sigjmp(invoke_env) != 0) { \
            if (invoke_count >= n) { \
                ret = E_CALL_TIMEOUT; \
                goto err; \
            } \
        } \
\
        alarm(interval);\
        ret = func(__VA_ARGS__);\
        alarm(0); \
err:\
        signal(SIGALRM, h);\
end:\
        ;\
    }

/* timeout_wrapper.c */
#include "timeout_wrapper.h"

volatile int invoke_count = 0;
jmp_buf invoke_env;

void
timeout_signal_handler(int sig)
{
    invoke_count++;
    longjmp(invoke_env, 1);
}

编译运行这个程序,分别在Solaris、Linux下运行,遗憾的是两个平台下都以失败告终。

先说一下在Linux下的情况。在Linux下,程序居然不响应第二次SIGALRM信号了。通过strace也可以看出,当alarm被第二次调用后, 系统便阻塞在了read上,没有实现为read增加超时机制的目的。原因何在呢?我在《The Linux Programming Interface》一书中找到了原因。原因大致是这样的,我们按照代码的执行流程来分析:

* add_timeout_to_func宏首先设置了信号的handler,保存了env信息(setjmp),调用alarm设置定时器,然后阻塞在read调用上;
* 1s后,定时器信号SIGALRM产生,中断发生,代码进入信号处理程序,即timeout_signal_handler; Linux上的实现是当进入处理程序时,内核会自动屏蔽对应的信号(SIGALRM)以及此时act.sa_mask字段中的所有信号;在离开 handler后,内核取消这些信号的屏蔽。
* 问题在于我们是通过longjmp调用离开handler的,longjmp对应的invoke_env是否在setjmp时保存了这些被屏蔽的信号呢? 答案是:在Linux上没有。这样longjmp跳到setjmp后也就无法恢复对SIGALRM的屏蔽;当再次产生SIGALRM信号时,程序将无法处 理,也就一直阻塞在read调用上了。

解决方法:将setjmp/longjmp替换为sigsetjmp和siglongjmp,后面这组调用在sigsetjmp时保存了屏蔽信号,这样在 siglongjmp返回时可以恢复到handler之前的信号屏蔽集合,也就是说SIGALRM恢复自由了。在Solaris 下,setjmp/longjmp是可以恢复被屏蔽的信号的。

再说说在Solaris下的情况。在Solaris下,程序在第二次SIGALRM到来之际,居然退出了,终端上显示:“闹钟信号”。这是因为在 Solaris下,通过signal函数设置信号的处理handler仅是一次性的。在应对完一次信号处理后,信号的handler被自动恢复到之前的处 理策略设置,对于SIGALRM来说,也就是程序退出。解决办法:通过多次调用signal设置handler或通过sigaction来长效设置 handler。考虑到移植性和简单性,我们选择了sigaction。在Linux平台下,signal函数底层就是用sigaction实现的,是简洁版的sigaction,因此它的设置不是一次性的,而是长效的。

二、第二版

综上问题的修改,我们有了第二版代码。

/* timeout_wrapper.h */

extern volatile int invoke_count;
extern sigjmp_buf invoke_env;

void timeout_signal_handler(int sig);
typedef void sigfunc(int sig);
sigfunc *my_signal(int signo, sigfunc* func);
#define E_CALL_TIMEOUT (-9)

#define add_timeout_to_func(func, n, interval, ret, …) \
    { \
        invoke_count = 0; \
        sigfunc *sf = my_signal(SIGALRM, timeout_signal_handler); \
        if (sf == SIG_ERR) { \
            ret = errno; \
            goto end; \
        }  \
\
        if (sigsetjmp(invoke_env, SIGALRM) != 0) { \
            if (invoke_count >= n) { \
                ret = E_CALL_TIMEOUT; \
                goto err; \
            } \
        } \
\
        alarm(interval); \
        ret = func(__VA_ARGS__);\
        alarm(0); \
err:\
        my_signal(SIGALRM, sf); \
end:\
        ;\
    }

/* timeout_wrapper.c */

volatile int invoke_count = 0;
sigjmp_buf invoke_env;

void
timeout_signal_handler(int sig)
{
    invoke_count++;
    siglongjmp(invoke_env, 1);
}

sigfunc *
my_signal(int signo, sigfunc *func)
{
    struct sigaction act, oact;

    act.sa_handler = func;
    sigemptyset(&act.sa_mask);
    act.sa_flags = 0;
    if (signo == SIGALRM) {
#ifdef SA_INTERRUPT
        act.sa_flags |= SA_INTERRUPT;
#endif
    } else {
#ifdef SA_RESTART
        act.sa_flags |= SA_RESTART;
#endif
    }
    if (sigaction(signo, &act, &oact) < 0)
        return SIG_ERR;
    return oact.sa_handler;
}

这里从《Unix高级环境编程》中借了一段代码,就是那段my_signal的实现。这样修改后,程序在Linux和Solaris下工作都蛮好的。但目前唯一的缺点就是超时时间粒度太大,alarm仅支持秒级定时器,我们至少要支持毫秒级,接下来我们要换掉alarm。

三、第三版

setitimer与alarm是同出一门,共享一个定时器的。不同的是setitimer可以支持到微秒级的粒度,因此我们就用setitimer替换alarm,第三版仅改动了add_timeout_to_func这个宏:

#define add_timeout_to_func(func, n, interval, ret, …) \
    { \
        invoke_count = 0; \
        sigfunc *sf = my_signal(SIGALRM, timeout_signal_handler); \
        if (sf == SIG_ERR) { \
            ret = errno; \
            goto end; \
        }  \
\
        if (sigsetjmp(invoke_env, SIGALRM) != 0) { \
            if (invoke_count >= n) { \
                ret = E_CALL_TIMEOUT; \
                goto err; \
            } \
        } \
\
        struct itimerval tick;  \
        struct itimerval oldtick;  \
        tick.it_value.tv_sec = interval/1000; \
        tick.it_value.tv_usec = (interval%1000) * 1000; \
        tick.it_interval.tv_sec = interval/1000; \
        tick.it_interval.tv_usec = (interval%1000) * 1000; \
\
        if (setitimer(ITIMER_REAL, &tick, &oldtick) < 0) { \
            ret = errno; \
            goto err; \
        } \
\
        ret = func(__VA_ARGS__);\
        setitimer(ITIMER_REAL, &oldtick, NULL); \
err:\
        my_signal(SIGALRM, sf); \
end:\
        ;\
    }

至此,一个为阻塞型函数调用添加的超时机制的雏形基本实现完毕了,但要放在产品代码里还需要更细致的打磨。至少目前只是在单进程单线程中跑过,而且要求每个函数中只能调用add_timeout_to_func一次,否则就会有编译错误。

以上完整代码我都放到github上的experiments repository中了,有兴趣的朋友可以下载细看。

Go中的系统Signal处理

我们在生产环境下运行的系统要求优雅退出,即程序接收退出通知后,会有机会先执行一段清理代码,将收尾工作做完后再真正退出。我们采用系统Signal来 通知系统退出,即kill pragram-pid。我们在程序中针对一些系统信号设置了处理函数,当收到信号后,会执行相关清理程序或通知各个子进程做自清理。kill -9强制杀掉程序是不能被接受的,那样会导致某些处理过程被强制中断,留下无法恢复的现场,导致消息被破坏,影响下次系统启动运行。

最近用Golang实现的一个代理程序也需要优雅退出,因此我尝试了解了一下Golang中对系统Signal的处理方式,这里和大家分享。Golang 的系统信号处理主要涉及os包、os.signal包以及syscall包。其中最主要的函数是signal包中的Notify函数:

func Notify(c chan<- os.Signal, sig …os.Signal)

该函数会将进程收到的系统Signal转发给channel c。转发哪些信号由该函数的可变参数决定,如果你没有传入sig参数,那么Notify会将系统收到的所有信号转发给c。如果你像下面这样调用Notify:

signal.Notify(c, syscall.SIGINT, syscall.SIGUSR1, syscall.SIGUSR2)

则Go只会关注你传入的Signal类型,其他Signal将会按照默认方式处理,大多都是进程退出。因此你需要在Notify中传入你要关注和处理的Signal类型,也就是拦截它们,提供自定义处理函数来改变它们的行为。

下面是一个较为完整的例子:

//signal.go

package main

import "fmt"
import "time"
import "os"
import "os/signal"
import "syscall"

type signalHandler func(s os.Signal, arg interface{})

type signalSet struct {
    m map[os.Signal]signalHandler
}

func signalSetNew()(*signalSet){
    ss := new(signalSet)
    ss.m = make(map[os.Signal]signalHandler)
    return ss
}

func (set *signalSet) register(s os.Signal, handler signalHandler) {
    if _, found := set.m[s]; !found {
        set.m[s] =  handler
    }
}

func (set *signalSet) handle(sig os.Signal, arg interface{})(err error) {
    if _, found := set.m[sig]; found {
        set.m[sig](sig, arg)
        return nil
    } else {
        return fmt.Errorf("No handler available for signal %v", sig)
    }

    panic("won't reach here")
}

func main() {
    go sysSignalHandleDemo()
    time.Sleep(time.Hour) // make the main goroutine wait!
}

func sysSignalHandleDemo() {
    ss := signalSetNew()
    handler := func(s os.Signal, arg interface{}) {
        fmt.Printf("handle signal: %v\n", s)
    }

    ss.register(syscall.SIGINT, handler)
    ss.register(syscall.SIGUSR1, handler)
    ss.register(syscall.SIGUSR2, handler)

    for {
        c := make(chan os.Signal)
        var sigs []os.Signal
        for sig := range ss.m {
            sigs = append(sigs, sig)
        }
        signal.Notify(c)
        sig := <-c

        err := ss.handle(sig, nil)
        if (err != nil) {
            fmt.Printf("unknown signal received: %v\n", sig)
            os.Exit(1)
        }
    }
}

上例中Notify函数只有一个参数,没有传入要关注的sig,因此程序会将收到的所有类型Signal都转发到channel c中。build该源文件并执行程序:

$> go build signal.go
$> signal

在另外一个窗口下执行如下命令:
$> ps -ef|grep signal
tonybai  25271  1087  0 16:27 pts/1    00:00:00 signal
$> kill -n 2 25271
$> kill -n 12 25271
$> kill 25271

我们在第一个窗口会看到如下输出:
$> signal
handle signal: interrupt
handle signal: user defined signal 2
unknown signal received: terminated

在sysSignalHandleDemo中我们也可以为Notify传入我们所关注的Signal集合:

signal.Notify(c, sigs…)

这样只有在该集合中的信号我们才能捕获,收到未在集合中的信号时,程序多直接退出。上面只是一个Demo,只是说明了我们可以捕捉到我们所关注的信号,并未体现程序如何优雅退出,不同程序的退出方式不同,这里没有通用方法,就不细说了,你的程序需要你专门的设计。

另外我们生产环境下的程序多是以Daemon守护进程的形式运行的。我们用C实现的程序多参考“Unix高级编程”中的方法将程序转为Daemon Process,但在Go中目前尚提供相关方式,网上有一些实现,但据说都不理想。更多的Go开发者建议不要在代码中实现Daemon转换,建议直接利用 第三方工具。比如在Ubuntu下我们可以使用start-stop-daemon这个小程序轻松将你的程序转换为Daemon:

$> start-stop-daemon –start –pidfile ./signal.pid –startas /home/tonybai/test/go/signal –background -m
$> start-stop-daemon –stop –pidfile ./signal.pid –startas /home/tonybai/test/go/signal

这里注意:只有加上-m选项,pidfile才能成功创建。

start-stop-daemon在Debian系的Linux发行版中都是默认自带的。但在Redhat系Linux发行版中却没有该工具,我们可以自行安装:

wget -c http://developer.axis.com/download/distribution/apps-sys-utils-start-stop-daemon-IR1_9_18-2.tar.gz
tar -xzf apps-sys-utils-start-stop-daemon-IR1_9_18-2.tar.gz
cd apps/sys-utils/start-stop-daemon-IR1_9_18-2
gcc start-stop-daemon.c -o start-stop-daemon

切换到root下
cp start-stop-daemon /sbin/
chmod +x /sbin/start-stop-daemon

另外Go 1.0.2提供的二进制安装包直接在Redhat 5.6(Linux tonybai 2.6.18-238.el5 #1 SMP Sun Dec 19 14:22:44 EST 2010 x86_64 x86_64 x86_64 GNU/Linux)下面运行出错,提示无法找到GLIBC 2.7版本。目前解决这一问题的方法似乎只有从源码编译安装。进入到$GOROOT/src下,执行./all.bash即可。重现编译链接后的go可执 行程序则运行一切正常。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats