2005年十二月月 发布的文章

APR源代码分析-线程同步篇

在线程同步方面,Posix标准定义了3种同步模型,分别为互斥量条件变量读写锁。APR也“浅”封装了这3种模型,只是在“读写锁”一块儿还没有全部完成。

线程同步的源代码的位置在$(APR_HOME)/locks目录下,本篇blog着重分析unix子目录下的thread_mutex.c、thread_rwlock.c和thread_cond.c文件的内容,其相应头文件为(APR_HOME)/include/apr_thread_mutex.h、apr_thread_rwlock.h和apr_thread_cond.h。

由于APR的封装过于“浅显”,实际上也并没有多少值得分析的“靓点”。所以本篇实际上是在讨论线程同步的3种运行模型。

一、互斥量
互斥量是线程同步中最基本的同步方式。互斥量用于保护代码中的临界区,以保证在任一时刻只有一个线程或进程访问临界区。

1、互斥量的初始化
在POSIX Thread中提供两种互斥量的初始化方式,如下:
(1) 静态初始化
互斥量首先是一个变量,Pthread提供预定义的值来支持互斥量的静态初始化。举例如下:
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
既然是静态初始化,那么必然要求上面的mutex变量需要静态分配。在APR中并不支持apr_thread_mutex_t的使用预定值的静态初始化(但可以变通的利用下面的方式进行静态分配的mutex的初始化)。

(2) 动态初始化
除了上面的情况,如果mutex变量在堆上或在共享内存中分配的话,我们就需要调用一个初始化函数来动态初始化该变量了。在Pthread中的对应接口为pthread_mutex_init。APR封装了这一接口,我们可以使用下面方式在APR中初始化一个apr_thread_mutex_t变量。
        apr_thread_mutex_t *mutex = NULL;
        apr_pool_t  *pool = NULL;
        apr_status_t  stat;

        stat = apr_pool_create(&pool, NULL);
        if (stat != APR_SUCCESS) {
                printf("error in pool %d\n", stat);
        } else {
                printf("ok in pool\n");
        }

        stat = apr_thread_mutex_create(&mutex, APR_THREAD_MUTEX_DEFAULT, pool);
        if (stat != APR_SUCCESS) {
                printf("error %d in mutex\n", stat);
        } else {
                printf("ok in mutex\n");
        }

2、互斥锁的软弱性所在
互斥锁之软弱性在于其是一种协作性锁,其运作时对各线程有一定的要求,即“所有要访问临界区的线程必须首先获取这个互斥锁,离开临界区后释放该锁”,一旦某一线程不遵循该要求,那么这个互斥锁就形同虚设了。如下面的例子:
举例:我们有两个线程,一个线程A遵循要求,每次访问临界区均先获取锁,然后将临界区的变量x按偶数值递增,另一个线程B不遵循要求直接修改x值,这样即使在线程A获取锁的情况下仍能修改临界区的变量x。

static apr_thread_mutex_t       *mutex  = NULL;
static int                                x       = 0;
static apr_thread_t             *t1     = NULL;
static apr_thread_t             *t2     = NULL;

static void * APR_THREAD_FUNC thread_func1(apr_thread_t *thd, void *data)
{
        apr_time_t      now;
        apr_time_exp_t  xt;

        while (1) {
                apr_thread_mutex_lock(mutex);
                now = apr_time_now();
                apr_time_exp_lt(&xt, now);
                printf("[threadA]: own the lock, time[%02d:%02d:%02d]\n", xt.tm_hour, xt.tm_min,
                         xt.tm_sec);
                printf("[threadA]: x = %d\n", x);
                if (x % 2 || x == 0) {
                        x += 2;
                } else {
                        printf("[threadA]: Warning: x变量值被破坏,现重新修正之\n");
                        x += 1;
                }
                apr_thread_mutex_unlock(mutex);
                now = apr_time_now();
                apr_time_exp_lt(&xt, now);
                printf("[threadA]: release the lock, time[%02d:%02d:%02d]\n", xt.tm_hour, xt.tm_min,
                         xt.tm_sec);
                sleep(2);
        }

        return NULL;
}

static void * APR_THREAD_FUNC thread_func2(apr_thread_t *thd, void *data)
{
        apr_time_t      now;
        apr_time_exp_t  xt;
        while (1) {
                x ++;
                now = apr_time_now();
                apr_time_exp_lt(&xt, now);
                printf("[threadB]: modify the var, time[%02d:%02d:%02d]\n", xt.tm_hour, xt.tm_min,  xt.tm_sec);
                sleep(2);
        }

        return NULL;
}

int main(int argc, const char * const * argv, const char * const *env)
{
        apr_app_initialize(&argc, &argv, &env);
        apr_status_t stat;

        //…

        /*
         * 创建线程
         */
        stat = apr_thread_create(&t1, NULL, thread_func1, NULL, pool);
        stat = apr_thread_create(&t2, NULL, thread_func2, NULL, pool);

         //…

        apr_terminate();
        return 0;
}
//output
… …
[threadA]: own the lock, time[10:10:15]
[threadB]: modify the var, time[10:10:15]
[threadA]: x = 10
[threadA]: Warning: x变量值被破坏,现重新修正之
[threadA]: release the lock, time[10:10:15]
当然这个例子不一定很精确的表明threadB在threadA拥有互斥量的时候修改了x值。

二、条件变量
互斥量一般用于被设计被短时间持有的锁,一旦我们不能确定等待输入的时间时,我们可以使用条件变量来完成同步。我们曾经说过I/O复用,在我们调用poll或者select的时候实际上就是在内核与用户进程之间达成了一个协议,即当某个I/O描述符事件发生的时候内核通知用户进程并且将处于挂起状态的用户进程唤醒。而这里我们所说的条件变量让对等的线程间达成协议,即“某一线程发现某一条件满足时必须发信号给阻塞在该条件上的线程,将后者唤醒”。这样我们就有了两种角色的线程,分别为
(1) 给条件变量发送信号的线程
其流程大致为:
{
        获取条件变量关联锁;
        修改条件为真;
        调用apr_thread_cond_signal通知阻塞线程条件满足了;—— (a)
        释放变量关联锁;
}
(2) 在条件变量上等待的线程
其流程大致为:
{
        获取条件变量关联锁;
        while (条件为假) { ——————— (c)
                调用apr_thread_cond_wait阻塞在条件变量上等待;—— (b)
        }
        修改条件;
        释放变量关联锁;
}
上面两个流程中,理解三点最关键:
a) apr_thread_cond_signal中调用的pthread_cond_signal保证至少有一个阻塞在条件变量上的线程恢复;在《Unix网络编程 Vol2》中也谈过这里存在着一个race。即在发送cond信号的同时,该发送线程仍然持有条件变量关联锁,那么那个恢复线程的apr_thread_cond_wait返回时仍然拿不到这把锁就会再次挂起。这里的这个race要看各个平台实现是如何处理的了。
b) apr_thread_cond_wait中调用的pthread_cond_wait原子的将调用线程挂起,并释放其持有的条件变量关联锁;
c) 这里之所以使用while反复测试条件,是防止“伪唤醒”的存在,即条件并未满足就被唤醒。所以无论怎样,唤醒后我都需要重新测试一下条件,保证该条件的的确确满足了。

条件变量在解决“生产者-消费者”问题中有很好的应用,在我以前的一篇blog中也说过这个问题。

三、读写锁
前面说过,互斥量把想进入临界区而又试图获取互斥量的所有线程都阻塞住了。读写锁则改进了互斥量的这种霸道行为,它区分读临界区数据和修改临界区数据两种情况。这样如果有线程持有读锁的话,这时再有线程想读临界区的数据也是可以再获取读锁的。读锁和写锁的分配规则在《Unix网络编程 Vol2》中有详细说明,这里不详述。

四、小结
三种同步方式如何选择?场合不同选择也不同。互斥量在于完全同步的临界区访问;条件变量在解决“生产者-消费者”模型问题上有独到之处;读写锁则在区分对临界区读写的时候使用。

APR分析-线程篇

并行一直是程序设计领域的难点,而线程是并行的一种重要的手段,而且线程的一些特性也能在进程并行时发挥很好的作用(在“线程同步篇”中详细阐述)。

APR线程的源代码的位置在$(APR_HOME)/threadproc目录下,本篇blog着重分析unix子目录下的thread.c文件内容,其相应头文件为$(APR_HOME)/include/apr_threadproc.h。

一、线程基础
深入理解计算机系统》(以下称CS.APP)一书中对线程基础概念的讲解让我眼前豁然开朗,这里不妨引述一下:
(1) 在传统观点中,进程是由存储于用户虚拟内存中的代码、数据和栈,以及由内核维护的“进程上下文”组成的,其中“进程上下文”又可以看成“程序上下文”和“内核上下文”组成,可参见下面图示:
进程–
      |- 进程上下文
             |- 程序上下文
                   |- 数据寄存器
                   |- 条件码
                   |- 栈指针
                   |- 程序计数器
            |- 内核上下文
                   |- 进程ID
                   |- VM结构
                   |- Open files
                   |- 已设置的信号处理函数
                   |- brk pointer
    |- 代码、数据和栈(在虚存中)
            |- 栈区 <– SP
            |- 共享库区
            |- 运行时堆区 <– brk
            |- 可读/写数据区
            |- 只读代码/数据区 <– PC

(2) 另种观点中,进程是由线程、代码和数据以及内核上下文组成的,下图更能直观的展示出两种观点的异同:
进程 –+
   |- 线程
           |- 栈区 <– SP
           |- 线程上下文
           |- 线程ID
           |- 数据寄存器
           |- 条件码
           |- 栈指针
           |- 程序计数器
  |- 内核上下文
           |- 进程ID
           |- VM结构
           |- Open files
           |- 已设置的信号处理函数
           |- brk pointer
  |- 代码、数据(在虚存中)
           |- 共享库区
           |- 运行时堆区 <– brk
           |- 可读/写数据区
           |- 只读代码/数据区 <– PC

对比两种观点我们可以得出以下几点结论:
(a) 从观点(2)可以看出进程内的多个线程共享进程的内核上下文和代码、数据(当然不包括栈区);
(b) 线程上下文比进程上下文小,且切换代价小;
(c) 线程不像进程那样有着“父-子”体系,同一个进程内的线程都是“对等的”,主线程与其他线程不同之处就在于其是进程创建的第一个线程。

二、APR线程管理接口
如今应用最广泛的线程包就是Posix Thread了。APR对线程的封装也是基于Posix thread的。

APR线程管理接口针对apr_thread_t这个基本的数据结构进行操作,apr_thread_t的定义很简单:
/* apr_arch_threadproc.h */
struct apr_thread_t {
    apr_pool_t *pool;
    pthread_t *td;
    void *data;
    apr_thread_start_t func;
    apr_status_t exitval;
};
这个结构中包含了线程ID、线程函数以及该函数的参数数据。不过APR的线程函数定义与Pthread的有不同,“Pthread线程函数”是这样的:
typedef void *(start_routine)(void*);
而“APR线程函数”如下:
typedef void *(APR_THREAD_FUNC *apr_thread_start_t)(apr_thread_t*, void*);

1、apr_thread_create
apr_thread_create内部定义了一个dummy_worker的“Pthread线程函数”,并将apr_thread_t结构作为参数传入,然后在dummy_worker中启动“APR的线程函数”。在该函数的参数列表中有一项类型为apr_threadattr_t:
struct apr_threadattr_t {
    apr_pool_t *pool;
    pthread_attr_t attr;
};
这个类型封装了线程的属性,不同的线程属性会导致线程的行为有所不同。Pthread提供多种线程属性设置接口,可是APR并未全部提供,必要时我觉得可以自己来调用Pthread接口。APR提供的属性设置接口包括设置线程的可分离性、线程栈大小和栈Guard区域属性。

2、apr_thread_exit
进程退出我们可以直接调用exit函数,而线程退出也有几种方式:
(1) 隐式退出 – 可以理解为线程main routine代码结束返回;
(2) 显式退出 – 调用线程包提供的显式退出接口,在apr中就是apr_thread_exit;
(3) 另类显式退出 – 调用exit函数,不仅自己退出,其所在线程也跟着退出了;
(4) 被“黑”退出 – 被别的“对等”线程调用pthread_cancel而被迫退出。
apr_thread_exit属于种类(2),该种类退出应该算是线程的优雅退出了。apr_thread_exit做了3个工作,分别为设置线程返回值、释放pool中资源和调用pthread_exit退出。

3、apr_thread_join和apr_thread_detach
进程有waitpid,线程有join。线程在调用apr_thread_exit后,只是其执行停止了,其占有的“资源”并不一定释放,这里的“资源”我想就是“另种观点”中的“线程上下文”,线程有两种方式来释放该“资源”,这主要由线程的“可分离”属性决定的。如果线程是“可分离的”,当线程退出后就会自动释放其“资源”,如果线程为“非可分离的”,则必须由“对等线程”调用join接口来释放其资源。apr_thread_detach用来将其调用线程转化为“可分离”线程,而apr_thread_join用来等待某个线程结束并释放其资源。

三、小结
基本的线程管理接口相对较简单,关键是对线程概念的理解。接下来的“线程同步”则是件比较有趣的话题。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats