标签 UTF8 下的文章

Go导出标识符:那些鲜为人知的细节

本文永久链接 – https://tonybai.com/2025/01/23/the-hidden-details-of-go-exported-identifiers

前不久,在“Go+用户组”微信群里看到有开发者向七牛云老板许式伟反馈七牛云Go SDK中的某些类型没有导出,导致外部包无法使用的问题(如下图)

七牛开发人员迅速对该问题做出了“更正”,将问题反馈中涉及的类型saveasArgs和saveasReply改为了导出类型,即首字母大写:

不过,这看似寻常的问题反馈与修正却引发了我的一些思考。

我们大胆臆想一下:如果saveasReply类型的开发者是故意将saveasReply类型设置为非导出的呢?看一下“更正”之前的saveasReply代码:

type saveasReply struct {
    Fname       string `json:"fname"`
    PersistenId string `json:"persistentId,omitempty"`
    Bucket      string `json:"bucket"`
    Duration    int    `json:"duration"` // ms
}

有读者可能会问:那为什么还将saveasReply结构体的字段设置为导出字段呢?请注意每个字段后面的结构体标签(struct tag)。这显然是为了进行JSON 编解码,因为目前Go的encoding/json包仅会对导出字段进行编解码处理。

除了这个原因,原开发者可能还希望包的使用者能够访问这些导出字段,而又不想完全暴露该类型。我在此不对这种设计的合理性进行评价,而是想探讨这种做法是否可行。

我们对Go导出标识符的传统理解是:导出标识符(以大写字母开头的标识符)可以在包外被访问和使用,而非导出标识符(以小写字母开头的标识符)只能在定义它们的包内访问。这种机制帮助开发者控制类型和函数的可见性,确保内部实现细节不会被随意访问,从而增强封装性。

但实际上,Go的导出标识符机制是否允许在某些情况下,即使类型本身是非导出的,其导出字段依然可以被包外的代码访问呢?该类型的导出方法呢?这些关于Go导出标识符的细节可能是鲜少人探讨的,在这篇博文中,我们将系统地了解这些机制,希望能为各位小伙伴带来更深入的理解。

1. Go对导出标识符的定义

我们先回顾一下Go语言规范(go spec)对导出标识符的定义

我们通常使用英文字母来命名标识符,因此可以将上述定义中的第一句理解为:以大写英文字母开头的标识符即为导出标识符。

注:Unicode字符类别Lu(Uppercase Letter)包含所有的大写字母。这一类别不仅包括英文大写字母,还涵盖多种语言的大写字符,例如希腊字母、阿拉伯字母、希伯来字母和西里尔字母等。然而,我非常不建议大家使用非英文大写字母来表示导出标识符,因为这可能会挑战大家的认知习惯。

而第二句后半部分的描述往往被我们忽视或理解不够到位。一个类型的字段名和方法名可以是导出的,但并没有明确要求其关联的类型本身也必须是导出的

这为我们提供了进一步探索Go导出标识符细节的机会。接下来,我们就用具体示例看看是否可以在包外访问非导出类型的导出字段以及导出方法。

2. 在包外访问非导出类型的导出字段

我们首先定义一个带有导出字段的非导出类型myStruct,并将它放在mypackage里:

// go-exported-identifiers/field/mypackage/mypackage.go

package mypackage

type myStruct struct {
    Field string // 导出的字段
}

// NewMyStruct1是一个导出的函数,返回myStruct的指针
func NewMyStruct1(value string) *myStruct {
    return &myStruct{Field: value}
}

// NewMyStruct1是一个导出的函数,返回myStruct类型变量
func NewMyStruct2(value string) myStruct {
    return myStruct{Field: value}
}

然后我们在包外尝试访问myStruct类型的导出字段:

// go-exported-identifiers/field/main.go

package main

import (
    "demo/mypackage"
    "fmt"
)

func main() {
    // 通过导出的函数获取myStruct的指针
    ms1 := mypackage.NewMyStruct1("Hello1")

    // 尝试访问Field字段
    fmt.Println(ms1.Field) // Hello1

    // 通过导出的函数获取myStruct类型变量
    ms2 := mypackage.NewMyStruct1("Hello2")

    // 尝试访问Field字段
    fmt.Println(ms2.Field) // Hello2
}

在go-exported-identifiers/field目录下编译运行该示例:

$go run main.go
Hello1
Hello2

我们看到,无论是通过myStruct的指针还是实例副本,都可以成功访问其导出变量Field。这个示例的关键就是:我们使用了短变量声明直接通过调用myStruct的两个“构造函数(NewXXX)”得到了其指针(ms1)以及实例副本(ms2)。在这个过程中,我们没有在main包中显式使用mypackage.myStruct这个非导出类型。

采用类似的方案,我们接下来再看看是否可以在包外访问非导出类型的导出方法。

3. 在包外访问非导出类型的导出方法

我们为非导出类型添加两个导出方法M1和M2:

// go-exported-identifiers/method/mypackage/mypackage.go

package mypackage

import "fmt"

type myStruct struct {
    Field string // 导出的字段
}

// NewMyStruct1是一个导出的函数,返回myStruct的指针
func NewMyStruct1(value string) *myStruct {
    return &myStruct{Field: value}
}

// NewMyStruct1是一个导出的函数,返回myStruct类型变量
func NewMyStruct2(value string) myStruct {
    return myStruct{Field: value}
}

func (m *myStruct) M1() {
    fmt.Println("invoke *myStruct's M1")
}

func (m myStruct) M2() {
    fmt.Println("invoke myStruct's M2")
}

然后,试着在外部包中调用M1和M2方法:

// go-exported-identifiers/method/main.go

package main

import (
    "demo/mypackage"
)

func main() {
    // 通过导出的函数获取myStruct的指针
    ms1 := mypackage.NewMyStruct1("Hello1")
    ms1.M1()
    ms1.M2()

    // 通过导出的函数获取myStruct类型变量
    ms2 := mypackage.NewMyStruct2("Hello2")
    ms2.M1()
    ms2.M2()
}

在go-exported-identifiers/method目录下编译运行这个示例:

$go run main.go
invoke *myStruct's M1
invoke myStruct's M2
invoke *myStruct's M1
invoke myStruct's M2

我们看到,无论是通过非导出类型的指针,还是通过非导出类型的变量复本都可以成功调用非导出类型的导出方法。

提及方法,我们会顺带想到接口,非导出类型是否可以实现某个外部包定义的接口呢?我们继续往下看。

4. 非导出类型实现某个外部包的接口

在Go中,如果某个类型T实现了某个接口类型I的方法集合中的所有方法,我们就说T实现了I,T的实例可以赋值给I类型的接口变量。

在下面示例中,我们看看非导出类型是否可以实现某个外部包的接口。

在这个示例中mypackage包中的内容与上面示例一致,主要改动的是main.go,我们来看一下:

// go-exported-identifiers/interface/main.go

package main

import (
    "demo/mypackage"
)

// 定义一个导出的接口
type MyInterface interface {
    M1()
    M2()
}

func main() {
    var mi MyInterface

    // 通过导出的函数获取myStruct的指针
    ms1 := mypackage.NewMyStruct1("Hello1")
    mi = ms1
    mi.M1()
    mi.M2()

    // 通过导出的函数获取myStruct类型变量
    // ms2 := mypackage.NewMyStruct2("Hello2")
    // mi = ms2 // compile error: mypackage.myStruct does not implement MyInterface
    // ms2.M1()
    // ms2.M2()
}

在这个main.go中,我们定义了一个接口MyInterface,它的方法集合中有两个方法M1和M2。根据类型方法集合的判定规则,*myStruct类型实现了MyInterface的所有方法,而myStruct类型则不满足,没有实现M1方法,我们在go-exported-identifiers/interface目录下编译运行这个示例,看看是否与我们预期的一致:

$go run main.go
invoke *myStruct's M1
invoke myStruct's M2

如果我们去掉上面代码中对ms2的注释,那么将得到Compiler error: mypackage.myStruct does not implement MyInterface。

注:关于一个类型的方法集合的判定规则,可以参考我的极客时间《Go语言第一课》专栏的第25讲

接下来,我们再来考虑一个场景,即非导出类型用作嵌入字段的情况,我们要看看该非导出类型的导出方法和导出字段是否会promote到外部类型中。

5. 非导出类型用作嵌入字段

我们改造一下示例,新版的带有嵌入字段的结构见下面mypackage包的代码:

// go-exported-identifiers/embedded_field/mypackage/mypackage.go

package mypackage

import "fmt"

type nonExported struct {
    Field string // 导出的字段
}

// Exported 是导出的结构体,嵌入了nonExported
type Exported struct {
    nonExported // 嵌入非导出结构体
}

func NewExported(value string) *Exported {
    return &Exported{
        nonExported: nonExported{
            Field: value,
        },
    }
}

// M1是导出的函数
func (n *nonExported) M1() {
    fmt.Println("invoke nonExported's M1")
}

// M2是导出的函数
func (e *Exported) M2() {
    fmt.Println("invoke Exported's M2")
}

这里新增一个导出类型Exported,它嵌入了一个非导出类型nonExported,后者拥有导出字段Field,以及两个导出方法M1。我们也Exported类型定义了一个方法M2。

下面我们再来看看main.go中是如何使用Exported的:

// go-exported-identifiers/embedded_field/main.go

package main

import (
    "demo/mypackage"
    "fmt"
)

// 定义一个导出的接口
type MyInterface interface {
    M1()
    M2()
}

func main() {
    ms := mypackage.NewExported("Hello")
    fmt.Println(ms.Field) // 访问嵌入的非导出结构体的导出字段

    ms.M1() // 访问嵌入的非导出结构体的导出方法

    var mi MyInterface = ms
    mi.M1()
    mi.M2()
}

在go-exported-identifiers/embedded_field目录下编译运行这个示例:

$go run main.go
Hello
invoke nonExported's M1
invoke nonExported's M1
invoke Exported's M2

我们看到,作为嵌入字段的非导出类型的导出字段与方法会被自动promote到外部类型中,通过外部类型的变量可以直接访问这些字段以及调用这些导出方法。这些方法还可以作为外部类型方法集中的一员,来作为满足特定接口类型(如上面代码中的MyInterface)的条件。

Go 1.18增加了泛型支持,那么非导出类型是否可以用作泛型函数和泛型类型的类型实参呢?最后我们来看看这个细节。

6. 非导出类型用作泛型函数和泛型类型的类型实参

和前面一样,我们先定义用于该示例的带有导出字段和导出方法的非导出类型:

// go-exported-identifiers/generics/mypackage/mypackage.go

package mypackage

import "fmt"

// 定义一个非导出的结构体
type nonExported struct {
    Field string
}

// 导出的方法
func (n *nonExported) M1() {
    fmt.Println("invoke nonExported's M1")
}

func (n *nonExported) M2() {
    fmt.Println("invoke nonExported's M2")
}

// 导出的函数,用于创建非导出类型的实例
func NewNonExported(value string) *nonExported {
    return &nonExported{Field: value}
}

现在我们将其用于泛型函数,下面定义了泛型函数UseNonExportedAsTypeArgument,它的类型参数使用MyInterface作为约束,而上面的nonExported显然满足该约束,我们通过构造函数NewNonExported获得非导出类型的实例,然后将其传递给UseNonExportedAsTypeArgument,Go会通过泛型的类型参数自动推导机制推断出类型实参的类型:

// go-exported-identifiers/generics/main.go

package main

import (
    "demo/mypackage"
)

// 定义一个用作约束的接口
type MyInterface interface {
    M1()
    M2()
}

func UseNonExportedAsTypeArgument[T MyInterface](item T) {
    item.M1()
    item.M2()
}

// 定义一个带有泛型参数的新类型
type GenericType[T MyInterface] struct {
    Item T
}

func NewGenericType[T MyInterface](item T) GenericType[T] {
    return GenericType[T]{Item: item}
}

func main() {
    // 创建非导出类型的实例
    n := mypackage.NewNonExported("Hello")

    // 调用泛型函数,传入实现了MyInterface的非导出类型
    UseNonExportedAsTypeArgument(n) // ok

    // g := GenericType{Item: n} // compiler error: cannot use generic type GenericType[T MyInterface] without instantiation
    g := NewGenericType(n)
    g.Item.M1()
}

但由于目前Go泛型还不支持对泛型类型的类型参数的自动推导,所以直接通过g := GenericType{Item: n}来初始化一个泛型类型变量将导致编译错误!我们需要借助泛型函数的推导机制将非导出类型与泛型类型进行结合,参见上述示例中的NewGenericType函数,通过泛型函数支持的类型参数的自动推导间接获得GenericType的类型实参。在go-exported-identifiers/generics目录下编译运行这个示例,便可得到我们预期的结果:

$go run main.go
invoke nonExported's M1
invoke nonExported's M2
invoke nonExported's M1

7. 非导出类型使用导出字段以及导出方法的用途

前面的诸多示例证明了:即使类型本身是非导出的,但其内部的导出字段以及它的导出方法依然可以在外部包中使用,并且在实现接口、嵌入字段、泛型等使用场景下均有效。

到这里,你可能会提出这样一个问题:会有Go开发者使用非导出类型结合导出字段或方法的设计吗

其实这种还是很常见的,在Go标准库中就有不少,只不过它们更多是包内使用,类似于非导出类型xxxImpl和它的Wrapper类型XXX的关系,或是xxxImpl或嵌入到XXX中,就像这样:

// 包内实现
type xxxImpl struct {  // 非导出的实现类型
    // 内部字段
}

// 导出的包装类型
type XXX struct {
    impl *xxxImpl  // 包含实现类型
    // 其他字段
}

// 或者通过嵌入方式
type XXX struct {
    *xxxImpl  // 嵌入实现类型
    // 其他字段
}

但也有一些可以包外使用的,比如实现了某个接口,并通过接口值返回,提供给外部使用,例如下面的valueCtx,它实现了Context接口,并通过WithValue返回,供调用WithValue的外部包使用:

//$GOROOT/src/context/context.go

func WithValue(parent Context, key, val any) Context {  // 构造函数,实现接口
    if parent == nil {
        panic("cannot create context from nil parent")
    }
    if key == nil {
        panic("nil key")
    }
    if !reflectlite.TypeOf(key).Comparable() {
        panic("key is not comparable")
    }
    return &valueCtx{parent, key, val}
}

// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
    Context
    key, val any
}

func (c *valueCtx) Value(key any) any {
    if c.key == key {
        return c.val
    }
    return value(c.Context, key)
}

这么做的目的是什么呢?大约有如下几点:

  • 隐藏实现细节

非导出类型的主要作用是防止外部直接使用和依赖其内部实现细节。通过限制类型的直接使用,库作者可以保持实现的灵活性,随时调整或重构类型的内部逻辑,而无需担心破坏外部调用代码; 还可以避免暴露多余的API,使库的接口更加简洁。

  • 控制实例的创建和管理

通过非导出类型,开发者还可以确保外部代码无法直接实例化类型,而必须通过导出的构造函数或工厂函数,就像前面举的示例那样。这种模式可以保证对象始终以特定的方式初始化,避免错误使用。同时,它还可以用来实现更复杂的初始化逻辑,如依赖注入或资源管理。

  • 在接口实现中的作用

非导出类型可以用来实现导出的接口,从而将接口的实现细节完全隐藏。对于用户来说,只需要关心接口的定义,而无需关注其实现。

8. 小结

本文探讨了Go语言中的导出标识符及其相关细节,特别是非导出类型如何与其导出字段和导出方法结合使用。

尽管某些类型是非导出的,其内部的导出字段和方法依然可以在包外访问。此外,非导出类型在实现接口、嵌入字段和泛型中也展现出良好的应用。这种设计不仅促进了封装和接口实现的灵活性,还允许开发者通过构造函数返回非导出类型的实例,从而有效控制实例的创建与管理。这种方式帮助隐藏实现细节,简化外部接口,使得代码结构更加清晰。

本文涉及的源码可以在这里下载。


Gopher部落知识星球在2025年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。并且,2025年将在星球首发“Go陷阱与缺陷”和“Go原理课”专栏!此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾
。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go字符串比较,终于有人讲清楚了

本文永久链接 – https://tonybai.com/2022/04/18/inside-go-string-comparison

西娅(Thea)是一个刚刚入门Go语言的妹子程序员,今天她遇到了一个让她“surprise”的问题。下面就是那段让妹子西娅困惑的Go代码:

func main() {
    s1 := "12345"
    s2 := "2"
    fmt.Println(`"12345" > "2":`, s1 > s2) // false

    s3 := "零"
    s4 := "一"
    s5 := "二"

    fmt.Println(`"一" > "零":`, s4 > s3) // false
    fmt.Println(`"二" > "零":`, s5 > s3) // false
    fmt.Println(`"二" > "一":`, s5 > s4) // true
}

在这段关于Go字符串比较的代码中:

  • 为什么表达式”12345″ > “2″的求值结果是false呢?
  • 为什么”一” > “零”和”二” > “零”两个表达式的求值结果都是false呢?
  • 而”二” > “一”的求值结果却又为true呢?

四个结果都让西娅百思不得其解!于是西娅在网络上寻找能为其解惑的Go技术资料。

她网上看到一本名为《Go语言精进之路》的“小黄书”,据说这本书中有有关Go字符串原理与字符串比较的详细讲解。

西娅不经意间瞥见,旁边的同事Tony桌上摆着一本黄色的、厚重的书,这不正是她想看的吗!于是西娅向Tony发出了借书一阅的请求。Tony面对“美女攻势”向来是“每战必败”的,于是西娅顺利地拿到了两卷本的《Go语言精进之路》。借午休时间,西娅花了1.5个小时认真学习了书中有关Go字符串的三个章节:第15节的“了解string实现原理和高效使用”、 第52节的“掌握字符集的原理和字符编码方案间的转换”和第56节的“掌握bytes包和strings包的基本操作”。看完后大呼Wonderful!书中的讲解完全解答了西娅的问题。

此时西娅想起了在《Go语言第一课专栏》的结课语《和你一起迎接Go的黄金十年》中作者关于学习Go语言方法的建议:输出大法!通过输出将学到的知识真正内化为自己的知识,于是西娅将自己对书中内容的理解记录了下来。恰好此时旁边的Tony刚刚从午睡中苏醒过来,西娅决定再为一把人师。Tony就这样被稀里糊涂地拽了过来充当学生:)。

以下是西娅的讲解。


1. Go语言中的字符串类型

字符串类型是现代编程语言中最常使用的数据类型之一。在Go语言的先祖之一C语言当中,字符串类型并没有被显式定义,而是以字符串字面值
常量或以’\0′结尾的字符类型(char)数组来呈现的。

Go语言修复了C语言的这一“缺陷”,原生内置了string类型,统一了对“字符串”的抽象。在Go语言中,无论是字符串常量、字符串变量或是代码中出现的字符串字面量,它们的类型都被统一设置为string

Go的string类型设计充分吸取了C语言字符串设计的经验教训,并结合了其他主流语言在字符串类型设计上的最佳实践,最终为Gopher呈现的string类型具有如下功能特点:

  • string类型的数据是不可变的

即一旦声明了一个string类型的标识符,无论是常量还是变量,该标识符所指代的数据在整个程序的生命周期内便无法被更改。

  • 零值可用

Go string类型支持零值可用的理念。Go字符串无需像C语言中那样考虑结尾’\0′字符,因此其零值为”",长度为0。

  • 获取长度的时间复杂度是O(1)级别

  • 支持各种比较关系操作符:==、!= 、>=、<=、> 和<

鉴于Go string是不可变的,因此如果两个字符串的长度不相同,那么无需比较具体字符串数据,也可以断定两个字符串是不同的;如果长度相
同,则要进一步判断数据指针是否指向同一块底层存储数据。如果相同,则两个字符串是等价的,如果不同,则还需进一步去比对实际的数据内容。至于怎么比较,我接下来会讲。

  • 对非ASCII字符提供原生支持

这一特点就涉及到Go字符串中的字符是什么字符、用什么字符编码的问题了。下面我们就来看看。

2. Go字符串采用的字符集编码

Go语言默认使用Unicode字符集,并采用UTF-8编码方案,Go还提供了rune原生类型来表示Unicode字符。Unicode(万国码/统一码)在1994年发布,它是以收纳人类所有字符为目的的统一字符集。Unicode字符集就是将世界上存在的绝大多数常用字符进行统一排队和编号。比如下面是一个Unicode字符集表的片段:

序号 字符
U+0000 … …
… … … …
U+0031 1
U+0032 2
… … … …
U+4E2D
… … … …
U+4EBA
… … … …
U+56FD
… … … …
U+10FFFF … …

我们看到每个Unicode字符(比如表格里的”1″、”中”等)都有自己的唯一序号,这个序号就叫做字符的码点(code point),Go中的rune类型可用于表示码点。

好了,问题来了!Unicode字符集表格有了,Go是如何在内存中存储这些字符的呢?目前业界有多种存储方案,比如:UTF-32(即4个字节表示每个Unicode字符码点)、UTF-16(使用2个字节或4个字节表示每个Unicode字符码点)以及UTF-8。

UTF-8使用变长度字节对Unicode字符(的码点)进行编码。编码采用的字节数量与Unicode字符在码点表中的序号有关:表示序号(码点)小的字符使用的字节数量就少,表示序号(码点)大的字符使用的字节数量就多

UTF-8编码使用的字节数量从1个到4个不等。前128个与ASCII字符重合的码点(U+0000~U+007F)使用1个字节表示;带变音符号的拉丁文、希腊文、西里尔字母、阿拉伯文等使用2个字节来表示;而东亚文字(包括汉字)使用3个字节表示;其他极少使用的语言的字符则使用4个字节表示。

这样的编码方案是兼容ASCII字符内存表示的,这意味着采用UTF-8方案在内存中表示Unicode字符时,已有的ASCII字符可以被直接当成Unicode字符进行存储和传输,无需做任何改变。相对于UTF-16和UTF-32方案,UTF-8方案的空间利用率也是最高的。并且,utf8解码和编码时,也无需考虑字节序问题。

于是,Go语言使用了Utf8编码方案在内存中存储Unicode字符。

以字符“中”为例,它的码点(序号)为U+4E2D,它在Utf8编码则为“0xE4 0xB8 0xAD”,即在内存中Go实际用三个字节来表示“中”这个Unicode字符。

3. Go字符串比较

上面铺垫了这么些内容,就是为了为字符串比较开道。关于Go字符串比较,Go语言规范中只说了一句话:String values are comparable and ordered, lexically byte-wise。什么意思呢?这句话表达了三个意思:

  • 定性:字符串可比较
  • 定量:字符串是有序的
  • 方法:逐字节

下面我对开篇的例子做逐一说明,首先看下面代码:

s1 := "12345"
s2 := "2"
fmt.Println(`"12345" > "2":`, s1 > s2)

s1和s2两个字符串中的字符都是ASCII字符范畴的,每个字符在内存中的编码都是一个字节。按照Go string比较的原理,我们对s1和s2进行逐字节比较。首先比较s1的第一个字符”1″和s2的第一个字符”2″。字符”2″在内存中的字节为0×32,而字符”1″在内存中的字节为0×31,显然0×32大于0×31,到这里已经比出大小了,程序不会继续对后续的字符进行比对了。这也是为什么s1 > s2这个表达式为false的原因。

如果s2 = “12346″呢?那么按照Go string比较的原理,程序在比较s1和s2的前4个字符时都相等,于是只能由第5个字符来判定两个字符串的大小了,s2的第五个字符”6″显然大于s1的第五个字符”5″,于是当s2=”12346″时,s2是大于s1的。

我们再看看含有汉字的字符串的例子:

s3 := "零"
s4 := "一"
s5 := "二"

fmt.Println(`"一" > "零":`, s4 > s3) // false
fmt.Println(`"二" > "零":`, s5 > s3) // false
fmt.Println(`"二" > "一":`, s5 > s4) // true

为了方便后续说明,我们先把”零”、”一”和”二”这三个汉字的Utf8编码计算出来:

  • “零”的UTF8编码为:0xE9 0x9B 0xB6
  • “一”的UTF8编码为:0xE4 0xB8 0×80
  • “二”的UTF8编码为:0xE4 0xBA 0x8C

我们看到,三个汉字的Utf8编码都是三个字节。

好了接下来,我们先比较s4(“一”)和s3(“零”)。根据Go字符串比较原理,程序对s3和s4做逐字节比较,”零”这个字符的第一个字节为0xE9,而”一”这个字符的第一个字节为0xE4,我们知道0xE9 > 0xE4,于是比较停止,判定:s3 > s4。

同理,s3 > s5。

在比较s4(“一”)和s5(“二”)时,由于它们的第一个字节都是0xE4,于是第二个字节决定了它们的大小,0xBA > 0xB8,所以s5 > s4。

4. Go strings包中的Compare函数

Go标准库在strings包中提供了Compare函数用于对两个字符串做大小比较。但按照Go团队的comment,这个函数存在的意义更多是是为了与bytes包尽量保持API的一致,其自身也是使用原生排序比较操作符实现的:

// $GOROOT/src/strings/compare.go
func Compare(a, b string) int {
    if a == b {
        return 0
    }
    if a < b {
        return -1
    }
    return +1
}

实际应用中,我们很少使用strings.Compare更多的是直接使用排序比较操作符对字符串类型变量进行比较,这样更直观,性能大多数场景也会更高,毕竟少一次函数调用。


“好了以上就是我要讲给你听的,听懂了么”。西娅兴高采烈地对此时已经处于清醒状态的Tony说。

“讲的真好。比我书里讲的还透彻”。Tony一边鼓掌一边微笑着说。“程序员妹子西娅Thea终于把Go字符串比较讲清楚了”。

西娅惊讶!“你的什么书”?

Tony指了指办公桌上的小黄书说:“这书就是我写的啊^_^”。

西娅脸上现出一丝红晕… …。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2022年,Gopher部落全面改版,将持续分享Go语言与Go应用领域的知识、技巧与实践,并增加诸多互动形式。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}
img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



Statcounter View My Stats