标签 struct 下的文章

Go语言反射编程指南

本文永久链接 – https://tonybai.com/2023/06/04/reflection-programming-guide-in-go

反射是一种编程语言的高级特性,它允许程序在运行时检视自身的结构和行为。通过反射,程序可以动态地获取类型(type)与值(value)等信息,并对它们进行操作,诸如修改字段、调用方法等,这使得程序具有更大的灵活性和可扩展性。

不过,反射虽然具有强大的功能,但也存在一些缺点。由于反射是在运行时进行的,因此它比直接调用代码的性能要差。此外,反射还可能导致代码的可读性和维护性降低,因为它使得程序行为更加难以预测和理解。因此,在使用反射时需要注意性能和可维护性。

Go从诞生伊始就在运行时支持了反射,并在标准库中提供了reflect包供开发者进行反射编程时使用。在这篇文章中,我们就来系统地了解一下如何在Go中通过reflect包实现反射编程。

注:我的Go语言精进之路一书有关于Go反射的进阶讲解,欢迎阅读。

1. Go语言反射基础

相对于C/C++等系统编程语言,Go的运行时承担的功能要更多一些,比如Goroutine调度Go内存垃圾回收(GC)等。同时反射也为开发者与运行时之间提供了一个方便的、合法的交互窗口。通过反射,开发者可以合法的窥探关于Go类型系统的一些元信息。

注:《Go语言第一课》专栏第31~34讲对Goroutine调度以及Go并发编程做了系统详细的讲解,欢迎阅读。

Go语言的反射包(reflect包)是一个内置的包,它提供了一组API,能够在运行时获取和修改Go语言程序的结构和行为。reflect包也是所有Go反射编程的基础API,是进行Go反射编程的必经之路。

在本节中,我们将会探讨reflect包的一些基础知识,包括Type和Value两个重要的反射包类型,以及如何使用TypeOf和ValueOf方法来获取类型信息和值信息。

1.1 Type和Value

在reflect包中,Type和Value是两个非常重要的概念,它们分别表示了反射世界中的类型信息和值信息。

Type表示一个类型的元信息,它包含了类型的名称、大小、方法集合等信息。在反射编程中,我们可以使用TypeOf函数来获取一个值的类型信息。

Value表示一个值的信息,它包含了值的类型、值本身以及对值进行操作的方法集合等信息。在反射中,我们可以使用ValueOf函数来获取一个值的Value信息。

reflect包的TypeOf和ValueOf两个函数是进入反射世界的基本入口。下面我们来看看这两个函数的基本用法示例。

1.2 如何获取类型信息(TypeOf)

获取类型信息是反射的一个重要功能。在Go语言中,我们可以使用reflect包的TypeOf函数来获取一个值的类型信息。TypeOf函数的签名如下:

func TypeOf(i any) Type

注:any是interface{}的alias type,是Go 1.18中引入的预定义标识符。

TypeOf函数接受一个任意类型的值作为参数,并返回该值的类型信息,即interface{}接口类型变量中存储的动态类型信息。例如,我们可以使用TypeOf函数获取一个字符串的类型信息:

import (
    "fmt"
    "reflect"
)

func main() {
    s := "hello, world!"
    t := reflect.TypeOf(s)
    fmt.Println(t.Name()) // string
}

用图直观表示如下:

1.4 如何获取值信息(ValueOf)

获取值信息是反射的另一个重要功能。在Go语言中,我们可以使用reflect包的ValueOf函数来获取一个值的Value信息。ValueOf函数的签名如下:

func ValueOf(i any) Value

ValueOf函数接受一个任意类型的值作为参数,并返回该值的Value信息,即interface{}接口类型变量中存储的动态类型的值的信息。例如,我们可以使用ValueOf函数获取一个整数的Value信息:

import (
    "fmt"
    "reflect"
)

func main() {
    i := 42
    v := reflect.ValueOf(i)
    fmt.Println(v.Int()) // 42
}

在上述示例中,我们首先定义了一个整数i,然后使用ValueOf函数获取其Value信息,并调用Int方法获取其值。

用图直观表示如下:

以上就是reflect包TypeOf和ValueOf函数的基本用法的示例,下面我们再来详细看看获取不同类型的类型信息和值信息的细节。

2. 检视类型信息和调用类型方法

reflect.Type实质上是一个接口类型,它封装了reflect可以提供的类型信息的所有方法(Go 1.20版本中的reflect.Type):

// $GOROOT/src/reflect/type.go

type Type interface {
    // Methods applicable to all types.

    // Align returns the alignment in bytes of a value of
    // this type when allocated in memory.
    Align() int

    // FieldAlign returns the alignment in bytes of a value of
    // this type when used as a field in a struct.
    FieldAlign() int

    // Method returns the i'th method in the type's method set.
    // It panics if i is not in the range [0, NumMethod()).
    //
    // For a non-interface type T or *T, the returned Method's Type and Func
    // fields describe a function whose first argument is the receiver,
    // and only exported methods are accessible.
    //
    // For an interface type, the returned Method's Type field gives the
    // method signature, without a receiver, and the Func field is nil.
    //
    // Methods are sorted in lexicographic order.
    Method(int) Method

    // MethodByName returns the method with that name in the type's
    // method set and a boolean indicating if the method was found.
    //
    // For a non-interface type T or *T, the returned Method's Type and Func
    // fields describe a function whose first argument is the receiver.
    //
    // For an interface type, the returned Method's Type field gives the
    // method signature, without a receiver, and the Func field is nil.
    MethodByName(string) (Method, bool)

    // NumMethod returns the number of methods accessible using Method.
    //
    // For a non-interface type, it returns the number of exported methods.
    //
    // For an interface type, it returns the number of exported and unexported methods.
    NumMethod() int

    // Name returns the type's name within its package for a defined type.
    // For other (non-defined) types it returns the empty string.
    Name() string

    // PkgPath returns a defined type's package path, that is, the import path
    // that uniquely identifies the package, such as "encoding/base64".
    // If the type was predeclared (string, error) or not defined (*T, struct{},
    // []int, or A where A is an alias for a non-defined type), the package path
    // will be the empty string.
    PkgPath() string

    // Size returns the number of bytes needed to store
    // a value of the given type; it is analogous to unsafe.Sizeof.
    Size() uintptr

    // String returns a string representation of the type.
    // The string representation may use shortened package names
    // (e.g., base64 instead of "encoding/base64") and is not
    // guaranteed to be unique among types. To test for type identity,
    // compare the Types directly.
    String() string

    // Kind returns the specific kind of this type.
    Kind() Kind

    // Implements reports whether the type implements the interface type u.
    Implements(u Type) bool

    // AssignableTo reports whether a value of the type is assignable to type u.
    AssignableTo(u Type) bool

    // ConvertibleTo reports whether a value of the type is convertible to type u.
    // Even if ConvertibleTo returns true, the conversion may still panic.
    // For example, a slice of type []T is convertible to *[N]T,
    // but the conversion will panic if its length is less than N.
    ConvertibleTo(u Type) bool

    // Comparable reports whether values of this type are comparable.
    // Even if Comparable returns true, the comparison may still panic.
    // For example, values of interface type are comparable,
    // but the comparison will panic if their dynamic type is not comparable.
    Comparable() bool

    // Methods applicable only to some types, depending on Kind.
    // The methods allowed for each kind are:
    //
    //  Int*, Uint*, Float*, Complex*: Bits
    //  Array: Elem, Len
    //  Chan: ChanDir, Elem
    //  Func: In, NumIn, Out, NumOut, IsVariadic.
    //  Map: Key, Elem
    //  Pointer: Elem
    //  Slice: Elem
    //  Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField

    // Bits returns the size of the type in bits.
    // It panics if the type's Kind is not one of the
    // sized or unsized Int, Uint, Float, or Complex kinds.
    Bits() int

    // ChanDir returns a channel type's direction.
    // It panics if the type's Kind is not Chan.
    ChanDir() ChanDir

    // IsVariadic reports whether a function type's final input parameter
    // is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's
    // implicit actual type []T.
    //
    // For concreteness, if t represents func(x int, y ... float64), then
    //
    //  t.NumIn() == 2
    //  t.In(0) is the reflect.Type for "int"
    //  t.In(1) is the reflect.Type for "[]float64"
    //  t.IsVariadic() == true
    //
    // IsVariadic panics if the type's Kind is not Func.
    IsVariadic() bool

    // Elem returns a type's element type.
    // It panics if the type's Kind is not Array, Chan, Map, Pointer, or Slice.
    Elem() Type

    // Field returns a struct type's i'th field.
    // It panics if the type's Kind is not Struct.
    // It panics if i is not in the range [0, NumField()).
    Field(i int) StructField

    // FieldByIndex returns the nested field corresponding
    // to the index sequence. It is equivalent to calling Field
    // successively for each index i.
    // It panics if the type's Kind is not Struct.
    FieldByIndex(index []int) StructField

    // FieldByName returns the struct field with the given name
    // and a boolean indicating if the field was found.
    FieldByName(name string) (StructField, bool)

    // FieldByNameFunc returns the struct field with a name
    // that satisfies the match function and a boolean indicating if
    // the field was found.
    //
    // FieldByNameFunc considers the fields in the struct itself
    // and then the fields in any embedded structs, in breadth first order,
    // stopping at the shallowest nesting depth containing one or more
    // fields satisfying the match function. If multiple fields at that depth
    // satisfy the match function, they cancel each other
    // and FieldByNameFunc returns no match.
    // This behavior mirrors Go's handling of name lookup in
    // structs containing embedded fields.
    FieldByNameFunc(match func(string) bool) (StructField, bool)

    // In returns the type of a function type's i'th input parameter.
    // It panics if the type's Kind is not Func.
    // It panics if i is not in the range [0, NumIn()).
    In(i int) Type

    // Key returns a map type's key type.
    // It panics if the type's Kind is not Map.
    Key() Type

    // Len returns an array type's length.
    // It panics if the type's Kind is not Array.
    Len() int

    // NumField returns a struct type's field count.
    // It panics if the type's Kind is not Struct.
    NumField() int

    // NumIn returns a function type's input parameter count.
    // It panics if the type's Kind is not Func.
    NumIn() int

    // NumOut returns a function type's output parameter count.
    // It panics if the type's Kind is not Func.
    NumOut() int

    // Out returns the type of a function type's i'th output parameter.
    // It panics if the type's Kind is not Func.
    // It panics if i is not in the range [0, NumOut()).
    Out(i int) Type

    common() *rtype
    uncommon() *uncommonType
}

我们看到这是一个“超级接口”,严格来说并不符合Go接口设计的惯例。

注:Go崇尚小接口。以Type接口为例,可以对Type接口做进一步分解,分解成若干内聚的小接口,然后将Type看成小接口的组合。

对于不同类型,Type接口的有些方法是冗余的,比如像上面的NumField、NumIn和NumOut方法对于一个int变量的类型信息来说就毫无意义。Type类型的注释中也提到:“Not all methods apply to all kinds of types”。

一旦通过TypeOf进入反射世界,拿到Type类型变量,那么我们就可以基于上述方法“翻看”类型的各种信息了。

对于像int、float64、string这样的基本类型来说,其类型信息的检视没有太多可说的。但对于其他类型,诸如复合类型、指针类型、函数类型等,还是有一些可聊聊的,我们下面逐一简单地看一下。

2.1 复合类型

2.1.1 数组类型

在Go中,数组类型是一种典型的复合类型,它有若干属性,包括数组长度、数组是否支持可比较、数组元素的类型等,看下面示例:

import (
    "fmt"
    "reflect"
)

func main() {
    arr := [5]int{1, 2, 3, 4, 5}
    typ := reflect.TypeOf(arr)
    fmt.Println(typ.Kind())       // array
    fmt.Println(typ.Len())        // 5
    fmt.Println(typ.Comparable()) // true

    elemTyp := typ.Elem()
    fmt.Println(elemTyp.Kind())       // int
    fmt.Println(elemTyp.Comparable()) // true
}

注:通过类型信息无法间接得到值信息,反之不然,稍后系统说明reflect.Value时会提到。

在这个例子,我们输出了arr这个数组类型变量的Kind信息。什么是Kind信息呢?reflect包中是如此定义的:

// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uint

const (
    Invalid Kind = iota
    Bool
    Int
    Int8
    Int16
    Int32
    Int64
    Uint
    Uint8
    Uint16
    Uint32
    Uint64
    Uintptr
    Float32
    Float64
    Complex64
    Complex128
    Array
    Chan
    Func
    Interface
    Map
    Pointer
    Slice
    String
    Struct
    UnsafePointer
)

我们可以将Kind当做是Go type信息的元信息,对于基本类型来说,如int、string、float64等,它的kind和它的type的表达是一致的。但对于像数组、切片等类型,kind更像是type的type。

以两个数组类型为例:

var arr1 [10]string
var arr2 [8]int

这两个数组类型的类型分别是[10]string和[8]int,但它们在反射世界的reflect.Type的Kind信息却都为Array。

再比如下面两个指针类型:

var p1 *float64
var p2 *MyFoo

这两个指针类型的类型分别是*float64和*MyFoo,但它们在反射世界的reflect.Type的Kind信息却都为Pointer。

Kind信息可以帮助开发人员在反射世界中区分类型,以对不同类型作不同的处理。比如对于Kind为Int的reflect.Type,你不能使用其Len()方法,否则会panic;但对于Kind为Array的则可以。开发人员使用反射提供的Kind信息可以处理不同类型的数据。

2.1.2 切片类型

在Go中切片是动态数组,可灵活、透明的扩容,多数情况下切片都能替代数组完成任务。在反射世界中通过reflect.Type我们可以获取切片类型的信息,包括元素类型等。下面是一个示例:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    s := make([]int, 5, 10)
    typ := reflect.TypeOf(s)
    fmt.Println(typ.Kind()) // slice
    fmt.Println(typ.Elem()) // int
}

如果我们使用上面的变量typ调用Type类型的Len和Cap方法会发生什么呢?在运行时,你将得到类似”panic: reflect: Len of non-array type []int”的报错!

那么问题来了!切片长度、容量到底是否是slice type的信息范畴呢? 我们来看一个例子:

var a = make([]int, 5, 10)
var b = make([]int, 7, 8) 

变量a和b的类型都是[]int。显然长度、容量等并不在切片类型的范畴,而是与切片变量值绑定的,下面的示例印证了这一点:

func main() {
    s := make([]int, 5, 10)
    val := reflect.ValueOf(s)
    fmt.Println(val.Len()) // 5
    fmt.Println(val.Cap()) // 10
}

我们获取了切片变量s的reflect.Value信息,通过Value我们得到了变量s的长度和容量信息。

2.1.3 结构体类型

结构体类型是与反射联合使用的重要类型,下面代码展示了如何通过reflect.Type获取结构体类型的相关信息:

package main

import (
    "fmt"
    "reflect"
)

type Person struct {
    Name string `json:"name"`
    Age  int    `json:"age"`
    gender  string
}

func (p Person) SayHello() {
    fmt.Printf("Hello, my name is %s, and I'm %d years old.\n", p.Name, p.Age)
}
func (p Person) unexportedMethod() {
}

func main() {
    p := Person{Name: "Tom", Age: 20, gender: "male"}
    typ := reflect.TypeOf(p)
    fmt.Println(typ.Kind())                   // struct
    fmt.Println(typ.NumField())               // 3
    fmt.Println(typ.Field(0).Name)            // Name
    fmt.Println(typ.Field(0).Type)            // string
    fmt.Println(typ.Field(0).Tag)             // json:"name"
    fmt.Println(typ.Field(1).Name)            // Age
    fmt.Println(typ.Field(1).Type)            // int
    fmt.Println(typ.Field(1).Tag)             // json:"age"
    fmt.Println(typ.Field(2).Name)            // gender
    fmt.Println(typ.Method(0).Name)           // SayHello
    fmt.Println(typ.Method(0).Type)           // func(main.Person)
    fmt.Println(typ.Method(0).Func)           // 0x109b6e0
    fmt.Println(typ.MethodByName("SayHello")) // {SayHello func(main.Person)}
    fmt.Println(typ.MethodByName("unexportedMethod")) // {  <nil> <invalid Value> 0} false
}

从上面例子可以看到,我们可以使用NumField、Field、NumMethod、Method和MethodByName等方法获取结构体的字段信息和方法信息。其中,Field方法返回的是StructField类型的值,包含了字段的名称、类型、标签等信息;Method方法返回的是Method类型的值,包含了方法的名称、类型和函数值等信息。

不过要注意:通过Type可以得到结构体中非导出字段的信息(如上面示例中的gender),但无法获取结构体类型的非导出方法信息(如上面示例中的unexportedMethod)

2.1.4 channel类型

channel是Go特有的类型,channel与切片很像,它的类型信息包括元素类型、chan读写特性,但channel的长度与容量与channel变量是绑定的,看下面示例:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    ch := make(chan<- int, 10)
    ch <- 1
    ch <- 2
    typ := reflect.TypeOf(ch)
    fmt.Println(typ.Kind())      // chan
    fmt.Println(typ.Elem())      // int
    fmt.Println(typ.ChanDir())   // chan<-

    fmt.Println(reflect.ValueOf(ch).Len()) // 2
    fmt.Println(reflect.ValueOf(ch).Cap()) // 10
}

基于反射和channel可以实现一些高级操作,比如之前写过一篇《使用反射操作channel》,大家可以移步看看。

2.1.5 map类型

map是go常用的内置的复合类型,它是一个无序键值对的集合,通过反射可以获取其键和值的类型信息:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    m := map[string]int{"a": 1, "b": 2, "c": 3}
    typ := reflect.TypeOf(m)
    fmt.Println(typ.Kind()) // map
    fmt.Println(typ.Key())  // string
    fmt.Println(typ.Elem()) // int        

    fmt.Println(reflect.ValueOf(m).Len()) // 3
}

我们看到,和切片一样,map变量的长度信息是与map变量的Value绑定的,另外要注意:map变量不能获取容量信息

2.2 指针类型

指针类型是一个大类,通过Type可以获得指针的kind和其指向的变量的类型信息:

package main

import (
    "fmt"
    "reflect"
)

func main() {
    i := 10
    p := &i
    typ := reflect.TypeOf(p)
    fmt.Println(typ.Kind())                      // ptr
    fmt.Println(typ.Elem())                      // int
}

2.3 接口类型

接口即契约。在Go中非作为约束的接口类型本质就是一个方法集合,通过reflect.Type可以获得接口类型的这些信息:

package main

import (
    "fmt"
    "reflect"
)

type Animal interface {
    Speak() string
}

type Cat struct{}

func (c Cat) Speak() string {
    return "Meow"
}

func main() {
    var a Animal = Cat{}
    typ := reflect.TypeOf(a)
    fmt.Println(typ.Kind())         // struct
    fmt.Println(typ.NumMethod())    // 1
    fmt.Println(typ.Method(0).Name) // Speak
    fmt.Println(typ.Method(0).Type) // func(main.Cat) string
}

2.4 函数类型

函数在Go中是一等公民,我们可以将其像普通int类型那样去使用,传参、赋值、做返回值都是ok的。下面是通过Type获取函数类型信息的示例:

package main

import (
    "fmt"
    "reflect"
)

func foo(a, b int, c *int) (int, bool) {
    *c = a + b
    return *c, true
}

func main() {
    typ := reflect.TypeOf(foo)
    fmt.Println(typ.Kind())                      // func
    fmt.Println(typ.NumIn())                     // 3
    fmt.Println(typ.In(0), typ.In(1), typ.In(2)) // int int *int
    fmt.Println(typ.NumOut())                    // 2
    fmt.Println(typ.Out(0))                      // int
    fmt.Println(typ.Out(1))                      // bool
}

我们看到和其他类型不同,函数支持NumOut、NumIn、Out等方法。其中In是输出参数的集合,Out则是返回值参数的集合。

注:上述示例foo纯粹为了演示,不要计较其合理性问题。

3. 获取与修改值信息

掌握了如何在反射世界获取一个变量的类型信息后,我们再来看看如何在反射世界获取并修改一个变量的值信息。之前在《使用reflect包在反射世界里读写各类型变量》一文中详细讲解了使用reflect读写变量的值信息,大家可以移步那篇文章阅读。

注:并不是所有变量都可以修改值的,可以使用Value的CanSet方法判断值是否可以设置。

4. 调用函数与方法

通过反射我们可以在反射世界调用函数,也可以调用特定类型的变量的方法。

下面是一个通过reflect.Value调用函数的简单例子:

package main

import (
    "fmt"
    "reflect"
)

func add(a, b int) int {
    return a + b
}

func main() {
    // 获取函数类型变量
    val := reflect.ValueOf(add)
    // 准备函数参数
    args := []reflect.Value{reflect.ValueOf(1), reflect.ValueOf(2)}
    // 调用函数
    result := val.Call(args)
    fmt.Println(result[0].Int()) // 输出:3
}

从示例看到,我们通过Value的Call方法来调用函数add。add有两个入参,我们不能直接传入int类型,因为这是在反射世界,我们要用反射世界的“专用参数”,即ValueOf后的值。Call的结果就是反射世界的返回值的Value形式,通过Value.Int方法可以还原反射世界的Value为int。

注:通过reflect.Type无法调用函数和方法。

方法的调用与函数调用类似,下面是一个例子:

import (
    "fmt"
    "reflect"
)

type Rectangle struct {
    Width  float64
    Height float64
}

func (r Rectangle) Area(factor float64) float64 {
    return r.Width * r.Height * factor
}

func main() {
    r := Rectangle{Width: 10, Height: 5}
    val := reflect.ValueOf(r)
    method := val.MethodByName("Area")
    args := []reflect.Value{reflect.ValueOf(1.5)}
    result := method.Call(args)
    fmt.Println(result[0].Float()) // 输出:75
}

通过MethodByName获取反射世界的method value,然后同样是通过Call方法实现方法Area的调用。

注:reflect目前不支持对非导出方法的调用。

5. 动态创建类型实例

reflect更为强大的功能是可以在运行时动态创建各种类型的实例。下面是在反射世界动态创建各种类型实例的示例。

5.1 基本类型

下面以int、float64和string为例演示一下如何通过reflect在运行时动态创建基本类型的实例。

  • 创建int类型实例
func main() {
    val := reflect.New(reflect.TypeOf(0))
    val.Elem().SetInt(42)
    fmt.Println(val.Elem().Int()) // 输出:42
}
  • 创建float64类型实例
func main() {
    val := reflect.New(reflect.TypeOf(0.0))
    val.Elem().SetFloat(3.14)
    fmt.Println(val.Elem().Float()) // 输出:3.14
}
  • 创建string类型实例
func main() {
    val := reflect.New(reflect.TypeOf(""))
    val.Elem().SetString("hello")
    fmt.Println(val.Elem().String()) // 输出:hello
}

更为复杂的类型的实例,我们继续往下看。

5.2 数组类型

使用reflect在运行时创建一个[3]int类型的数组实例,并设置数组实例各个元素的值:

func main() {
    typ := reflect.ArrayOf(3, reflect.TypeOf(0))
    val := reflect.New(typ)
    arr := val.Elem()
    arr.Index(0).SetInt(1)
    arr.Index(1).SetInt(2)
    arr.Index(2).SetInt(3)
    fmt.Println(arr.Interface()) // 输出:[1 2 3]
    arr1, ok := arr.Interface().([3]int)
    if !ok {
        fmt.Println("not a [3]int")
        return
    }

    fmt.Println(arr1) // [1 2 3]
}

5.3 切片类型

使用reflect在运行时创建一个[]int类型的切片实例,并设置切片实例中各个元素的值:

func main() {
    typ := reflect.SliceOf(reflect.TypeOf(0)) // 切片元素类型
    val := reflect.MakeSlice(typ, 3, 3) // 动态创建切片实例
    val.Index(0).SetInt(1)
    val.Index(1).SetInt(2)
    val.Index(2).SetInt(3)
    fmt.Println(val.Interface()) // 输出:[1 2 3]

    sl, ok := val.Interface().([]int)
    if !ok {
        fmt.Println("sl is not a []int")
        return
    }
    fmt.Println(sl) // [1 2 3]
}

5.4 map类型

使用reflect在运行时创建一个map[string]int类型的实例,并设置map实例中键值对:

func main() {
    typ := reflect.MapOf(reflect.TypeOf(""), reflect.TypeOf(0))
    val := reflect.MakeMap(typ)
    key1 := reflect.ValueOf("one")
    value1 := reflect.ValueOf(1)
    key2 := reflect.ValueOf("two")
    value2 := reflect.ValueOf(2)
    val.SetMapIndex(key1, value1)
    val.SetMapIndex(key2, value2)
    fmt.Println(val.Interface()) // 输出:map[one:1 two:2]

    m, ok := val.Interface().(map[string]int)
    if !ok {
        fmt.Println("m is not a map[string]int")
        return
    }

    fmt.Println(m)
}

5.5 channel类型

使用reflect在运行时创建一个chan int类型的实例,并从该channel实例接收数据:

func main() {
    typ := reflect.ChanOf(reflect.BothDir, reflect.TypeOf(0))
    val := reflect.MakeChan(typ, 0)
    go func() {
        val.Send(reflect.ValueOf(42))
    }()

    ch, ok := val.Interface().(chan int)
    if !ok {
        fmt.Println("ch is not a chan int")
        return
    }
    fmt.Println(<-ch) // 42
}

5.6 结构体类型

使用reflect在运行时创建一个struct类型的实例,并设置该实例的字段值并调用该实例的方法:

type Person struct {
    Name string
    Age  int
}

func (p Person) Greet() {
    fmt.Printf("Hello, my name is %s and I am %d years old\n", p.Name, p.Age)
}

func (p Person) SayHello(name string) {
    fmt.Printf("Hello, %s! My name is %s\n", name, p.Name)
}

func main() {
    typ := reflect.StructOf([]reflect.StructField{
        {
            Name: "Name",
            Type: reflect.TypeOf(""),
        },
        {
            Name: "Age",
            Type: reflect.TypeOf(0),
        },
    })
    ptrVal := reflect.New(typ)
    val := ptrVal.Elem()
    val.FieldByName("Name").SetString("Alice")
    val.FieldByName("Age").SetInt(25)

    person := (*Person)(ptrVal.UnsafePointer())
    person.Greet()         // 输出:Hello, my name is Alice and I am 25 years old
    person.SayHello("Bob") // 输出:Hello, Bob! My name is Alice
}

我们看到:上面代码在反射世界中动态创建了一个带有两个字段Name和Age的struct类型,注意该struct类型与Person并非同一个类型,但他们的内存结构是一致的。这就是上面代码尾部基于反射世界创建出的匿名struct显式转换为Person类型后能正常工作的原因。

注:目前reflect不支持在运行时为动态创建的结构体类型添加新方法。

5.7 指针类型

使用reflect在运行时创建一个指针类型的实例,并通过指针设置其指向内存对象的值:

type Person struct {
    Name string
    Age  int
}

func main() {
    typ := reflect.PtrTo(reflect.TypeOf(Person{}))
    val := reflect.New(typ.Elem())
    val.Elem().FieldByName("Name").SetString("Alice")
    val.Elem().FieldByName("Age").SetInt(25)
    person := val.Interface().(*Person)
    fmt.Println(person.Name) // 输出:Alice
    fmt.Println(person.Age)  // 输出:25
}

5. 反射的使用场景

结合结构体标签,Go反射在实际开发中常用于以下两个场景中:

  • 序列化和反序列化

这是我们最熟悉的场景。

反射机制可以用于将数据结构序列化成二进制或文本格式,或者将序列化后的数据反序列化成原始数据结构。比如标准库的encoding/json包、xml包、gob包等就是使用反射机制实现的。

  • 实现ORM框架

反射机制可以用于在ORM(对象关系映射)中动态创建和修改对象,使得ORM能够根据数据库表结构自动创建对应的Go语言结构体。

注:我的Go语言精进之路一书关于Go反射的讲解中,有一个基于Go对象生成sql语句的例子。

当然reflect的应用不局限在上述场景中,凡是需要在运行时了解类型信息、值信息的都可以尝试使用reflect来实现,比如:编写可以处理多种类型的通用函数(可以用interface{}以及泛型替代)、利用通过reflect.Type.Kind的信息在代码中做类型断言、根据reflect得到的类型信息做代码自动生成等。

下面是一个利用reflect手动解析json的示例,我们来看一下:

6. 利用reflect手解json的例子

请注意:这不是一个可复用的完善的json解析代码,仅仅是为了演示而用。

例子代码如下:

package main

import (
    "fmt"
    "reflect"
    "strings"
)

type Person struct {
    Name      string
    Age       int
    IsStudent bool
}

func main() {
    jsonStr := `{
        "name": "John Doe",
        "age": 30,
        "isStudent": false
    }`

    person := Person{}
    parseJSONToStruct(jsonStr, &person)
    fmt.Printf("%+v\n", person)
}

func parseJSONToStruct(jsonStr string, v interface{}) {
    jsonLines := strings.Split(jsonStr, "\n")
    rv := reflect.ValueOf(v).Elem()

    for _, line := range jsonLines {
        line = strings.TrimSpace(line)
        if strings.HasPrefix(line, "{") || strings.HasPrefix(line, "}") {
            continue
        }

        parts := strings.SplitN(line, ":", 2)
        key := strings.TrimSpace(strings.Trim(parts[0], `"`))
        value := strings.TrimSpace(strings.Trim(parts[1], ","))

        // Find the corresponding field in the struct
        field := rv.FieldByNameFunc(func(fieldName string) bool {
            return strings.EqualFold(fieldName, key)
        })

        if field.IsValid() {
            switch field.Kind() {
            case reflect.String:
                field.SetString(strings.Trim(value, `"`))
            case reflect.Int:
                intValue, _ := strconv.Atoi(value)
                field.SetInt(int64(intValue))
            case reflect.Bool:
                boolValue := strings.ToLower(value) == "true"
                field.SetBool(boolValue)
            }
        }
    }
}

这段代码不是很难理解。

parseJSONToStruct函数首先将JSON字符串按行拆分,然后使用反射机制,获取v所对应的结构体的值,并将其保存在rv变量中。

接下来,函数遍历JSON字符串的每一行,如果该行以{或}开头,则直接跳过。否则,将该行按冒号:拆分成两部分,一部分是键(key),一部分是值(value)。

然后,函数使用反射机制,查找结构体中与该键对应的字段。这里使用了FieldByNameFunc方法,传入一个匿名函数作为参数,用于根据字段名查找对应的字段。如果找到了对应的字段,就根据该字段的类型,将值赋给该字段。这里支持了三种类型的字段:字符串、整数和布尔值。

最终,函数会将解析后的结果保存在v中,由于v是一个空接口类型的变量,实际上保存的是对应结构体的值的指针。所以在函数外部使用v时,需要将其转换为对应的结构体类型。

6. Go反射的不足

Go反射的优点在于它可以帮助我们实现更灵活和可扩展的程序设计。但是,Go反射也存在一些缺陷和局限性。其中,最主要的问题是性能。使用反射可能会导致程序性能下降,因为反射需要进行类型检查和动态分派,进出反射世界也需要额外的内存分配和装箱和拆箱操作。在编写高性能的Go程序时,应尽量避免使用反射机制。

此外,使用反射的代码可读性也相对较差,因为反射代码通常比较复杂和冗长。

7. 小结

Go反射是一种强大和灵活的机制,可以帮助我们实现运行时的类型和值信息获取、值操作、方法/函数调用以及动态创建类型实例,本文涵盖了所有这些操作的方法,希望能给大家带去帮助。

本文中涉及的代码可以在这里下载。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

一文告诉你哪些map element类型支持就地更新

本文永久链接 – https://tonybai.com/2023/04/02/map-element-types-support-in-place-update

年初,我代表团队和人民邮电出版社签订了翻译《Go Fundamentals》一书的合同,本月底便是四分之一进度的交稿时间点,近期闲时我们都在忙着做交叉review。

上周末我review小伙伴翻译的有关map类型的章节时,看到了书中对map element就地更新的讲解。Mark BatesCory LaNou的这本书属于入门级Go语言书,只是举例说明了一些支持就地更新的map element类型以及不能就地更新的典型类型,但对不能更新的原因并未做深入说明。我觉得这个知识点不错,借这篇文章系统梳理一下。

一. 什么是map element的就地更新(in-place update)

我们知道Go中的map类型是一种无序的键值对集合,它的内部实现是基于哈希表的,支持高效地进行插入、查找和删除操作。map的key必须是可以进行相等比较的类型,比如整数、字符串、指针等,而element(也称为value)则可以是任意类型。并且,map是引用类型,它的零值为nil,使用前需要先使用内置函数make或map类型字面值进行空间分配。此外,在使用map时还需要注意并发安全问题,可以使用sync包提供的同步原语中来实现map的并发安全。

更多关于map的入门介绍与原理说明,可以阅读我的极客时间专栏《Go语言第一课》的第16讲

下面我们就来声明一个简单的map类型变量:

m := map[string]int{}

m是一个键为string类型、element为int类型的map。我们可以通过下面代码向map中插入一个键值对:

m["boy"] = 0

我们可以将其想象为一个统计班里男孩子数量的计数器:每数到一个男孩,我们就可以将其加1:

n := m["boy"]
n++
m["boy"] = n

你可以看到上述代码更新了键”boy”对应的element值(+1)。不过这种方法比较繁琐,要更新键”boy”对应的element值,我们还有下面这个更为简洁的方法:

m["boy"]++

我们看到和前面一种方法相比,这种方法没有引入额外的变量(比如前面的变量n),而是直接在map element上进行了更新的操作,这种方法就称为map element的“就地更新”

下面还有一些支持“就地更新”的map element类型的例子,比如:string、切片等:

m["boy"] += 1

// element类型为string
m1 := map[int]string{
    1 : "hello",
    2 : "bye",
} // map[1:hello 2:bye]

m1[1] += ", world" // map[1:hello, world 2:bye]

// element类型为切片
m2 := map[string][]int{
    "k1": {1, 2},
    "k2": {3, 4},
} // map[k1:[1 2] k2:[3 4]]
m2["k1"][0] = 11 // map[k1:[11 2] k2:[3 4]]

不过并非所有类型都支持“就地更新”,比如下面的数组与结构体作为map element类型时就会导致编译错误:

m3 := map[int][10]int{
    1 : {1,2,3,4,5,6,7,8,9,10},
}
m3[1][0] = 11 // 编译错误:cannot assign to m3[1][0] (value of type int)

type P struct {
    a int
    b float64
}

m4 := map[int]P {
    1 : {1, 3.14},
    2 : {2, 6.28},
}
m4[1].a = 11 // 编译错误:cannot assign to struct field m4[1].a in map

那么为什么会这样呢?为什么同样作为map element,有的类型可以就地更新,有的类型就不支持呢?我们继续向下看。

二. element类型支持就地更新的本质

支持element类型就地更新这种“语法糖”在实际编写代码中体验还是非常好的,避免了下面这种“三行”冗余代码:

a := m["boy"]
a++
m["boy"] = a

那么,Go究竟是如何实现“就地更新”的呢?我们还以以上面的m变量为例:

m := map[string]int{
    "boy" : 0,
    "girl" : 0,
}

当我们执行下面的就地更新语句时:

m["boy"]++

我们来看一下底层的汇编是啥样的:

汇编语句不是很好懂,不过我们仅关注一下重点。我们看到汇编调用了runtime.mapassign_faststr这个函数,该函数的语义就是通过传入的key,找到对应的element,并将element的地址传出来。这里element的地址放入了AX寄存器中;接下来我们看到汇编调用INCQ指令将AX寄存器指向的内存块中的数据做了加1操作,从而实现了m["boy"]++这个语句的语义。

如果用伪代码来表示这个过程大致是这样的:

// 伪代码,下面的代码无法通过go编译,go在语法层面不支持获取map element的地址

p := &m["boy"]
(*p)++

到这里小伙伴们可能会问:为什么Go不针对类型为struct和array的element提供这种语法糖呢?我们假设struct的字段更新也支持就地更新,那么会发生什么呢?

type P struct {
    a int
    b float64
}

m4 := map[int]P {
    1 : {1, 3.14},
    2 : {2, 6.28},
}
m4[1].a = 11

上面的m4[1].a = 11将等价于如下代码:

t := &(m4[1])
t.a = 11

我们看到与element类型为int或string不同,由于要更新struct内部的字段,我们这次必须获取element的地址。一旦可以获取地址,问题就来了!这个地址是map在runtime层维护的内存地址,一旦暴露出来至少会有如下两个问题:

  • 并发访问时会导致该element数据的竞争问题;
  • map自动扩容后,element地址会变更,通过上述代码获取的地址可能变为无效。

当然第二点更为重要,也正是因为这个原因,Go决定不支持对map的element取地址

不过这似乎也并非是什么不可逾越的“鸿沟”,在runtime层面,element地址还是可以拿到的,就像前面的map[string]int那样。但目前Go团队依旧没有松口,在Go issue 3117中,Go团队一直跟踪着上述结构体类型作为map element时不能就地更新的问题。该issue并没有close,说明也许未来Go针对这样的行为的处理可能会发生变化。

那是否可以用整体替换的三行代码方案来提供针对struct和array类型的element就地更新语法糖呢? 以struct为例:

m4[1].a = 11 

<=>

t := m4[1]
t.a = 11
m4[1] = t

即将struct和array作为一个整体,从map中获取副本,然后在临时变量中更新后,再重新覆盖map中的element。

go为什么不提供这种“语法糖”呢?我猜是因为这么做的性能开销较大!struct可以聚合很多字段,array的size也可能很可观,这样的两次copy的开销可能是Go开发者比较顾忌的。

那么目前的替代方案是什么呢? 其实很简单,那就是element类型使用指针类型,比如下面element类型为结构体指针类型的代码:

type P struct {
    a int
    b float64
}

m := map[int]*P{
    1: {1, 3.14},
    2: {2, 6.28},
}
fmt.Println(m[1]) // &{1 3.14}

m[1].a = 11

fmt.Println(m[1]) // &{11 3.14}

再比如element类型为数组指针类型的代码:

m1 := map[int]*[10]int{
    1: {1, 2, 3},
}
fmt.Println(m1[1]) // &[1 2 3 0 0 0 0 0 0 0]
m1[1][0] = 11
fmt.Println(m1[1]) // &[11 2 3 0 0 0 0 0 0 0]

对map element“就地更新”的限制也会影响到是否能调用element类型的相关方法,我们再来看下面例子:

type P struct {
    a int
    b float64
}

func (P) normalFunc() {
}

func (p *P) updateInPlace(a int) {
    p.a = a
}

func main() {

    m1 := map[int]P{
        1: {1, 3.14},
        2: {2, 6.28},
    }
    m1[1].normalFunc()
    m1[1].updateInPlace(11) // 编译错误:cannot call pointer method updateInPlace on P

    m2 := map[int]*P{
        1: {1, 3.14},
        2: {2, 6.28},
    }
    fmt.Println(m2[1].a) // 1
    m2[1].normalFunc()
    m2[1].updateInPlace(11)
    fmt.Println(m2[1].a) // 11
}

我们看到当element类型为P时,我们无法通过语法糖来调用会对结构体字段进行修改的updateInPlace方法,但可以调用normalFunc。而当element类型为P指针类型时,则无此限制。

那么,我们究竟如何判断哪些类型支持就地更新,哪些不支持呢?我们接下来就来说说。

三. 梳理与小结

我们最后来梳理一下Go的主要类型是否支持就地更新。

  • 不涉及就地更新的类型

当element类型为布尔类型、函数类型时,我没找出针对这些map element就地更新的写法。

注:函数在Go中是一等公民。

  • Go原生的基本类型,比如整型、浮点型、complex类型、string类型等

当这些类型作为map element类型时,它们和整型一样,支持元素的就地更新,其原理与上面的map[string]int也是类似的:

// 整型
m1 := map[int]int{
    1: 1,
}
m1[1]++
fmt.Println(m1[1]) // 2

// 浮点型
m3 := map[int]float64{
    1: 3.14,
}
m3[1]++
fmt.Println(m3[1]) // 4.140000000000001

// complex类型
m4 := map[int]complex128{
    1: complex(2, 3), // 2+3i
}
m4[1]++
fmt.Println(m4[1]) // 3+3i

// string类型
m5 := map[int]string{
    1: "hello",
}
m5[1] += " world"
fmt.Println(m5[1]) // hello world
  • 对于指针、map、channel等类型

通过前面的讲解,我们知道使用指针作为map element类型是支持就地更新的,这里就不重复举例了。

map类型自身在Go运行时表示中也是一个指针,它也是支持就地更新的:

m := map[int]map[int]string{
    1: {1: "hello"},
}
m[1][1] += " world"
fmt.Println(m[1][1]) // hello world

关于channel类型,如果将向channel写入数据当作“就地更新”的话,那么channel也勉强算是支持:

// channel
m1 := map[int]chan int{
    1: make(chan int),
}
go func() {
    m1[1] <- 11
}()

fmt.Println(<-m1[1]) // 11
  • 对于切片、接口类型

通过前面的讲解,我们知道使用切片作为map element类型是支持就地更新的,这里就不重复举例了。

而对于接口类型,我理解的就地更新场景有两种,一种是通过接口值调用动态类型的方法,一种则是通过type assert来修改某些值。下面这两个场景的示例代码:

type MyInterface interface {
    normalFunc()
    updateInPlace(a int)
}

type P struct {
    a int
    b float64
}

func (P) normalFunc() {
}

func (p *P) updateInPlace(a int) {
    p.a = a
}

func main() {
    // interface
    m1 := map[int]MyInterface{
        1: &P{1, 3.14},
    }

    m1[1].updateInPlace(11) // 场景1:调用就地更新的方法

    p := m1[1].(*P)
    fmt.Println(p.a) // 11

    (m1[1].(*P)).a = 21     // 场景2:通过type assert设置值
    p = m1[1].(*P)
    fmt.Println(p.a) // 21
}
  • 对于数组、struct类型

通过前面的讲解,我们知道使用数组和struct类型作为map element类型是不支持就地更新的,这里就不重复举例了。

综上,目前只有当数组和结构体类型作为map元素类型时是不支持就地更新的。不过这种限制不一定一直持续下去,毕竟就地更新这种“语法糖”在编码过程中很好用,让代码变得更加简洁,也更加高效。后面Go团队可能会修改Go编译器以及运行时,让这种“语法糖”适用于所有类型。


“Gopher部落”知识星球旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!2023年,Gopher部落将进一步聚焦于如何编写雅、地道、可读、可测试的Go代码,关注代码质量并深入理解Go核心技术,并继续加强与星友的互动。欢迎大家加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats