标签 Package 下的文章

Go方法名的作用域:包级,但需间接调用

本文永久链接 – https://tonybai.com/2025/03/24/understand-methodname-scope

在Go语言中,作用域(Scope)决定了标识符(如变量、常量、函数、方法等)的可见范围。对于函数,我们熟知其包级作用域:包内任意位置可直接调用,首字母大写则可在包外调用。但对于方法名(Method Name),虽然其作用域同样是包级的,却需要间接调用——必须通过其关联类型(接收者类型)的实例来调用。本文将深入探讨这一关键区别,揭示Go方法名作用域的本质。

注:在《Go语言第一课》专栏的第11讲中有关于Go代码块与作用域的全面系统地讲解,欢迎小伙伴移步阅读。

函数:包级作用域,直接调用

Go语言中的函数具有包级作用域,并且可以被直接调用。这意味着:

  1. 包内任意位置直接调用: 在同一个包内的任何地方,都可以直接使用函数名来调用该函数,无需任何限定符。
  2. 包外调用(若导出): 如果函数名首字母大写(即导出),那么可以在其他包中通过包名.函数名的方式调用该函数。

下面是一个简单的示例(比较简单,无需解释):

package mypkg

import "fmt"

// 导出的函数
func ExportedFunc() {
    fmt.Println("Hello from ExportedFunc")
}

// 未导出的函数
func unexportedFunc() {
    fmt.Println("Hello from unexportedFunc")
}

func anotherFunc() {
    ExportedFunc()   // 直接调用,无需限定
    unexportedFunc() // 直接调用,无需限定
}

方法名:包级作用域,间接调用

Go语言规范中关于作用域的描述如下面截图所示:

我们看到,这里没有直接说明方法名具有什么级别作用域。那么我们是如何推导出方法具有包级作用域的特质呢?我们继续向下看。

方法等价的函数:包级作用域的体现

理解方法名作用域的关键在于,可以将方法“转换”为一个与之等价的普通函数。考虑以下方法:

package mypkg

type MyType int

func (m MyType) MyMethod() {}

可以将MyMethod“转换”成一个等价的函数:

package mypkg
type MyType int
func MyMethod(m MyType) {}

这个“转换”后的函数MyMethod具有明显的包级作用域,只是它需要一个MyType类型的参数才能调用。而原来的方法MyMethod则与MyType类型绑定,只能通过MyType类型的值或指针来调用。从这个等价性,我们可以推断出方法名本身也具有包级作用域。因为如果它不是包级的,那么等价的函数形式也无法在包内其他地方被引用。

但从其调用方式也可以明确推断出一点:方法不能像函数那样被直接调用,它必须通过与其关联的类型(接收者类型)的变量或指针来调用。

方法调用的形式:间接调用的体现

Go语言中,方法调用的几种形式都体现了其“间接调用”的特性:

  1. 通过接收者变量/指针调用:receiver.MethodName()这是最常见的形式。
  2. 方法表达式: Type.MethodName(receiver) 这种形式将类型本身作为“函数名”的一部分,但仍然需要一个接收者作为参数。
  3. 方法值: receiver.MethodName这种形式将方法绑定到一个接收者上,形成一个函数值,后续调用时仍需通过这个函数值(本质上还是通过接收者)。

无论哪种形式,都离不开接收者(receiver)。这与函数的直接调用形式(FunctionName())形成了鲜明对比。

包内、包外:可见性规则

方法名具有包级作用域。但其可见性(能否被调用)受到以下因素的影响:

  • 方法名本身的导出性: 首字母大写的方法(导出方法)可以在包外被调用(当然,前提是获得了接收者类型的实例)。首字母小写的方法(未导出方法)只能在包内被调用。
  • 接收者类型的可见性: 接收者类型的可见性影响在于:如果接收者类型是未导出的,那么其他包无法声明该类型的变量。但这并不代表其他包无法获得该类型的实例并调用其方法(稍后我会举例说明)

包内引用:需间接使用

即使在包内,方法名也不能被“随便”地直接引用。它仍然需要通过其关联类型或该类型的变量来间接使用,例如:

  • 方法表达式: MyType.MyMethod
  • 方法值: myVar.MyMethod (其中myVar是MyType类型的变量)
package mypkg

type MyType int
func (m MyType) MyMethod(){}

func anotherFunc(){
    // f := MyMethod //错误,不能直接引用
    f1 := MyType.MyMethod      // 正确:方法表达式
    var myVar MyType
    f2 := myVar.MyMethod       // 正确:方法值
    _ = f1
    _ = f2
}

那么未导出类型的导出方法是否可以在包外使用呢?我们来看下面这个示例:

示例:未导出类型的导出方法

// mypkg/mypkg.go
package mypkg

type unexportedType struct{} // 未导出的类型

// 导出的方法
func (u unexportedType) ExportedMethod() string {
    return "Hello from ExportedMethod"
}

// 工厂函数,返回未导出类型的实例
func NewUnexportedType() unexportedType {
    return unexportedType{}
}

//-------------
// main.go
package main

import (
    "fmt"
    "yourpath/mypkg"
)

func main() {
    //u := mypkg.unexportedType{}  // 错误!无法直接创建未导出类型的变量
    u := mypkg.NewUnexportedType() //通过工厂函数获得实例(但无法显式声明u的类型)
    result := u.ExportedMethod()      //正确。
    fmt.Println(result) // 输出 "Hello from ExportedMethod"
}

虽然unexportedType是未导出的类型,但是ExportedMethod是导出的方法。在main函数中,我们无法直接声明unexportedType类型的变量,但我们仍然可以通过工厂函数NewUnexportedType()以及短变量声明,来获得该未导出类型的实例,从而调用其导出的方法ExportedMethod。

注:在《Go导出标识符:那些鲜为人知的细节》一文中,对未导出类型的导出方法的调用还有详细说明。

小结:包级作用域,间接调用

Go方法名的作用域是包级的,但它需要通过接收者间接调用。这意味着:

  • 包内引用: 在包内,方法名需要通过其关联类型或该类型的变量来间接使用(方法表达式或方法值)。
  • 包内/包外调用: 必须通过接收者调用方法,不能像函数那样直接调用。
  • 包外调用条件: 只要方法名是导出的(首字母大写),并且能够获得接收者类型的实例(无论该类型是否导出,只要能获得实例),就可以在包外调用该方法。

理解Go 方法名“包级作用域,间接调用”的特性,对于编写清晰、可维护的Go代码至关重要。希望本文能够帮助你更深入地掌握这一概念。


Gopher部落知识星球在2025年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。并且,2025年将在星球首发“Go陷阱与缺陷”和“Go原理课”专栏!此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格6$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

Go导出标识符:那些鲜为人知的细节

本文永久链接 – https://tonybai.com/2025/01/23/the-hidden-details-of-go-exported-identifiers

前不久,在“Go+用户组”微信群里看到有开发者向七牛云老板许式伟反馈七牛云Go SDK中的某些类型没有导出,导致外部包无法使用的问题(如下图)

七牛开发人员迅速对该问题做出了“更正”,将问题反馈中涉及的类型saveasArgs和saveasReply改为了导出类型,即首字母大写:

不过,这看似寻常的问题反馈与修正却引发了我的一些思考。

我们大胆臆想一下:如果saveasReply类型的开发者是故意将saveasReply类型设置为非导出的呢?看一下“更正”之前的saveasReply代码:

type saveasReply struct {
    Fname       string `json:"fname"`
    PersistenId string `json:"persistentId,omitempty"`
    Bucket      string `json:"bucket"`
    Duration    int    `json:"duration"` // ms
}

有读者可能会问:那为什么还将saveasReply结构体的字段设置为导出字段呢?请注意每个字段后面的结构体标签(struct tag)。这显然是为了进行JSON 编解码,因为目前Go的encoding/json包仅会对导出字段进行编解码处理。

除了这个原因,原开发者可能还希望包的使用者能够访问这些导出字段,而又不想完全暴露该类型。我在此不对这种设计的合理性进行评价,而是想探讨这种做法是否可行。

我们对Go导出标识符的传统理解是:导出标识符(以大写字母开头的标识符)可以在包外被访问和使用,而非导出标识符(以小写字母开头的标识符)只能在定义它们的包内访问。这种机制帮助开发者控制类型和函数的可见性,确保内部实现细节不会被随意访问,从而增强封装性。

但实际上,Go的导出标识符机制是否允许在某些情况下,即使类型本身是非导出的,其导出字段依然可以被包外的代码访问呢?该类型的导出方法呢?这些关于Go导出标识符的细节可能是鲜少人探讨的,在这篇博文中,我们将系统地了解这些机制,希望能为各位小伙伴带来更深入的理解。

1. Go对导出标识符的定义

我们先回顾一下Go语言规范(go spec)对导出标识符的定义

我们通常使用英文字母来命名标识符,因此可以将上述定义中的第一句理解为:以大写英文字母开头的标识符即为导出标识符。

注:Unicode字符类别Lu(Uppercase Letter)包含所有的大写字母。这一类别不仅包括英文大写字母,还涵盖多种语言的大写字符,例如希腊字母、阿拉伯字母、希伯来字母和西里尔字母等。然而,我非常不建议大家使用非英文大写字母来表示导出标识符,因为这可能会挑战大家的认知习惯。

而第二句后半部分的描述往往被我们忽视或理解不够到位。一个类型的字段名和方法名可以是导出的,但并没有明确要求其关联的类型本身也必须是导出的

这为我们提供了进一步探索Go导出标识符细节的机会。接下来,我们就用具体示例看看是否可以在包外访问非导出类型的导出字段以及导出方法。

2. 在包外访问非导出类型的导出字段

我们首先定义一个带有导出字段的非导出类型myStruct,并将它放在mypackage里:

// go-exported-identifiers/field/mypackage/mypackage.go

package mypackage

type myStruct struct {
    Field string // 导出的字段
}

// NewMyStruct1是一个导出的函数,返回myStruct的指针
func NewMyStruct1(value string) *myStruct {
    return &myStruct{Field: value}
}

// NewMyStruct1是一个导出的函数,返回myStruct类型变量
func NewMyStruct2(value string) myStruct {
    return myStruct{Field: value}
}

然后我们在包外尝试访问myStruct类型的导出字段:

// go-exported-identifiers/field/main.go

package main

import (
    "demo/mypackage"
    "fmt"
)

func main() {
    // 通过导出的函数获取myStruct的指针
    ms1 := mypackage.NewMyStruct1("Hello1")

    // 尝试访问Field字段
    fmt.Println(ms1.Field) // Hello1

    // 通过导出的函数获取myStruct类型变量
    ms2 := mypackage.NewMyStruct1("Hello2")

    // 尝试访问Field字段
    fmt.Println(ms2.Field) // Hello2
}

在go-exported-identifiers/field目录下编译运行该示例:

$go run main.go
Hello1
Hello2

我们看到,无论是通过myStruct的指针还是实例副本,都可以成功访问其导出变量Field。这个示例的关键就是:我们使用了短变量声明直接通过调用myStruct的两个“构造函数(NewXXX)”得到了其指针(ms1)以及实例副本(ms2)。在这个过程中,我们没有在main包中显式使用mypackage.myStruct这个非导出类型。

采用类似的方案,我们接下来再看看是否可以在包外访问非导出类型的导出方法。

3. 在包外访问非导出类型的导出方法

我们为非导出类型添加两个导出方法M1和M2:

// go-exported-identifiers/method/mypackage/mypackage.go

package mypackage

import "fmt"

type myStruct struct {
    Field string // 导出的字段
}

// NewMyStruct1是一个导出的函数,返回myStruct的指针
func NewMyStruct1(value string) *myStruct {
    return &myStruct{Field: value}
}

// NewMyStruct1是一个导出的函数,返回myStruct类型变量
func NewMyStruct2(value string) myStruct {
    return myStruct{Field: value}
}

func (m *myStruct) M1() {
    fmt.Println("invoke *myStruct's M1")
}

func (m myStruct) M2() {
    fmt.Println("invoke myStruct's M2")
}

然后,试着在外部包中调用M1和M2方法:

// go-exported-identifiers/method/main.go

package main

import (
    "demo/mypackage"
)

func main() {
    // 通过导出的函数获取myStruct的指针
    ms1 := mypackage.NewMyStruct1("Hello1")
    ms1.M1()
    ms1.M2()

    // 通过导出的函数获取myStruct类型变量
    ms2 := mypackage.NewMyStruct2("Hello2")
    ms2.M1()
    ms2.M2()
}

在go-exported-identifiers/method目录下编译运行这个示例:

$go run main.go
invoke *myStruct's M1
invoke myStruct's M2
invoke *myStruct's M1
invoke myStruct's M2

我们看到,无论是通过非导出类型的指针,还是通过非导出类型的变量复本都可以成功调用非导出类型的导出方法。

提及方法,我们会顺带想到接口,非导出类型是否可以实现某个外部包定义的接口呢?我们继续往下看。

4. 非导出类型实现某个外部包的接口

在Go中,如果某个类型T实现了某个接口类型I的方法集合中的所有方法,我们就说T实现了I,T的实例可以赋值给I类型的接口变量。

在下面示例中,我们看看非导出类型是否可以实现某个外部包的接口。

在这个示例中mypackage包中的内容与上面示例一致,主要改动的是main.go,我们来看一下:

// go-exported-identifiers/interface/main.go

package main

import (
    "demo/mypackage"
)

// 定义一个导出的接口
type MyInterface interface {
    M1()
    M2()
}

func main() {
    var mi MyInterface

    // 通过导出的函数获取myStruct的指针
    ms1 := mypackage.NewMyStruct1("Hello1")
    mi = ms1
    mi.M1()
    mi.M2()

    // 通过导出的函数获取myStruct类型变量
    // ms2 := mypackage.NewMyStruct2("Hello2")
    // mi = ms2 // compile error: mypackage.myStruct does not implement MyInterface
    // ms2.M1()
    // ms2.M2()
}

在这个main.go中,我们定义了一个接口MyInterface,它的方法集合中有两个方法M1和M2。根据类型方法集合的判定规则,*myStruct类型实现了MyInterface的所有方法,而myStruct类型则不满足,没有实现M1方法,我们在go-exported-identifiers/interface目录下编译运行这个示例,看看是否与我们预期的一致:

$go run main.go
invoke *myStruct's M1
invoke myStruct's M2

如果我们去掉上面代码中对ms2的注释,那么将得到Compiler error: mypackage.myStruct does not implement MyInterface。

注:关于一个类型的方法集合的判定规则,可以参考我的极客时间《Go语言第一课》专栏的第25讲

接下来,我们再来考虑一个场景,即非导出类型用作嵌入字段的情况,我们要看看该非导出类型的导出方法和导出字段是否会promote到外部类型中。

5. 非导出类型用作嵌入字段

我们改造一下示例,新版的带有嵌入字段的结构见下面mypackage包的代码:

// go-exported-identifiers/embedded_field/mypackage/mypackage.go

package mypackage

import "fmt"

type nonExported struct {
    Field string // 导出的字段
}

// Exported 是导出的结构体,嵌入了nonExported
type Exported struct {
    nonExported // 嵌入非导出结构体
}

func NewExported(value string) *Exported {
    return &Exported{
        nonExported: nonExported{
            Field: value,
        },
    }
}

// M1是导出的函数
func (n *nonExported) M1() {
    fmt.Println("invoke nonExported's M1")
}

// M2是导出的函数
func (e *Exported) M2() {
    fmt.Println("invoke Exported's M2")
}

这里新增一个导出类型Exported,它嵌入了一个非导出类型nonExported,后者拥有导出字段Field,以及两个导出方法M1。我们也Exported类型定义了一个方法M2。

下面我们再来看看main.go中是如何使用Exported的:

// go-exported-identifiers/embedded_field/main.go

package main

import (
    "demo/mypackage"
    "fmt"
)

// 定义一个导出的接口
type MyInterface interface {
    M1()
    M2()
}

func main() {
    ms := mypackage.NewExported("Hello")
    fmt.Println(ms.Field) // 访问嵌入的非导出结构体的导出字段

    ms.M1() // 访问嵌入的非导出结构体的导出方法

    var mi MyInterface = ms
    mi.M1()
    mi.M2()
}

在go-exported-identifiers/embedded_field目录下编译运行这个示例:

$go run main.go
Hello
invoke nonExported's M1
invoke nonExported's M1
invoke Exported's M2

我们看到,作为嵌入字段的非导出类型的导出字段与方法会被自动promote到外部类型中,通过外部类型的变量可以直接访问这些字段以及调用这些导出方法。这些方法还可以作为外部类型方法集中的一员,来作为满足特定接口类型(如上面代码中的MyInterface)的条件。

Go 1.18增加了泛型支持,那么非导出类型是否可以用作泛型函数和泛型类型的类型实参呢?最后我们来看看这个细节。

6. 非导出类型用作泛型函数和泛型类型的类型实参

和前面一样,我们先定义用于该示例的带有导出字段和导出方法的非导出类型:

// go-exported-identifiers/generics/mypackage/mypackage.go

package mypackage

import "fmt"

// 定义一个非导出的结构体
type nonExported struct {
    Field string
}

// 导出的方法
func (n *nonExported) M1() {
    fmt.Println("invoke nonExported's M1")
}

func (n *nonExported) M2() {
    fmt.Println("invoke nonExported's M2")
}

// 导出的函数,用于创建非导出类型的实例
func NewNonExported(value string) *nonExported {
    return &nonExported{Field: value}
}

现在我们将其用于泛型函数,下面定义了泛型函数UseNonExportedAsTypeArgument,它的类型参数使用MyInterface作为约束,而上面的nonExported显然满足该约束,我们通过构造函数NewNonExported获得非导出类型的实例,然后将其传递给UseNonExportedAsTypeArgument,Go会通过泛型的类型参数自动推导机制推断出类型实参的类型:

// go-exported-identifiers/generics/main.go

package main

import (
    "demo/mypackage"
)

// 定义一个用作约束的接口
type MyInterface interface {
    M1()
    M2()
}

func UseNonExportedAsTypeArgument[T MyInterface](item T) {
    item.M1()
    item.M2()
}

// 定义一个带有泛型参数的新类型
type GenericType[T MyInterface] struct {
    Item T
}

func NewGenericType[T MyInterface](item T) GenericType[T] {
    return GenericType[T]{Item: item}
}

func main() {
    // 创建非导出类型的实例
    n := mypackage.NewNonExported("Hello")

    // 调用泛型函数,传入实现了MyInterface的非导出类型
    UseNonExportedAsTypeArgument(n) // ok

    // g := GenericType{Item: n} // compiler error: cannot use generic type GenericType[T MyInterface] without instantiation
    g := NewGenericType(n)
    g.Item.M1()
}

但由于目前Go泛型还不支持对泛型类型的类型参数的自动推导,所以直接通过g := GenericType{Item: n}来初始化一个泛型类型变量将导致编译错误!我们需要借助泛型函数的推导机制将非导出类型与泛型类型进行结合,参见上述示例中的NewGenericType函数,通过泛型函数支持的类型参数的自动推导间接获得GenericType的类型实参。在go-exported-identifiers/generics目录下编译运行这个示例,便可得到我们预期的结果:

$go run main.go
invoke nonExported's M1
invoke nonExported's M2
invoke nonExported's M1

7. 非导出类型使用导出字段以及导出方法的用途

前面的诸多示例证明了:即使类型本身是非导出的,但其内部的导出字段以及它的导出方法依然可以在外部包中使用,并且在实现接口、嵌入字段、泛型等使用场景下均有效。

到这里,你可能会提出这样一个问题:会有Go开发者使用非导出类型结合导出字段或方法的设计吗

其实这种还是很常见的,在Go标准库中就有不少,只不过它们更多是包内使用,类似于非导出类型xxxImpl和它的Wrapper类型XXX的关系,或是xxxImpl或嵌入到XXX中,就像这样:

// 包内实现
type xxxImpl struct {  // 非导出的实现类型
    // 内部字段
}

// 导出的包装类型
type XXX struct {
    impl *xxxImpl  // 包含实现类型
    // 其他字段
}

// 或者通过嵌入方式
type XXX struct {
    *xxxImpl  // 嵌入实现类型
    // 其他字段
}

但也有一些可以包外使用的,比如实现了某个接口,并通过接口值返回,提供给外部使用,例如下面的valueCtx,它实现了Context接口,并通过WithValue返回,供调用WithValue的外部包使用:

//$GOROOT/src/context/context.go

func WithValue(parent Context, key, val any) Context {  // 构造函数,实现接口
    if parent == nil {
        panic("cannot create context from nil parent")
    }
    if key == nil {
        panic("nil key")
    }
    if !reflectlite.TypeOf(key).Comparable() {
        panic("key is not comparable")
    }
    return &valueCtx{parent, key, val}
}

// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
    Context
    key, val any
}

func (c *valueCtx) Value(key any) any {
    if c.key == key {
        return c.val
    }
    return value(c.Context, key)
}

这么做的目的是什么呢?大约有如下几点:

  • 隐藏实现细节

非导出类型的主要作用是防止外部直接使用和依赖其内部实现细节。通过限制类型的直接使用,库作者可以保持实现的灵活性,随时调整或重构类型的内部逻辑,而无需担心破坏外部调用代码; 还可以避免暴露多余的API,使库的接口更加简洁。

  • 控制实例的创建和管理

通过非导出类型,开发者还可以确保外部代码无法直接实例化类型,而必须通过导出的构造函数或工厂函数,就像前面举的示例那样。这种模式可以保证对象始终以特定的方式初始化,避免错误使用。同时,它还可以用来实现更复杂的初始化逻辑,如依赖注入或资源管理。

  • 在接口实现中的作用

非导出类型可以用来实现导出的接口,从而将接口的实现细节完全隐藏。对于用户来说,只需要关心接口的定义,而无需关注其实现。

8. 小结

本文探讨了Go语言中的导出标识符及其相关细节,特别是非导出类型如何与其导出字段和导出方法结合使用。

尽管某些类型是非导出的,其内部的导出字段和方法依然可以在包外访问。此外,非导出类型在实现接口、嵌入字段和泛型中也展现出良好的应用。这种设计不仅促进了封装和接口实现的灵活性,还允许开发者通过构造函数返回非导出类型的实例,从而有效控制实例的创建与管理。这种方式帮助隐藏实现细节,简化外部接口,使得代码结构更加清晰。

本文涉及的源码可以在这里下载。


Gopher部落知识星球在2025年将继续致力于打造一个高品质的Go语言学习和交流平台。我们将继续提供优质的Go技术文章首发和阅读体验。并且,2025年将在星球首发“Go陷阱与缺陷”和“Go原理课”专栏!此外,我们还会加强星友之间的交流和互动。欢迎大家踊跃提问,分享心得,讨论技术。我会在第一时间进行解答和交流。我衷心希望Gopher部落可以成为大家学习、进步、交流的港湾
。让我相聚在Gopher部落,享受coding的快乐! 欢迎大家踊跃加入!

img{512x368}
img{512x368}

img{512x368}
img{512x368}

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻) – https://gopherdaily.tonybai.com

我的联系方式:

  • 微博(暂不可用):https://weibo.com/bigwhite20xx
  • 微博2:https://weibo.com/u/6484441286
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • Gopher Daily归档 – https://github.com/bigwhite/gopherdaily
  • Gopher Daily Feed订阅 – https://gopherdaily.tonybai.com/feed

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



Statcounter View My Stats