标签 Kubernetes 下的文章

Rancher使用入门

上个月末,Rancher Labs在其官方博客上宣布了 Rancher 1.0正式版本发布。 这是继Apache MesosGoogle Kubernetes以及Docker 原生 Swarm 之后,又一个可用于Production环境中的容器管理和服务编排工具,而Rancher恰似这个领域的最后一张拼图(请原谅我的孤陋寡闻,如 果有其他 厂商在做这方面产品,请在评论中留言告诉我)。从Rancher Labs的官方about中我们可以看到:Rancher Labs致力于为DevOps team打造一个最好的容器管理平台,让容器的部署和管理变得更加Easy。

本文将带大家与Rancher来个亲密接触,直观的体会一下Rancher的入门级使用方法。

注意:由于Rancher还在active development中,本文仅适用于刚刚发布的v1.0.0版本,包括:

rancher/server:v1.0.0
rancher/agent:v0.11.0
rancher/agent-instance:v0.8.1
rancher-compose-v0.7.3

后续版本演进可能会导致本文中某些操作不再适用或某些UI元素发生变化。

零、实验环境

这里继续使用之前文章中的两个Ubuntu 14.04主机环境(kernel版本 >= 3.16.7),Docker 1.9.1+。

其中:

rancher server:
    10.10.126.101

rancher agents:
    10.10.126.101
    10.10.105.71
    10.10.105.72

一、搭建单节点Rancher Server

Rancher的各种容器管理理念均架构在由Rancher server和rancher agent构建的Infrastructure之上。Rancher server是Rancher的核心,其地位就类似于k8s、Docker swarm或mesos中的master,提供核心容器管理服务以及API服务。作为正式版发布的Rancher v1.0.0支持HA(high available)的多节点rancher server集群,不过Install起来也的确复杂些,依赖的第三方组件也较多,什么MySQLRedisZooKeeper等统统都要额外部署。由于是入门,这里就偷个赖儿,我们就搭建一个单节点的Rancher Server。

Rancher的一个设计理念是所有组件都Containerized(容器化),更有甚者Rancher Labs的另外一个产品RancherOS(地位类似于CoreOS,一款专门为运行容器而设计的Linux发行版)中所有系统服务都是 Dockerized的,这里的Rancher Server也不例外,极大的方便了我们的Install。

下面我们就在126.101 host上安装一个Rancher server。

首先,我们将rancher/server image pull到local,这个image size很大,需要耐心等待一段时间,即便是使用国内容器云厂商提供的加速器:

$ docker pull rancher/server
... ...

$ docker images
REPOSITORY          TAG                 IMAGE ID            CREATED             VIRTUAL SIZE
rancher/server      latest              26bce58807d1        22 hours ago        775.9 MB

接下来,启动rancher server:

$ docker run -d --restart=always -p 8080:8080 rancher/server
d8ce1654ff9f1d056d7cdc9216cf19173d85037bf23be44f802d627eabc8e607

$ docker ps
CONTAINER ID        IMAGE               COMMAND                  CREATED             STATUS              PORTS                              NAMES
d8ce1654ff9f        rancher/server      "/usr/bin/s6-svscan /"   12 seconds ago      Up 8 seconds        3306/tcp, 0.0.0.0:8080->8080/tcp   agitated_ardinghelli

映射的8080端口既服务于Rancher UI,也是Rancher API的服务端口。用浏览器打开http://10.10.126.101:8080,如果你看到如下页面,则说明你的Rancher Server搭建成功了:

img{512x368}

Rancher image size之所以大,是因为其内部安装和运行了诸多服务程序,我们来hack一下:

$ docker exec d8ce1654ff9f ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.0    188     4 ?        Ss   03:50   0:00 /usr/bin/s6-svscan /service
root         5  0.0  0.0    188     4 ?        S    03:50   0:00 s6-supervise cattle
root         6  0.0  0.0    188     4 ?        S    03:50   0:00 s6-supervise mysql
root         7  6.5 18.1 3808308 710284 ?      Ssl  03:50   1:05 java -Xms128m -Xmx1024m -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/var/lib/cattle/logs -Dlogback.bootstrap.level=WARN -cp /usr/share/cattle/9283c067b6f96f5ff1e38fb0ddfd8649:/usr/share/cattle/9283c067b6f96f5ff1e38fb0ddfd8649/etc/cattle io.cattle.platform.launcher.Main
mysql       28  0.4  2.3 2135756 92164 ?       Ssl  03:50   0:04 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib/mysql/plugin --user=mysql --log-error=/var/log/mysql/error.log --pid-file=/var/run/mysqld/mysqld.pid --socket=/var/run/mysqld/mysqld.sock --port=3306
root       170  0.1  0.2 264632 11552 ?        Sl   03:52   0:01 websocket-proxy
root       179  0.0  0.2 274668  8632 ?        Sl   03:52   0:00 rancher-catalog-service -catalogUrl library=https://github.com/rancher/rancher-catalog.git,community=https://github.com/rancher/community-catalog.git -refreshInterval 300
root       180  0.0  0.3 254044 12652 ?        Sl   03:52   0:00 rancher-compose-executor
root       181  0.5  0.4 1579572 16692 ?       Sl   03:52   0:05 go-machine-service
root       610  0.0  0.0  14988  2576 ?        S    04:06   0:00 git -C ./DATA/library pull -r origin master
root       611  0.0  0.0   4448  1696 ?        S    04:06   0:00 /bin/sh /usr/lib/git-core/git-pull -r origin master
root       640  0.0  0.0  15024  3020 ?        S    04:06   0:00 git fetch --update-head-ok origin master
root       641  3.0  0.1 161180  6028 ?        S    04:06   0:00 git-remote-https origin https://github.com/rancher/rancher-catalog.git
root       643  0.0  0.0  15572  2120 ?        Rs   04:07   0:00 ps aux

可以看出里面有mysql、cattle、go-machine-service、rancher-compose-executor以及 websocket-proxy等。通过PID我们可以看出/usr/bin/s6-svscan是容器的第一个启动进程,/service这个 路径作为其命令行参数,估计这是一个类似于supervisord的进程控制程 序,由其 负责启动和管理Rancher server的两个重要服务:MySQL和cattle。注:单节点rancher server的数据都保存在其内部的MySQL中,而多节点rancher server则采用一个外部的MySQL存储数据。

二、设置Account

第一次启动Rancher后,Rancher的UI是没有访问控制的,所有人都可以访问这个地址并控制一切。

切换到API菜单,可以看到当前默认Environment(后续会详细说这个概念)的API访问endpoint是: http://10.10.126.101:8080/v1/projects/1a5

我们可以用curl来访问一下这个url:

$ curl http://10.10.126.101:8080/v1/projects/1a5
{"id":"1a5","type":"project","links":{"self":"http://10.10.126.101:8080/v1/projects/1a5","agents":"http://10.10.126.101:8080/v1/projects/1a5/agents","auditLogs":"http://10.10.126.101:8080/v1/projects/1a5/auditlogs","certificates":"http://10.10.126.101:8080/v1/projects/1a5/certificates",
... ...
"swarm":false,"transitioning":"no","transitioningMessage":null,"transitioningProgress":null,"uuid":"adminProject"}

返回超过一屏的信息,这同时也说明Rancher Server在正常工作。

在正式感受Rancher功能前,我们来给Rancher添加一个Account,相信这也是所有要在生产环境使用Rancher的朋友必须要做 的事情。

在Rancher UI中,也许你已经注意到了,在第一行菜单栏中,“ADMIN”菜单项右侧有一个红色的“!”,这也是在提醒你Rancher当前未设防。我们点击 “ADMIN”,选择出现的二级菜单中的”ACCOUNTS”菜单项,我们将看到如下页面:

img{512x368}

添加权限控制,需要在【”ADMIN” -> “ACCESS CONTROL”】中。Rancher支持四种权限控制方案,分别是:Active Directory、GitHub、Local Auth和OpenLDAP。我们使用最简单的Local Auth,即设置一个用户名和密码,然后点击“Enable Local Auth”按钮即可。然后我们再回到”ACCOUNTS”页面:

img{512x368}

可以看到我们已经建立了一个新的Admin权限的账号:tonybai。当前的登录账号也换成了tonybai。

这时如果你再用API访问当前默认环境的EndPoint的话,结果就会变成下面这样:

 curl http://10.10.126.101:8080/v1/projects/1a5
{"id":"b052db07-d58e-45bf-872e-06ced8bcc4e1","type":"error","links":{},"actions":{},"status":401,"code":"Unauthorized","message":"Unauthorized","detail":null}

提示错误:Unauthorized

这时如果还想用API访问,就需要为该环境添加一个API Key了。在”API”页面下,点击 “Add Environment API Key”按钮,在弹出的窗口中输入key的name:tonybai-default-env-key,点击”Create”创建:

img{512x368}

Rancher会随机生成一对access key和secret key,即user和password,使用它们即可通过API访问该环境,注意:secret key只显示这么一次,你需要手工将其记录下来,否则一旦关闭这个窗口,就无法再找到secret key的内容了,只能再重新生成一对。

$curl -u 5569108BE7489DEE47A5:76Yw5v63ag8SdKYQDYgVok7Co6HRncU7bUCEShXh http://10.10.126.101:8080/v1/projects/1a5
{"id":"1a5","type":"project","links":{"self":"http://10.10.126.101:8080/v1/projects/1a5","agents":"http://10.10.126.101:8080/v1/projects/1a5/agents","auditLogs":"http://10.10.126.101:8080/v1/projects/1a5/auditlogs","certificates":"http://10.10.126.101:8080/v1/projects/1a5/certificates",
... ...
"swarm":false,"transitioning":"no","transitioningMessage":null,"transitioningProgress":null,"uuid":"adminProject"}

三、Environment

前面说过,Rancher中有个概念是Environment。在Rancher UI的右上角,我们可以看到”Default Enviromnet”字样,点击向下箭头,打开下拉菜单,选择:“Manage Enviromnets”,可以看到当前的Enviroments列表:

img{512x368}

在这个页面,我们可以看到Rancher对Enviroments的诠释:

Rancher supports grouping resources into multiple environments. Each one gets its own set of services and infrastructure resources, and is owned by one or more GitHub users, teams or organizations.

For example, you might create separate "dev", "test", and "production" environments to keep things isolated from each other, and give "dev" access to your entire organization but restrict the "production" environment to a smaller team.

大致意思就是一个Environment就是一个resource group,每个Environment都有自己的服务和基础设施资源,并且通过Access Control来赋予每个Account访问该Environments的权限。Rancher Labs的一个目标就是为DevOps Team打造一个Easy的容器管理工具,因此在解释Environment术语时,还特地以DevOps Workflow来解释,比如建立dev、test、production environment,保证Environments间的隔离。下面的这幅图可能会更直观的展现出Environment在Rancher中的“角 色”:

img{512x368}

Rancher Server建立后,会建立一个”Default” Environment,我们可以Edit一下这个Environment的信息,可以修改它的Name、Container Orchestration引擎(cattle、k8s和swarm,默认cattle)以及Access Control,我们看到tonybai的用户是这个Environment的Owner,当然我们也可以修改tonybai这个用户的Role,比如 member、readonly或restricted。这里我们将Default的名字改为”dev”。

我们再添加一个Environment “test”,引擎用cattle:

img{512x368}

我们看到dev environment后面有一个”对号”,说明dev environment是当前active environment,所有操作均针对该environment,你当然可以通过点击每个environment列表后面的切换图标来切换active environment。

到目前为止,虽然Rancher Server建立ok了,environment这个逻辑实体也建立了,但dev environment仍处于“无米下炊”的状态。因为除了Rancher自身外,该Environment下没有任何Resources(主机、存储 等)可供使用(比如创建Containers)。

我们来为dev environment添加两个主机资源:10.10.126.101和10.10.105.72。在”INFRASTRUCTURE”-> HOSTS中点击”Add Host”按钮添加主机资源。Rancher支持多种主机资源,包括Custom(本地自定义)、Amazon EC2Azure 以及 DigitalOcean 等。

我们以本地Host资源(选择Custom)为例,在添加Host页面中,我们输入第一个Host的IP,Rancher UI会生成下面这段命令行:

sudo docker run -e CATTLE_AGENT_IP='10.10.126.101'  -d --privileged -v /var/run/docker.sock:/var/run/docker.sock -v /var/lib/rancher:/var/lib/rancher rancher/agent:v0.11.0 http://10.10.126.101:8080/v1/scripts/B0C997705263867F519F:1460440800000:1Rd9TyJIS2Fnae5lcjsvnIRDJE

我们需要手动在10.10.126.101这个Host上执行上述命令行:

$ sudo docker run -e CATTLE_AGENT_IP='10.10.126.101'  -d --privileged -v /var/run/docker.sock:/var/run/docker.sock -v /var/lib/rancher:/var/lib/rancher rancher/agent:v0.11.0 http://10.10.126.101:8080/v1/scripts/B0C997705263867F519F:1460440800000:1Rd9TyJIS2Fnae5lcjsvnIRDJE
2d05764d42c52b1449021766a5c0e104098605cd7d53b632571c46f1e84f2a4b

$ docker ps
CONTAINER ID        IMAGE                   COMMAND                  CREATED             STATUS              PORTS                              NAMES
2d05764d42c5        rancher/agent:v0.11.0   "/run.sh http://10.10"   27 seconds ago      Up 22 seconds                                          big_bhabha
d8ce1654ff9f        rancher/server          "/usr/bin/s6-svscan /"   4 days ago          Up 4 days           0.0.0.0:8080->8080/tcp, 3306/tcp   agitated_ardinghelli

等待一会儿,我们刷新一下”INFRASTRUCTURE”-> HOSTS页面,我们会看到10.10.126.101这个Host被加入到dev environment的Infrastructure中了:

img{512x368}

按照同样的步骤,我们再将10.10.105.72加入到Infrastructure中:

$ sudo docker run -e CATTLE_AGENT_IP='10.10.105.72'  -d --privileged -v /var/run/docker.sock:/var/run/docker.sock -v /var/lib/rancher:/var/lib/rancher rancher/agent:v0.11.0 http://10.10.126.101:8080/v1/scripts/B0C997705263867F519F:1460440800000:1Rd9TyJIS2Fnae5lcjsvnIRDJE
e1f335c665853348810aef8736c67f610ae7f4c93e4b6265361b95a354af434a

$docker ps
CONTAINER ID        IMAGE                   COMMAND                  CREATED             STATUS                  PORTS               NAMES
2e212fda35d3        rancher/agent:v0.11.0   "/run.sh inspect-host"   23 seconds ago      Up Less than a second                       trusting_noyce
e1f335c66585        rancher/agent:v0.11.0   "/run.sh http://10.10"   39 seconds ago      Up 23 seconds                               clever_bohr

我们注意到:上面的命令启动了两个Container,image虽然都是rancher/agent:v0.11.0,但执行的命令行参数略有 不同(其中一个Container为临时Container,一段时间后会自动退出)。片刻,我们就在Hosts下看到了两个Host资源了。

我们点击Rancher UI右上角的下拉箭头,将当前Environment从dev切换到test,我们发现test Environment下的Hosts又为空了(不过此处似乎有个bug,在我的Mac Chrome浏览器中,等的时间足够久后,似乎test environment把dev enviroment的Host资源显示出来了,很怪异)。可以看出Infra是Environment相关的。我们在test环境下增加一个 10.10.105.71 host:

$ sudo docker run -e CATTLE_AGENT_IP='10.10.105.71'  -d --privileged -v /var/run/docker.sock:/var/run/docker.sock -v /var/lib/rancher:/var/lib/rancher rancher/agent:v0.11.0 http://10.10.126.101:8080/v1/scripts/A63B9C5F8066E29377C3:1460448000000:UbPcmDXOqoI6mls6e75Qp17QR0
4a5f9e13615e562636cd515763e293449607a8b2d827d2599f80f9ad8f16aa2d

$ docker ps
CONTAINER ID        IMAGE                   COMMAND                  CREATED              STATUS                  PORTS                    NAMES
d101095c7709        rancher/agent:v0.11.0   "/run.sh run"            6 seconds ago        Up Less than a second                            rancher-agent
4a5f9e13615e        rancher/agent:v0.11.0   "/run.sh http://10.10"   About a minute ago   Up About a minute                                evil_khorana

到这里,test Environment下也有了一个Host了,从Rancher UI页面可以看到。

四、Stack

Rancher UI的左上角APPLICATIONS下面有一个“STACKS”的二级菜单项。Rancher官方docs对Stack的解释是:”A Rancher stack mirrors the same concept as a docker-compose project. It represents a group of services that make up a typical application or workload.”。同时Rancher UI上关于Service的解释如下:“A service is simply a group of containers created from the same Docker image but extends Docker’s “link” concept to leverage Rancher’s lightweight distributed DNS service for service discovery”。从这两段描述中,我们大致可以推出如下关系:

A Stack <=> An Application <=> A group of services(由类docker-compose的工具rancher-compose管理)

下面这幅图直观描述了user account, environment与stacks之间的关系:

img{512x368}

我们在dev environment下添加一个Service。Rancher UI “APPLICATIONS” -> “STACKS”下面支持两种添加Service的方式,一种是手工添加,一种是从Catalog添加。Catalog类似于一个Rancher App Market,里面有Rancher预定义好的service template。我们这次采用手工添加的方式,便于控制。我们基于nginx:1.8-alpine创建单一实例的service: nginx-alpine-service,端口映射:10086->80。其他采用默认配置。添加Service时,并没有位置让你为Stack 起名,但添加一个Service后,我们会看到当前Stack是Default Stack,你可以修改Stack name,这里改为nginx-app-stack。启动后,我们看到第一个nginx-alpine-service的Container运行在 105.72上。

img{512x368}

点击stack名字,可以查看stack的详细信息:

img{512x368}

点击”nginx-alpine-service”,进入到service属性页面,我们将nginx-alpine-service的 Scale +1。Rancher会自动在Resource host上根据默认调度策略,运行一个新的基于nginx image的Container。我们可以看到这个新Container运行在126.101上,这样dev Environmnet中的两个Host上就各自运行了一个nginx-alpine-service的Container:

img{512x368}

nginx-alpine-service的两个容器分别为:

 Running    Default_nginx-alpine-app_1  10.42.96.91 10.10.105.72  nginx:1.8-alpine
 Running    nginx-app-stack_nginx-alpine-service_1  10.42.164.174   10.10.126.101 nginx:1.8-alpine

Rancher内置“Internal DNS Services”,同一Stack下的Container可以通过Container name相互ping通。Rancher以Environment为界限,每个Environment下的Container name都是全局唯一的。

在10.10.105.72上,我们执行如下命令来ping 10.10.126.101上的容器:nginx-app-stack_nginx-alpine-service_1:

$ docker exec r-Default_nginx-alpine-app_1  ping -c 3 nginx-app-stack_nginx-alpine-service_1
PING nginx-app-stack_nginx-alpine-service_1 (10.42.164.174): 56 data bytes
64 bytes from 10.42.164.174: seq=0 ttl=62 time=0.729 ms
64 bytes from 10.42.164.174: seq=1 ttl=62 time=0.754 ms
64 bytes from 10.42.164.174: seq=2 ttl=62 time=0.657 ms

--- nginx-app-stack_nginx-alpine-service_1 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.657/0.713/0.754 ms

在10.10.126.101上,我们执行如下命令来ping 10.10.105.72上的容器:Default_nginx-alpine-app_1:

$ docker exec r-nginx-app-stack_nginx-alpine-service_1 ping -c 3 Default_nginx-alpine-app_1
PING Default_nginx-alpine-app_1 (10.42.96.91): 56 data bytes
64 bytes from 10.42.96.91: seq=0 ttl=62 time=0.640 ms
64 bytes from 10.42.96.91: seq=1 ttl=62 time=0.814 ms
64 bytes from 10.42.96.91: seq=2 ttl=62 time=0.902 ms

--- Default_nginx-alpine-app_1 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.640/0.785/0.902 ms

我们按照上述方法为nginx-app-stack再添加一个Service: redis-alpine-service,该service基于redis:alpine image,该service的Container被运行在105.72上了:

$ docker ps
CONTAINER ID        IMAGE                           COMMAND                  CREATED             STATUS              PORTS                                          NAMES
7246dce88ea6        redis:alpine                    "/entrypoint.sh redis"   3 minutes ago       Up 3 minutes        6379/tcp                                       r-nginx-app-stack_redis-service_1

我们来测试一下同一stack下,不同Service的互ping:

我们在redis-alpine-service的Container中来ping nginx-alpine-service,地址直接使用”nginx-alpine-service”这个service name即可:

$ docker exec r-nginx-app-stack_redis-service_1 ping -c 3 nginx-alpine-service
PING nginx-alpine-service (10.42.164.174): 56 data bytes
64 bytes from 10.42.164.174: seq=0 ttl=62 time=0.660 ms
64 bytes from 10.42.164.174: seq=1 ttl=62 time=0.634 ms
64 bytes from 10.42.164.174: seq=2 ttl=62 time=0.599 ms

--- nginx-alpine-service ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.599/0.631/0.660 ms

可以看到Rancher的Internal DNS Service将”nginx-alpine-service”这个service name解析为nginx-alpine-service的两个Container中的一个:10.42.164.174。

我们再添加一个Stack:memcached-app-stack,来看一下跨Stack的容器连通方法。ping之前我们需要为该Stack添加一个基于memcached:latest image的Service: memcached-service

10.10.105.72

$ docker ps
CONTAINER ID        IMAGE                           COMMAND                  CREATED             STATUS              PORTS                                          NAMES
184e8e8f448e        memcached:latest                "/entrypoint.sh memca"   24 seconds ago      Up 16 seconds       11211/tcp                                      r-memcached-app-stack_memcached-service_1

Rancher官方docs中明确说明:不同Stack间service互ping,需要采用“ service_name.stack_name”的地址格式,我们在memcached-app-stack中的“r-memcached-app-stack_memcached-service_1”容器里去ping nginx-app-stack中的nginx-alpine-service服务:

$ docker exec r-memcached-app-stack_memcached-service_1  ping -c 3 nginx-alpine-service.nginx-app-stack
PING nginx-alpine-service.nginx-app-stack (10.42.164.174): 56 data bytes
64 bytes from 10.42.164.174: icmp_seq=0 ttl=62 time=0.710 ms
92 bytes from 10.42.84.96: Redirect Host
64 bytes from 10.42.164.174: icmp_seq=1 ttl=62 time=2.543 ms
--- nginx-alpine-service.nginx-app-stack ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.710/1.627/2.543/0.917 ms

ping nginx-app-stack中的redis-alpine-service服务:

$ docker exec r-memcached-app-stack_memcached-service_1  ping -c 3 redis-alpine-service.nginx-app-stack
PING redis-alpine-service.nginx-app-stack (10.42.220.43): 56 data bytes
64 bytes from 10.42.220.43: icmp_seq=0 ttl=64 time=0.161 ms
64 bytes from 10.42.220.43: icmp_seq=1 ttl=64 time=0.050 ms
64 bytes from 10.42.220.43: icmp_seq=2 ttl=64 time=0.051 ms
--- redis-alpine-service.nginx-app-stack ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.050/0.087/0.161/0.052 ms

我们通过cat /etc/resolv.conf可以查看到Rancher内部DNS的地址:

$docker exec r-memcached-app-stack_memcached-service_1  cat /etc/resolv.conf
search memcached-app-stack.rancher.internal memcached-service.memcached-app-stack.rancher.internal rancher.internal
nameserver 169.254.169.250

五、Rancher Compose CLI

Rancher除了提供UI工具外,还提供了一个名为rancher-compose的CLI工具,用于在一个stack的范围内管理各个services。rancher-compose的灵感来源于docker-compose,兼容docker-compose的配置文件格式,并有自己的扩展。此外与docker-compose不同的是rancher-compose支持跨多主机管理。

在Rancher UI的右下角有一个Rancher-compose的下载链接,支持Linux,Windows和Mac。rancher-compose当前版本是0.7.3,下载后将其路径放到PATH环境变量里,验证一下运行是否ok:

$ rancher-compose -v
rancher-compose version v0.7.3

要管理某个stack下的Service,我们至少需要提供一个docker-compose.yml文件,这里针对memcached-app-stack下的memcached-service这个服务做一些操作,我们提供一个docker-compose.yml:

memcached-service:
  log_driver: ''
  tty: true
  log_opt: {}
  image: memcached:latest
  stdin_open: true

利用dev环境的api key和secret,rancher-compose可以实现与rancher的交互:

$ rancher-compose --url http://10.10.126.101:8080  --access-key 5569108BE7489DEE47A5 --secret-key 76Yw5v63ag8SdKYQDYgVok7Co6HRncU7bUCEShXh -p memcached-app-stack up
INFO[0000] Project [memcached-app-stack]: Starting project
INFO[0000] [0/1] [memcached-service]: Starting
INFO[0000] [1/1] [memcached-service]: Started
INFO[0000] Project [memcached-app-stack]: Project started

由于memcached-service已经存在并启动了相应Container,因此上面的命令实际上没有做任何改动。如果想看rancher-compose的执行细节,可以在rancher-compose后面加上–verbose命令行option,可以看到如下结果:

$ rancher-compose --verbose --url http://10.10.126.101:8080  --access-key 5569108BE7489DEE47A5 --secret-key 76Yw5v63ag8SdKYQDYgVok7Co6HRncU7bUCEShXh -p memcached-app-stack up
DEBU[0000] Environment Context from file : map[]
DEBU[0000] Opening compose file: docker-compose.yml
DEBU[0000] [0/0] [memcached-service]: Adding
DEBU[0000] Opening rancher-compose file: /home1/tonybai/rancher-compose.yml
DEBU[0000] Looking for stack memcached-app-stack
DEBU[0000] Found stack: memcached-app-stack(1e3)
DEBU[0000] Launching action for memcached-service
DEBU[0000] Project [memcached-app-stack]: Creating project
DEBU[0000] Finding service memcached-service
DEBU[0000] [0/1] [memcached-service]: Creating
DEBU[0000] Found service memcached-service
DEBU[0000] [0/1] [memcached-service]: Created
DEBU[0000] Project [memcached-app-stack]: Project created
INFO[0000] Project [memcached-app-stack]: Starting project
DEBU[0000] Launching action for memcached-service
DEBU[0000] Finding service memcached-service
INFO[0000] [0/1] [memcached-service]: Starting
DEBU[0000] Found service memcached-service
DEBU[0000] Finding service memcached-service
INFO[0000] [1/1] [memcached-service]: Started
INFO[0000] Project [memcached-app-stack]: Project started
DEBU[0000] Found service memcached-service
DEBU[0000] Finding service memcached-service
DEBU[0000] Found service memcached-service

我们再通过rancher-compose将memcached-service扩展到两个Container:

$ rancher-compose --url http://10.10.126.101:8080  --access-key 5569108BE7489DEE47A5 --secret-key 76Yw5v63ag8SdKYQDYgVok7Co6HRncU7bUCEShXh -p memcached-app-stack scale memcached-service=2
INFO[0000] Setting scale memcached-service=2...

几秒后,Rancher UI上memcached-service的Container数量就会从1变为2。在105.72上我们也可以看到两个memcached service container:

$ docker ps
CONTAINER ID        IMAGE                           COMMAND                  CREATED             STATUS              PORTS                                          NAMES
43c1443fec9f        memcached:latest                "/entrypoint.sh memca"   8 minutes ago       Up 7 minutes        11211/tcp                                      r-memcached-app-stack_memcached-service_2
184e8e8f448e        memcached:latest                "/entrypoint.sh memca"   14 hours ago        Up 13 hours         11211/tcp                                      r-memcached-app-stack_memcached-service_1

六、Service upgrade

Rancher支持stack中Service的upgrade管理。Rancher提供了两种Service Upgrade方法:In-service upgrade和Rolling upgrade(滚动升级)。rancher-compose同时支持两种升级方法,Rancher UI中针对stack下的service也有upgrade菜单选项,但UI提供的升级方式等同于in-service upgrade。

根据官方docs的说明,In-Service upgrade的默认upgrade步骤大致是:

1、停掉existing service的containers;
2、等待interval时间;
3、启动new version service的containers;
4、confirm upgrade or rollback。

而Rolling upgrade的升级步骤则是:

1、启动new service ;
2、将old service的scale降为0。

下面我们就每种method分别举一个例子说明一下(均采用rancher-compose工具)。

1、In-Service Upgrade

我们来将dev Environment下nginx-app-stack的nginx-alpine-service从nginx:1.8-alpine升级到nginx:1.9-alpine。为此我们需要给rancher-compose提供一份升级后的service的docker-compose.yml文件:

//docker-compose-nginx-service-upgrade.yml

nginx-alpine-service:
  ports:
  - 10086:80/tcp
  log_driver: ''
  labels:
    io.rancher.container.start_once: 'true'
  tty: true
  log_opt: {}
  image: nginx:1.9-alpine
  stdin_open: true

可以看到我们仅是将nginx-alpine-service的image从1.8-alpine改为1.9-alpine了。接下来我们就来升级nginx-alpine-service:

$ rancher-compose -f ./docker-compose-nginx-service-upgrade.yml --url http://10.10.126.101:8080  --access-key 5569108BE7489DEE47A5 --secret-key 76Yw5v63ag8SdKYQDYgVok7Co6HRncU7bUCEShXh -p nginx-app-stack up --upgrade nginx-alpine-service
INFO[0000] Project [nginx-app-stack]: Starting project
INFO[0000] [0/1] [nginx-alpine-service]: Starting
INFO[0000] Updating nginx-alpine-service
INFO[0001] Upgrading nginx-alpine-service
INFO[0056] [1/1] [nginx-alpine-service]: Started
INFO[0056] Project [nginx-app-stack]: Project started

我们通过Rancher UI可以看到upgrade执行在界面上体现出来的变化:

img{512x368}

Upgrade后,nginx-alpine-service的详细信息如下:

img{512x368}

我们来Confirm一下:

$ rancher-compose -f ./docker-compose-nginx-service-upgrade.yml  --url http://10.10.126.101:8080  --access-key 5569108BE7489DEE47A5 --secret-key 76Yw5v63ag8SYQDYgVok7Co6HRncU7bUCEShXh -p nginx-app-stack up --upgrade --confirm-upgrade
INFO[0000] Project [nginx-app-stack]: Starting project
INFO[0000] [0/1] [nginx-alpine-service]: Starting
INFO[0001] [1/1] [nginx-alpine-service]: Started
INFO[0001] Project [nginx-app-stack]: Project started
ERRO[0002] Failed to get logs for Default_nginx-alpine-app_1: Failed to find action: logs
ERRO[0002] Failed to get logs for nginx-app-stack_nginx-alpine-service_1: Failed to find action: logs

Confirm后,Rancher UI上的upgrade标记不见了,两个没有running的old版本 container也被cleanup了。confirm时出现两个ERRO,不知何原因,但问题不大,没有影响到confirm结果。

2、Rolling Upgrade

与In-service upgrade服务中断不同,Rolling Upgrade会先启动new Service,然后再逐渐将old service的scale减少到0。这种情况下,如果其他服务配合到位,该服务是不会中断的。

我们以nginx-app-stack中的redis-alpine-service为例,将其从redis:alpine版本升级到3.0.7-alpine。

$docker images
redis                                  3.0.7-alpine        633ba621a23f        6 weeks ago         15.95 MB
redis                                  alpine              633ba621a23f        6 weeks ago         15.95 MB
... ...

我们同样要为这次Roll upgrade准备一份docker-compose.yml文件:

//docker-compose-redis-service-upgrade.yml

redis-alpine-service:
redis-alpine-service-v1:
  log_driver: ''
  tty: true
  log_opt: {}
  image: redis:3.0.7-alpine
  stdin_open: true

执行Rolling upgrade命令:

$rancher-compose -f ./docker-compose-redis-service-upgrade.yml --url http://10.10.126.101:8080  --access-key 5569108BE7489DEE47A5 --secret-key 76Yw5v63ag8SdKYQDYgVok7Co6HRncU7bUCEShXh -p nginx-app-stack upgrade  redis-alpine-service redis-alpine-service-v1
INFO[0000] Creating service redis-alpine-service-v1
INFO[0005] Upgrading redis-alpine-service to redis-alpine-service-v1, scale=2

Rancher UI上出现如下状态变化:

img{512x368}

最终redis-alpine-service-v1启动,redis-alpine-service停止,但Rancher UI并未将其Remove,你可以手动删除,或者在上面命令中加入–cleanup自动删除old service。

七、参考资料

关于Rancher,网上可用的资料并不多,这里主要是参考了官方文档:

http://rancher.com/announcing-rancher-1-0-ga/

http://docs.rancher.com/rancher/quick-start-guide/

不过Rancher的Doc文字太多,少图,尤其是在Rancher UI介绍这块,基本无图,还待改善。

另外国内的云舒网络与 Rancher Labs是深度的合作伙伴,云舒公司博客上的内容也值得大家认真参考。

八、小结

相比于Mesos、Kubernetes和Swarm这三位欧巴,Rancher还最为年轻(至少从发布时间上来看是这样的),也刚刚起步。而这个领域的激烈的竞争也才刚刚开始。 谁能笑道最后,还待观察。

理解Docker跨多主机容器网络

Docker 1.9 出世前,跨多主机的容器通信方案大致有如下三种:

1、端口映射

将宿主机A的端口P映射到容器C的网络空间监听的端口P’上,仅提供四层及以上应用和服务使用。这样其他主机上的容器通过访问宿主机A的端口P实 现与容器C的通信。显然这个方案的应用场景很有局限。

2、将物理网卡桥接到虚拟网桥,使得容器与宿主机配置在同一网段下

在各个宿主机上都建立一个新虚拟网桥设备br0,将各自物理网卡eth0桥接br0上,eth0的IP地址赋给br0;同时修改Docker daemon的DOCKER_OPTS,设置-b=br0(替代docker0),并限制Container IP地址的分配范围为同物理段地址(–fixed-cidr)。重启各个主机的Docker Daemon后,处于与宿主机在同一网段的Docker容器就可以实现跨主机访问了。这个方案同样存在局限和扩展性差的问题:比如需将物理网段的地址划分 成小块,分布到各个主机上,防止IP冲突;子网划分依赖物理交换机设置;Docker容器的主机地址空间大小依赖物理网络划分等。

3、使用第三方的基于SDN的方案:比如 使用Open vSwitch – OVSCoreOSFlannel 等。

关于这些第三方方案的细节大家可以参考O’Reilly的《Docker Cookbook》 一书。

Docker在1.9版本中给大家带来了一种原生的跨多主机容器网络的解决方案,该方案的实质是采用了基于VXLAN 的覆盖网技术。方案的使用有一些前提条件:

1、Linux Kernel版本 >= 3.16;
2、需要一个外部Key-value Store(官方例子中使用的是consul);
3、各物理主机上的Docker Daemon需要一些特定的启动参数;
4、物理主机允许某些特定TCP/UDP端口可用。

本文将带着大家一起利用Docker 1.9.1创建一个跨多主机容器网络,并分析基于该网络的容器间通信原理。

一、实验环境建立

1、升级Linux Kernel

由于实验环境采用的是Ubuntu 14.04 server amd64,其kernel版本不能满足建立跨多主机容器网络要求,因此需要对内核版本进行升级。在Ubuntu的内核站点 下载3.16.7 utopic内核 的三个文件:

linux-headers-3.16.7-031607_3.16.7-031607.201410301735_all.deb
linux-image-3.16.7-031607-generic_3.16.7-031607.201410301735_amd64.deb
linux-headers-3.16.7-031607-generic_3.16.7-031607.201410301735_amd64.deb

在本地执行下面命令安装:

sudo dpkg -i linux-headers-3.16.7-*.deb linux-image-3.16.7-*.deb

需要注意的是:kernel mainline上的3.16.7内核没有带linux-image-extra,也就没有了aufs 的驱动,因此Docker Daemon将不支持默认的存储驱动:–storage-driver=aufs,我们需要将storage driver更换为devicemapper

内核升级是一个有风险的操作,并且是否能升级成功还要看点“运气”:我的两台刀片服务器,就是一台升级成功一台升级失败(一直报网卡问题)。

2、升级Docker到1.9.1版本

从国内下载Docker官方的安装包比较慢,这里利用daocloud.io提供的方法 快速安装Docker最新版本:

$ curl -sSL https://get.daocloud.io/docker | sh

3、拓扑

本次的跨多主机容器网络基于两台在不同子网网段内的物理机承载,基于物理机搭建,目的是简化后续网络通信原理分析。

拓扑图如下:

img{512x368}

二、跨多主机容器网络搭建

1、创建consul 服务

考虑到kv store在本文并非关键,仅作跨多主机容器网络创建启动的前提条件之用,因此仅用包含一个server节点的”cluster”。

参照拓扑图,我们在10.10.126.101上启动一个consul,关于consul集群以及服务注册、服务发现等细节可以参考我之前的一 篇文章

$./consul -d agent -server -bootstrap-expect 1 -data-dir ./data -node=master -bind=10.10.126.101 -client=0.0.0.0 &

2、修改Docker Daemon DOCKER_OPTS参数

前面提到过,通过Docker 1.9创建跨多主机容器网络需要重新配置每个主机节点上的Docker Daemon的启动参数:

ubuntu系统这个配置在/etc/default/docker下:

DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4  -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock --cluster-advertise eth0:2375 --cluster-store consul://10.10.126.101:8500/network --storage-driver=devicemapper"

这里多说几句:

-H(或–host)配置的是Docker client(包括本地和远程的client)与Docker Daemon的通信媒介,也是Docker REST api的服务端口。默认是/var/run/docker.sock(仅用于本地),当然也可以通过tcp协议通信以方便远程Client访问,就像上面 配置的那样。非加密网通信采用2375端口,而TLS加密连接则用2376端口。这两个端口已经申请在IANA注册并获批,变成了知名端口。-H可以配置多个,就像上面配置的那样。 unix socket便于本地docker client访问本地docker daemon;tcp端口则用于远程client访问。这样一来:docker pull ubuntu,走docker.sock;而docker -H 10.10.126.101:2375 pull ubuntu则走tcp socket。

–cluster-advertise 配置的是本Docker Daemon实例在cluster中的地址;
–cluster-store配置的是Cluster的分布式KV store的访问地址;

如果你之前手工修改过iptables的规则,建议重启Docker Daemon之前清理一下iptables规则:sudo iptables -t nat -F, sudo iptables -t filter -F等。

3、启动各节点上的Docker Daemon

以10.10.126.101为例:

$ sudo service docker start

$ ps -ef|grep docker
root      2069     1  0 Feb02 ?        00:01:41 /usr/bin/docker -d --dns 8.8.8.8 --dns 8.8.4.4 --storage-driver=devicemapper -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock --cluster-advertise eth0:2375 --cluster-store consul://10.10.126.101:8500/network

启动后iptables的nat, filter规则与单机Docker网络初始情况并无二致。

101节点上初始网络driver类型:
$docker network ls
NETWORK ID          NAME                DRIVER
47e57d6fdfe8        bridge              bridge
7c5715710e34        none                null
19cc2d0d76f7        host                host

4、创建overlay网络net1和net2

在101节点上,创建net1:

$ sudo docker network create -d overlay net1

在71节点上,创建net2:

$ sudo docker network create -d overlay net2

之后无论在71节点还是101节点,我们查看当前网络以及驱动类型都是如下结果:

$ docker network ls
NETWORK ID          NAME                DRIVER
283b96845cbe        net2                overlay
da3d1b5fcb8e        net1                overlay
00733ecf5065        bridge              bridge
71f3634bf562        none                null
7ff8b1007c09        host                host

此时,iptables规则也并无变化。

5、启动两个overlay net下的containers

我们分别在net1和net2下面启动两个container,每个节点上各种net1和net2的container各一个:

101:
sudo docker run -itd --name net1c1 --net net1 ubuntu:14.04
sudo docker run -itd --name net2c1 --net net2 ubuntu:14.04

71:
sudo docker run -itd --name net1c2 --net net1 ubuntu:14.04
sudo docker run -itd --name net2c2 --net net2 ubuntu:14.04

启动后,我们就得到如下网络信息(容器的ip地址可能与前面拓扑图中的不一致,每次容器启动ip地址都可能变化):

net1:
    net1c1 - 10.0.0.7
    net1c2 - 10.0.0.5

net2:
    net2c1 - 10.0.0.4
    net2c2 -  10.0.0.6

6、容器连通性

在net1c1中,我们来看看其到net1和net2的连通性:

root@021f14bf3924:/# ping net1c2
PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.
64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=0.670 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=0.387 ms
^C
--- 10.0.0.5 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.387/0.528/0.670/0.143 ms

root@021f14bf3924:/# ping 10.0.0.4
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
^C
--- 10.0.0.4 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1008ms

可见,net1中的容器是互通的,但net1和net2这两个overlay net之间是隔离的。

三、跨多主机容器网络通信原理

在“单机容器网络”一文中,我们说过容器间的通信以及容器到外部网络的通信是通过docker0网桥并结合iptables实现的。那么在上面已经建立的跨多主机容器网络里,容器的通信又是如何实现的呢?下面我们一起来理解一下。注意:有了单机容器网络基础后,这里很多网络细节就不再赘述了。

我们先来看看,在net1下的容器的网络配置,以101上的net1c1容器为例:

$ sudo docker attach net1c1

root@021f14bf3924:/# ip route
default via 172.19.0.1 dev eth1
10.0.0.0/24 dev eth0  proto kernel  scope link  src 10.0.0.4
172.19.0.0/16 dev eth1  proto kernel  scope link  src 172.19.0.2

root@021f14bf3924:/# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
8: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP group default
    link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff:ff
    inet 10.0.0.4/24 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::42:aff:fe00:4/64 scope link
       valid_lft forever preferred_lft forever
10: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
    link/ether 02:42:ac:13:00:02 brd ff:ff:ff:ff:ff:ff
    inet 172.19.0.2/16 scope global eth1
       valid_lft forever preferred_lft forever
    inet6 fe80::42:acff:fe13:2/64 scope link
       valid_lft forever preferred_lft forever

可以看出net1c1有两个网口:eth0(10.0.0.4)和eth1(172.19.0.2);从路由表来看,目的地址在172.19.0.0/16范围内的,走eth1;目的地址在10.0.0.0/8范围内的,走eth0。

我们跳出容器,回到主机网络范畴:

在101上:
$ ip a
... ...
5: docker_gwbridge: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
    link/ether 02:42:52:35:c9:fc brd ff:ff:ff:ff:ff:ff
    inet 172.19.0.1/16 scope global docker_gwbridge
       valid_lft forever preferred_lft forever
    inet6 fe80::42:52ff:fe35:c9fc/64 scope link
       valid_lft forever preferred_lft forever
6: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN
    link/ether 02:42:4b:70:68:9a brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.1/16 scope global docker0
       valid_lft forever preferred_lft forever
11: veth26f6db4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker_gwbridge state UP
    link/ether b2:32:d7:65:dc:b2 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::b032:d7ff:fe65:dcb2/64 scope link
       valid_lft forever preferred_lft forever
16: veth54881a0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker_gwbridge state UP
    link/ether 9e:45:fa:5f:a0:15 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::9c45:faff:fe5f:a015/64 scope link
       valid_lft forever preferred_lft forever

我们看到除了我们熟悉的docker0网桥外,还多出了一个docker_gwbridge网桥:

$ brctl show
bridge name    bridge id        STP enabled    interfaces
docker0        8000.02424b70689a    no
docker_gwbridge        8000.02425235c9fc    no        veth26f6db4
                            veth54881a0

并且从brctl的输出结果来看,两个veth都桥接在docker_gwbridge上,而不是docker0上;docker0在跨多主机容器网络中并没有被用到。docker_gwbridge替代了docker0,用来实现101上隶属于net1网络或net2网络中容器间的通信以及容器到外部的通信,其职能就和单机容器网络中docker0一样。

但位于不同host且隶属于net1的两个容器net1c1和net1c2间的通信显然并没有通过docker_gwbridge完成,从net1c1路由表来看,当net1c1 ping net1c2时,消息是通过eth0,即10.0.0.4这个ip出去的。从host的视角,net1c1的eth0似乎没有网络设备与之连接,那网络通信是如何完成的呢?

这一切是从创建network开始的。前面我们执行docker network create -d overlay net1来创建net1 overlay network,这个命令会创建一个新的network namespace。

我们知道每个容器都有自己的网络namespace,从容器的视角看其网络名字空间,我们能看到网络设备诸如:lo、eth0。这个eth0与主机网络名字空间中的vethx是一个虚拟网卡pair。overlay network也有自己的net ns,而overlay network的net ns与容器的net ns之间也有着一些网络设备对应关系。

我们先来查看一下network namespace的id。为了能利用iproute2工具对network ns进行管理,我们需要做如下操作:

$cd /var/run
$sudo ln -s /var/run/docker/netns netns

这是因为iproute2只能操作/var/run/netns下的net ns,而docker默认的net ns却放在/var/run/docker/netns下。上面的操作成功执行后,我们就可以通过ip命令查看和管理net ns了:

$ sudo ip netns
29170076ddf6
1-283b96845c
5ae976d9dc6a
1-da3d1b5fcb

我们看到在101主机上,有4个已经建立的net ns。我们大胆猜测一下,这四个net ns分别是两个container的net ns和两个overlay network的net ns。从netns的ID格式以及结合下面命令输出结果中的network id来看:

$ docker network ls
NETWORK ID          NAME                DRIVER
283b96845cbe        net2                overlay
da3d1b5fcb8e        net1                overlay
dd84da8e80bf        host                host
3295c22b22b8        docker_gwbridge     bridge
b96e2d8d4068        bridge              bridge
23749ee4292f        none                null

我们大致可以猜测出来:

1-da3d1b5fcb 是 net1的net ns;
1-283b96845c是 net2的net ns;
29170076ddf6和5ae976d9dc6a则分属于两个container的net ns。

由于我们以net1为例,因此下面我们就来分析net1的net ns – 1-da3d1b5fcb。通过ip命令我们可以得到如下结果:

$ sudo ip netns exec 1-da3d1b5fcb ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP
    link/ether 06:b0:c6:93:25:f3 brd ff:ff:ff:ff:ff:ff
    inet 10.0.0.1/24 scope global br0
       valid_lft forever preferred_lft forever
    inet6 fe80::b80a:bfff:fecc:a1e0/64 scope link
       valid_lft forever preferred_lft forever
7: vxlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br0 state UNKNOWN
    link/ether ea:0c:e0:bc:19:c5 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::e80c:e0ff:febc:19c5/64 scope link
       valid_lft forever preferred_lft forever
9: veth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue master br0 state UP
    link/ether 06:b0:c6:93:25:f3 brd ff:ff:ff:ff:ff:ff
    inet6 fe80::4b0:c6ff:fe93:25f3/64 scope link
       valid_lft forever preferred_lft forever

$ sudo ip netns exec 1-da3d1b5fcb ip route
10.0.0.0/24 dev br0  proto kernel  scope link  src 10.0.0.1

$ sudo ip netns exec 1-da3d1b5fcb brctl show
bridge name    bridge id        STP enabled    interfaces
br0        8000.06b0c69325f3    no        veth2
                            vxlan1

看到br0、veth2,我们心里终于有了底儿了。我们猜测net1c1容器中的eth0与veth2是一个veth pair,并桥接在br0上,通过ethtool查找veth序号的对应关系可以证实这点:

$ sudo docker attach net1c1
root@021f14bf3924:/# ethtool -S eth0
NIC statistics:
     peer_ifindex: 9

101主机:
$ sudo ip netns exec 1-da3d1b5fcb ip -d link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP
    link/ether 06:b0:c6:93:25:f3 brd ff:ff:ff:ff:ff:ff
    bridge
7: vxlan1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master br0 state UNKNOWN
    link/ether ea:0c:e0:bc:19:c5 brd ff:ff:ff:ff:ff:ff
    vxlan
9: veth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue master br0 state UP
    link/ether 06:b0:c6:93:25:f3 brd ff:ff:ff:ff:ff:ff
    veth

可以看到net1c1的eth0的pair peer index为9,正好与net ns 1-da3d1b5fcb中的veth2的序号一致。

那么vxlan1呢?注意这个vxlan1并非是veth设备,在ip -d link输出的信息中,它的设备类型为vxlan。前面说过Docker的跨多主机容器网络是基于vxlan的,这里的vxlan1就是net1这个overlay network的一个 VTEP,即VXLAN Tunnel End Point – VXLAN隧道端点。它是VXLAN网络的边缘设备。VXLAN的相关处理都在VTEP上进行,例如识别以太网数据帧所属的VXLAN、基于 VXLAN对数据帧进行二层转发、封装/解封装报文等。

至此,我们可以大致画出一幅跨多主机网络的原理图:

img{512x368}

如果在net1c1中ping net1c2,数据包的行走路径是怎样的呢?

1、net1c1(10.0.0.4)中ping net1c2(10.0.0.5),根据net1c1的路由表,数据包可通过直连网络到达net1c2。于是arp请求获取net1c2的MAC地址(在vxlan上的arp这里不详述了),得到mac地址后,封包,从eth0发出;
2、eth0桥接在net ns 1-da3d1b5fcb中的br0上,这个br0是个网桥(交换机)虚拟设备,需要将来自eth0的包转发出去,于是将包转给了vxlan设备;这个可以通过arp -a看到一些端倪:

$ sudo ip netns exec 1-da3d1b5fcb arp -a
? (10.0.0.5) at 02:42:0a:00:00:05 [ether] PERM on vxlan1

3、vxlan是个特殊设备,收到包后,由vxlan设备创建时注册的设备处理程序对包进行处理,即进行VXLAN封包(这期间会查询consul中存储的net1信息),将ICMP包整体作为UDP包的payload封装起来,并将UDP包通过宿主机的eth0发送出去。

4、71宿主机收到UDP包后,发现是VXLAN包,根据VXLAN包中的相关信息(比如Vxlan Network Identifier,VNI=256)找到vxlan设备,并转给该vxlan设备处理。vxlan设备的处理程序进行解包,并将UDP中的payload取出,整体通过br0转给veth口,net1c2从eth0收到ICMP数据包,回复icmp reply。

我们可以通过wireshark抓取相关vxlan包,高版本wireshark内置VXLAN协议分析器,可以直接识别和展示VXLAN包,这里安装的是2.0.1版本(注意:一些低版本wireshark不支持VXLAN分析器,比如1.6.7版本):

img{512x368}

关于VXLAN协议的细节,过于复杂,在后续的文章中maybe会有进一步理解。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats