标签 Java 下的文章

Go语言错误处理

近期闲暇用Go写一个lib,其中涉及到error处理的地方让我琢磨了许久。关于Go错误处理的资料和视频已有许多,Go authors们也在官方Articles和Blog上多次提到过一些Go error handling方面的一些tips和best practice,这里仅仅算是做个收集和小结,尽视野所及,如有不足,欢迎评论中补充。(10月因各种原因,没有耕博,月末来一发,希望未为晚矣 ^_^)

一、概述

Go是一门simple language,常拿出来鼓吹的就是作为gopher习以为傲的仅仅25个关键字^_^。因此Go的错误处理也一如既往的简单。我们知道C语言错误处理以返 回错误码(errno)为主流,目前企业第一语言Java则用try-catch- finally的处理方式来统一应对错误和异常(开发人员常常因分不清楚到底哪些是错误,哪些是异常而滥用该机制)。Go则继承了C,以返回值为错误处理的主要方式(辅以panic与recover应对runtime异常)。但与C不同的是,在Go的惯用法中,返回值不是整型等常用返回值类型,而是用了一个 error(interface类型)。

type interface error {
    Error() string
}

这也体现了Go哲学中的“正交”理念:error context与error类型的分离。无论error context是int、float还是string或是其他,统统用error作为返回值类型即可。

func yourFunction(parametersList) (..., error)
func (Receiver)yourMethod(parametersList) (..., error)

在Andrew Gerrand的“Error handling and Go“一文中,这位Go authors之一明确了error context是由error接口实现者supply的。在Go标准库中,Go提供了两种创建一个实现了error interface的类型的变量实例的方法:errors.New和fmt.Errorf:

errors.New("your first error code")
fmt.Errorf("error value is %d\n", errcode)

这两个方法实际上返回的是同一个实现了error interface的类型实例,这个unexported类型就是errorString。顾名思义,这个error type仅提供了一个string的context!

//$GOROOT/srcerrors/errors.go

type errorString struct {
    s string
}

func (e *errorString) Error() string {
    return e.s
}

这两个方法也基本满足了大部分日常学习和开发中代码中的错误处理需求。

二、惯用法(idiomatic usage)

1、基本用法

就像上面函数或方法定义那样:

func yourFunction(parametersList) (..., error)
func (Receiver)yourMethod(parametersList) (..., error)

通常情况,我们将函数或方法定义中的最后一个返回值类型定义为error。使用该函数或方法时,通过如下方式判断错误码:

..., err := yourFunction(...)
if err != nil {
    //error handling
}

or

if ..., err := yourFunction(...); err != nil {
    //error handling
}

2、注意事项

1)、永远不要忽略(ignore)函数或方法返回的错误码,Check it。(例外:包括标准库在内的Go代码很少去判断fmt.Println or Printf系列函数的返回值)

2)、error的string context中的内容格式:头母小写,结尾不带标点。因为考虑到error被经常这么用:

... err := errors.New("error example")
fmt.Printf("The returned error is %s.\n", err)

3)、error处理流的缩进样式

prefer

..., err := yourFunction(...)
if err != nil {
    // handle error
}

//go on doing something.

rather than:

..., err := yourFunction(...)
if err == nil {
    // do something.
}

// handle error

三、槽点与破解之法

Go自诞生那天起就伴随着巨大争议,这也不奇怪,就像娱乐圈,如果没有争议,哪有存在感,刷脸的机会都没有。看来有争议是件好事,没争议的编程语言都已经成为了历史。炒作懂么!这也是很多Gopher的微博、微信、twitter、medium账号喜欢发“Why I do not like Go”类文章的原因吧^_^。

Go的error处理方式就是被诟病的点之一,反方主要论点就是Go的错误处理机制似乎回到了70年代(与C同龄^_^),使得错误处理代码冗长且重复(部分也是由于前面提到的:不要ignore任何一个错误码),比如一些常见的错误处理代码形式如下:

err := doStuff1()
if err != nil {
    //handle error...
}

err = doStuff2()
if err != nil {
    //handle error...
}

err = doStuff3()
if err != nil {
    //handle error...
}

这里不想去反驳这些论点,Go authors之一的Russ Cox对于这种观点进行过驳斥:当初选择返回值这种错误处理机制而不是try-catch这种机制,主要是考虑前者适用于大型软件,后者更适合小程序。当程序变大,try-catch会让错误处理更加冗长繁琐易出错(具体参见go faq)。不过Russ Cox也承认Go的错误处理机制对于开发人员的确有一定的心智负担。

好了,关于这个槽点的叙述点到为止,我们关心的是“如何破解”!Go的错误处理的确冗长,但使用一些tips,还是可以将代码缩减至可以忍受的范围的,这里列举三种:

1、checkError style

对于一些在error handle时可以选择goroutine exit(注意:如果仅存main goroutine一个goroutine,调用runtime.Goexit会导致program以crash形式退出)或os.Exit的情形,我们可以选择类似常见的checkError方式简化错误处理,例如:

func checkError(err error) {
    if err != nil {
        fmt.Println("Error is ", err)
        os.Exit(-1)
    }
}

func foo() {
    err := doStuff1()
    checkError(err)

    err = doStuff2()
    checkError(err)

    err = doStuff3()
    checkError(err)
}

这种方式有些类似于C中用宏(macro)简化错误处理过程代码,只是由于Go不支持宏,使得这种方式的应用范围有限。

2、聚合error handle functions

有些时候,我们会遇到这样的情况:

err := doStuff1()
if err != nil {
    //handle A
    //handle B
    ... ...
}

err = doStuff2()
if err != nil {
    //handle A
    //handle B
    ... ...
}

err = doStuff3()
if err != nil {
    //handle A
    //handle B
    ... ...
}

在每个错误处理过程,处理过程相似,都是handle A、handle B等,我们可以通过Go提供的defer + 闭包的方式,将handle A、handle B…聚合到一个defer匿名helper function中去:

func handleA() {
    fmt.Println("handle A")
}
func handleB() {
    fmt.Println("handle B")
}

func foo() {
    var err error
    defer func() {
        if err != nil {
            handleA()
            handleB()
        }
    }()

    err = doStuff1()
    if err != nil {
        return
    }

    err = doStuff2()
    if err != nil {
        return
    }

    err = doStuff3()
    if err != nil {
        return
    }
}

3、 将doStuff和error处理绑定

在Rob Pike的”Errors are values”一文中,Rob Pike told us 标准库中使用了一种简化错误处理代码的trick,bufio的Writer就使用了这个trick:

    b := bufio.NewWriter(fd)
    b.Write(p0[a:b])
    b.Write(p1[c:d])
    b.Write(p2[e:f])
    // and so on
    if b.Flush() != nil {
            return b.Flush()
        }
    }

我们看到代码中并没有判断三个b.Write的返回错误值,错误处理放在哪里了呢?我们打开一下$GOROOT/src/

type Writer struct {
    err error
    buf []byte
    n   int
    wr  io.Writer
}

func (b *Writer) Write(p []byte) (nn int, err error) {
    for len(p) > b.Available() && b.err == nil {
        ... ...
    }
    if b.err != nil {
        return nn, b.err
    }
    ......
    return nn, nil
}

我们可以看到,错误处理被绑定在Writer.Write的内部了,Writer定义中有一个err作为一个错误状态值,与Writer的实例绑定在了一起,并且在每次Write入口判断是否为!= nil。一旦!=nil,Write其实什么都没做就return了。

以上三种破解之法,各有各的适用场景,同样你也可以看出各有各的不足,没有普适之法。优化go错误处理之法也不会局限在上述三种情况,肯定会有更多的solution,比如代码生成,比如其他还待发掘。

四、解调用者之惑

前面举的例子对于调用者来讲都是较为简单的情况了。但实际编码中,调用者不仅要面对的是:

if err != nil {
    //handle error
}

还要面对:

if err 是 ErrXXX
    //handle errorXXX

if err 是 ErrYYY
    //handle errorYYY

if err 是ErrZZZ
    //handle errorZZZ

我们分三种情况来说明调用者该如何处理不同类型的error实现:

1、由errors.New或fmt.Errorf返回的错误变量

如果你调用的函数或方法返回的错误变量是调用errors.New或fmt.Errorf而创建的,由于errorString类型是unexported的,因此我们无法通过“相当判定”或type assertion、type switch来区分不同错误变量的值或类型,唯一的方法就是判断err.String()是否与某个错误context string相等,示意代码如下:

func openFile(name string) error {
    if file not exist {
        return errors.New("file does not exist")
    }

    if have no priviledge {
        return errors.New("no priviledge")
    }
    return nil
}

func main() {
    err := openFile("example.go")
    if err.Error() == "file does not exist" {
        // handle "file does not exist" error
        return
    }

    if err.Error() == "no priviledge" {
        // handle "no priviledge" error
        return
    }
}

但这种情况太low了,不建议这么做!一旦遇到类似情况,就要考虑通过下面方法对上述情况进行重构。

2、exported Error变量

打开$GOROOT/src/os/error.go,你会在文件开始处发现如下代码:

var (
    ErrInvalid    = errors.New("invalid argument")
    ErrPermission = errors.New("permission denied")
    ErrExist      = errors.New("file already exists")
    ErrNotExist   = errors.New("file does not exist")
)

这些就是os包export的错误码变量,由于是exported的,我们在调用os包函数返回后判断错误码时可以直接使用等于判定,比如:

err := os.XXX
if err == os.ErrInvalid {
    //handle invalid
}
... ...

也可以使用switch case:

switch err := os.XXX {
    case ErrInvalid:
        //handle invalid
    case ErrPermission:
        //handle no permission
    ... ...
}
... ...

(至于error类型变量与os.ErrInvalid的可比较性可参考go specs

一般对于库的设计和实现者而言,在库的设计时就要考虑好export出哪些错误变量。

3、定义自己的error接口实现类型

如果要提供额外的error context,我们可以定义自己的实现error接口的类型;如果这些类型还是exported的,我们就可以用type assertion or type switch来判断返回的错误码类型并予以对应处理。

比如$GOROOT/src/net/net.go:

type OpError struct {
    Op string
    Net string
    Source Addr
    Addr Addr
    Err error
}

func (e *OpError) Error() string {
    if e == nil {
        return "<nil>"
    }
    s := e.Op
    if e.Net != "" {
        s += " " + e.Net
    }
    if e.Source != nil {
        s += " " + e.Source.String()
    }
    if e.Addr != nil {
        if e.Source != nil {
            s += "->"
        } else {
            s += " "
        }
        s += e.Addr.String()
    }
    s += ": " + e.Err.Error()
    return s
}

net.OpError提供了丰富的error Context,不仅如此,它还实现了除Error以外的其他method,比如:Timeout(实现net.timeout interface) 和Temporary(实现net.temporary interface)。这样我们在处理error时,可通过type assertion或type switch将error转换为*net.OpError,并调用到Timeout或Temporary方法来实现一些特殊的判定。

err := net.XXX
if oe, ok := err.(*OpError); ok {
    if oe.Timeout() {
        //handle timeout...
    }
}

五、坑(s)

每种编程语言都有自己的专属坑(s),Go虽出身名门,但毕竟年轻,坑也不少,在error处理这块也可以列出几个。

1、 Go FAQ:Why is my nil error value not equal to nil?

type MyError string

func (e *MyError) Error() string {
    return string(*e)
}

var ErrBad = MyError("ErrBad")

func bad() bool {
    return false
}

func returnsError() error {
    var p *MyError = nil
    if bad() {
        p = &ErrBad
    }
    return p // Will always return a non-nil error.
}

func main() {
    err := returnsError()
    if err != nil {
        fmt.Println("return non-nil error")
        return
    }
    fmt.Println("return nil")
}

上面的输出结果是”return non-nil error”,也就是说returnsError返回后,err != nil。err是一个interface类型变量,其underlying有两部分组成:类型和值。只有这两部分都为nil时,err才为nil。但returnsError返回时将一个值为nil,但类型为*MyError的变量赋值为err,这样err就不为nil。解决方法:

func returnsError() error {
    var p *MyError = nil
    if bad() {
        p = &ErrBad
        return p
    }
    return nil
}

2、switch err.(type)的匹配次序

试想一下下面代码的输出结果:

type MyError string

func (e MyError) Error() string {
    return string(e)
}

func Foo() error {
    return MyError("foo error")
}

func main() {
    err := Foo()
    switch e := err.(type) {
    default:
        fmt.Println("default")
    case error:
        fmt.Println("found an error:", e)
    case MyError:
        fmt.Println("found MyError:", e)
    }
    return

}

你可能会以为会输出:”found MyError: foo error”,但实际输出却是:”found an error: foo error”,也就是说e先匹配到了error!如果我们调换一下次序呢:

... ...
func main() {
    err := Foo()
    switch e := err.(type) {
    default:
        fmt.Println("default")
    case MyError:
        fmt.Println("found MyError:", e)
    case error:
        fmt.Println("found an error:", e)
    }
    return
}

这回输出结果变成了:“found MyError: foo error”。

也许你会认为这不全是错误处理的坑,和switch case的匹配顺序有关,但不可否认的是有些人会这么去写代码,一旦这么写,坑就踩到了。因此对于通过switch case来判定error type的情况,将error这个“通用”类型放在后面或去掉。

六、第三方库

如果觉得go内置的错误机制不能很好的满足你的需求,本着“do not reinvent the wheel”的精神,建议使用一些第三方库来满足,比如:juju/errors。这里就不赘述了。

Golang程序配置方案小结

在Twitter上看到一篇关于Golang程序配置方案总结的系列文章(一个mini series,共6篇),原文链接:在这里。我觉得不错,这里粗略整理(非全文翻译)一下,供大家参考。

一、背景

无论使用任何编程语言开发应用,都离不开配置数据。配置数据提供的形式有多样,不外乎命令行选项(options)、参数(parameters),环境 变量(env vars)以及配置文件等。Golang也不例外。Golang内置flag标准库,可以用来支持部分命令行选项和参数的解析;Golang通过os包提 供的方法可以获取当前环境变量;但Golang没有规定标准配置文件格式(虽说内置支持xml、json),多通过第三方 包来解决配置文件读取的问题。Golang配置相关的第三方包邮很多,作者在本文中给出的配置方案中就包含了主流的第三方配置数据操作包。

文章作者认为一个良好的应用配置层次应该是这样的:
1、程序内内置配置项的初始默认值
2、配置文件中的配置项值可以覆盖(override)程序内配置项的默认值。
3、命令行选项和参数值具有最高优先级,可以override前两层的配置项值。

下面就按作者的思路循序渐进探讨golang程序配置方案。

二、解析命令行选项和参数

这一节关注golang程序如何访问命令行选项和参数。

golang对访问到命令行参数提供了内建的支持:

//cmdlineargs.go
package main

import (
    //      "fmt"
    "os"
    "path/filepath"
)

func main() {
    println("I am ", os.Args[0])

    baseName := filepath.Base(os.Args[0])
    println("The base name is ", baseName)

    // The length of array a can be discovered using the built-in function len
    println("Argument # is ", len(os.Args))

    // the first command line arguments
    if len(os.Args) > 1 {
        println("The first command line argument: ", os.Args[1])
    }
}

执行结果如下:
$go build cmdlineargs.go
$cmdlineargs test one
I am  cmdlineargs
The base name is  cmdlineargs
Argument # is  3
The first command line argument:  test

对于命令行结构复杂一些的程序,我们最起码要用到golang标准库内置的flag包:

//cmdlineflag.go
package main

import (
    "flag"
    "fmt"
    "os"
    "strconv"
)

var (
    // main operation modes
    write = flag.Bool("w", false, "write result back instead of stdout\n\t\tDefault: No write back")

    // layout control
    tabWidth = flag.Int("tabwidth", 8, "tab width\n\t\tDefault: Standard")

    // debugging
    cpuprofile = flag.String("cpuprofile", "", "write cpu profile to this file\n\t\tDefault: no default")
)

func usage() {
    // Fprintf allows us to print to a specifed file handle or stream
    fmt.Fprintf(os.Stderr, "\nUsage: %s [flags] file [path ...]\n\n",
        "CommandLineFlag") // os.Args[0]
    flag.PrintDefaults()
    os.Exit(0)
}

func main() {
    fmt.Printf("Before parsing the flags\n")
    fmt.Printf("T: %d\nW: %s\nC: '%s'\n",
        *tabWidth, strconv.FormatBool(*write), *cpuprofile)

    flag.Usage = usage
    flag.Parse()

    // There is also a mandatory non-flag arguments
    if len(flag.Args()) < 1 {
        usage()
    }
   
    fmt.Printf("Testing the flag package\n")
    fmt.Printf("T: %d\nW: %s\nC: '%s'\n",
        *tabWidth, strconv.FormatBool(*write), *cpuprofile)

    for index, element := range flag.Args() {
        fmt.Printf("I: %d C: '%s'\n", index, element)
    }
}

这个例子中:
- 说明了三种类型标志的用法:Int、String和Bool。
- 说明了每个标志的定义都由类型、命令行选项文本、默认值以及含义解释组成。
- 最后说明了如何处理标志选项(flag option)以及非option参数。

不带参数运行:

$cmdlineflag
Before parsing the flags
T: 8
W: false
C: ''

Usage: CommandLineFlag [flags] file [path ...]

  -cpuprofile="": write cpu profile to this file
        Default: no default
  -tabwidth=8: tab width
        Default: Standard
  -w=false: write result back instead of stdout
        Default: No write back

带命令行标志以及参数运行(一个没有flag,一个有两个flag):

$cmdlineflag aa bb
Before parsing the flags
T: 8
W: false
C: ''
Testing the flag package
T: 8
W: false
C: ''
I: 0 C: 'aa'
I: 1 C: 'bb'

$cmdlineflag -tabwidth=2 -w aa
Before parsing the flags
T: 8
W: false
C: ''
Testing the flag package
T: 2
W: true
C: ''
I: 0 C: 'aa'

从例子可以看出,简单情形下,你无需编写自己的命令行parser或使用第三方包,使用go内建的flag包即可以很好的完成工作。但是golang的 flag包与命令行Parser的事实标准:Posix getopt(C/C++/Perl/Shell脚本都可用)相比,还有较大差距,主要体现在:

1、无法支持区分long option和short option,比如:-h和–help。
2、不支持short options合并,比如:ls -l -h <=> ls -hl
3、命令行标志的位置不能任意放置,比如无法放在non-flag parameter的后面。

不过毕竟flag是golang内置标准库包,你无须付出任何cost,就能使用它的功能。另外支持bool型的flag也是其一大亮点。

三、TOML,Go配置文件的事实标准(这个可能不能得到认同)

命令行虽然是一种可选的配置方案,但更多的时候,我们使用配置文件来存储静态的配置数据。就像Java配xml,ruby配yaml,windows配 ini,Go也有自己的搭配组合,那就是TOML(Tom's Obvious, Minimal Language)。

初看toml语法有些类似windows ini,但细致研究你会发现它远比ini强大的多,下面是一个toml配置文件例子:

# This is a TOML document. Boom.

title = "TOML Example"

[owner]
name = "Lance Uppercut"
dob = 1979-05-27T07:32:00-08:00 # First class dates? Why not?

[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true

[servers]

  # You can indent as you please. Tabs or spaces. TOML don't care.
  [servers.alpha]
  ip = "10.0.0.1"
  dc = "eqdc10"

  [servers.beta]
  ip = "10.0.0.2"
  dc = "eqdc10"

[clients]
data = [ ["gamma", "delta"], [1, 2] ]

# Line breaks are OK when inside arrays
hosts = [
  "alpha",
  "omega"
]

看起来很强大,也很复杂,但解析起来却很简单。以下面这个toml 文件为例:

Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z

和所有其他配置文件parser类似,这个配置文件中的数据可以被直接解析成一个golang struct:

type Config struct {
  Age int
  Cats []string
  Pi float64
  Perfection []int
  DOB time.Time // requires `import time`
}

其解析的步骤也很简单:

var conf Config
if _, err := toml.Decode(tomlData, &conf); err != nil {
  // handle error
}

是不是简单的不能简单了!

不过toml也有其不足之处。想想如果你需要使用命令行选项的参数值来覆盖这些配置文件中的选项,你应该怎么做?事实上,我们常常会碰到类似下面这种三层配置结构的情况:

1、程序内内置配置项的初始默认值
2、配置文件中的配置项值可以覆盖(override)程序内配置项的默认值。
3、命令行选项和参数值具有最高优先级,可以override前两层的配置项值。

在go中,toml映射的结果体字段没有初始值。而且go内建flag包也没有将命令行参数值解析为一个go结构体,而是零散的变量。这些可以通过第三方工具来解决,但如果你不想用第三方工具,你也可以像下面这样自己解决,虽然难看一些。

func ConfigGet() *Config {
    var err error
    var cf *Config = NewConfig()

    // set default values defined in the program
    cf.ConfigFromFlag()
    //log.Printf("P: %d, B: '%s', F: '%s'\n", cf.MaxProcs, cf.Webapp.Path)

    // Load config file, from flag or env (if specified)
    _, err = cf.ConfigFromFile(*configFile, os.Getenv("APPCONFIG"))
    if err != nil {
        log.Fatal(err)
    }
    //log.Printf("P: %d, B: '%s', F: '%s'\n", cf.MaxProcs, cf.Webapp.Path)

    // Override values from command line flags
    cf.ConfigToFlag()
    flag.Usage = usage
    flag.Parse()
    cf.ConfigFromFlag()
    //log.Printf("P: %d, B: '%s', F: '%s'\n", cf.MaxProcs, cf.Webapp.Path)

    cf.ConfigApply()

    return cf
}

就像上面代码中那样,你需要:
1、用命令行标志默认值设置配置(cf)默认值。
2、接下来加载配置文件
3、用配置值(cf)覆盖命令行标志变量值
4、解析命令行参数
5、用命令行标志变量值覆盖配置(cf)值。

少一步你都无法实现三层配置能力。

四、超越TOML

本节将关注如何克服TOML的各种局限。

为了达成这个目标,很多人会说:使用viper,不过在介绍viper这一重量级选手 之前,我要为大家介绍另外一位不那么知名的选手:multiconfig

有些人总是认为大的就是好的,但我相信适合的还是更好的。因为:

1、viper太重量级,使用viper时你需要pull另外20个viper依赖的第三方包
2、事实上,viper单独使用还不足以满足需求,要想得到viper全部功能,你还需要另外一个包配合,而后者又依赖13个外部包
3、与viper相比,multiconfig使用起来更简单。

好了,我们再来回顾一下我们现在面临的问题:

1、在程序里定义默认配置,这样我们就无需再在toml中定义它们了。
2、用toml配置文件中的数据override默认配置
3、用命令行或环境变量的值override从toml中读取的配置。

下面是一个说明如何使用multiconfig的例子:

func main() {
    m := multiconfig.NewWithPath("config.toml") // supports TOML and JSON

    // Get an empty struct for your configuration
    serverConf := new(Server)

    // Populated the serverConf struct
    m.MustLoad(serverConf) // Check for error

    fmt.Println("After Loading: ")
    fmt.Printf("%+v\n", serverConf)

    if serverConf.Enabled {
        fmt.Println("Enabled field is set to true")
    } else {
        fmt.Println("Enabled field is set to false")
    }
}

这个例子中的toml文件如下:

Name              = "koding"
Enabled           = false
Port              = 6066
Users             = ["ankara", "istanbul"]

[Postgres]
Enabled           = true
Port              = 5432
Hosts             = ["192.168.2.1", "192.168.2.2", "192.168.2.3"]
AvailabilityRatio = 8.23

toml映射后的go结构如下:

type (
    // Server holds supported types by the multiconfig package
    Server struct {
        Name     string
        Port     int `default:"6060"`
        Enabled  bool
        Users    []string
        Postgres Postgres
    }

    // Postgres is here for embedded struct feature
    Postgres struct {
        Enabled           bool
        Port              int
        Hosts             []string
        DBName            string
        AvailabilityRatio float64
    }
)

multiconfig的使用是不是很简单,后续与viper对比后,你会同意我的观点的。

multiconfig支持默认值,也支持显式的字段赋值需求。
支持toml、json、结构体标签(struct tags)以及环境变量。
你可以自定义配置源(例如一个远程服务器),如果你想这么做的话。
可高度扩展(通过loader接口),你可以创建你自己的loader。

下面是例子的运行结果,首先是usage help:

$cmdlinemulticonfig -help
Usage of cmdlinemulticonfig:
  -enabled=false: Change value of Enabled.
  -name=koding: Change value of Name.
  -port=6066: Change value of Port.
  -postgres-availabilityratio=8.23: Change value of Postgres-AvailabilityRatio.
  -postgres-dbname=: Change value of Postgres-DBName.
  -postgres-enabled=true: Change value of Postgres-Enabled.
  -postgres-hosts=[192.168.2.1 192.168.2.2 192.168.2.3]: Change value of Postgres-Hosts.
  -postgres-port=5432: Change value of Postgres-Port.
  -users=[ankara istanbul]: Change value of Users.

Generated environment variables:
   SERVER_NAME
   SERVER_PORT
   SERVER_ENABLED
   SERVER_USERS
   SERVER_POSTGRES_ENABLED
   SERVER_POSTGRES_PORT
   SERVER_POSTGRES_HOSTS
   SERVER_POSTGRES_DBNAME
   SERVER_POSTGRES_AVAILABILITYRATIO

$cmdlinemulticonfig
After Loading:
&{Name:koding Port:6066 Enabled:false Users:[ankara istanbul] Postgres:{Enabled:true Port:5432 Hosts:[192.168.2.1 192.168.2.2 192.168.2.3] DBName: AvailabilityRatio:8.23}}
Enabled field is set to false

检查一下输出结果吧,是不是每项都符合我们之前的预期呢!

五、Viper

我们的重量级选手viper(https://github.com/spf13/viper)该出场了!

毫无疑问,viper非常强大。但如果你想用命令行参数覆盖预定义的配置项值,viper自己还不足以。要想让viper爆发,你需要另外一个包配合,它就是cobra(https://github.com/spf13/cobra)。

不同于注重简化配置处理的multiconfig,viper让你拥有全面控制力。不幸的是,在得到这种控制力之前,你需要做一些体力活。

我们再来回顾一下使用multiconfig处理配置的代码:

func main() {
    m := multiconfig.NewWithPath("config.toml") // supports TOML and JSON

    // Get an empty struct for your configuration
    serverConf := new(Server)

    // Populated the serverConf struct
    m.MustLoad(serverConf) // Check for error

    fmt.Println("After Loading: ")
    fmt.Printf("%+v\n", serverConf)

    if serverConf.Enabled {
        fmt.Println("Enabled field is set to true")
    } else {
        fmt.Println("Enabled field is set to false")
    }
}

这就是使用multiconfig时你要做的所有事情。现在我们来看看使用viper和cobra如何来完成同样的事情:

func init() {
    mainCmd.AddCommand(versionCmd)

    viper.SetEnvPrefix("DISPATCH")
    viper.AutomaticEnv()

    /*
      When AutomaticEnv called, Viper will check for an environment variable any
      time a viper.Get request is made. It will apply the following rules. It
      will check for a environment variable with a name matching the key
      uppercased and prefixed with the EnvPrefix if set.
    */

    flags := mainCmd.Flags()

    flags.Bool("debug", false, "Turn on debugging.")
    flags.String("addr", "localhost:5002", "Address of the service")
    flags.String("smtp-addr", "localhost:25", "Address of the SMTP server")
    flags.String("smtp-user", "", "User to authenticate with the SMTP server")
    flags.String("smtp-password", "", "Password to authenticate with the SMTP server")
    flags.String("email-from", "noreply@example.com", "The from email address.")

    viper.BindPFlag("debug", flags.Lookup("debug"))
    viper.BindPFlag("addr", flags.Lookup("addr"))
    viper.BindPFlag("smtp_addr", flags.Lookup("smtp-addr"))
    viper.BindPFlag("smtp_user", flags.Lookup("smtp-user"))
    viper.BindPFlag("smtp_password", flags.Lookup("smtp-password"))
    viper.BindPFlag("email_from", flags.Lookup("email-from"))

  // Viper supports reading from yaml, toml and/or json files. Viper can
  // search multiple paths. Paths will be searched in the order they are
  // provided. Searches stopped once Config File found.

    viper.SetConfigName("CommandLineCV") // name of config file (without extension)
    viper.AddConfigPath("/tmp")          // path to look for the config file in
    viper.AddConfigPath(".")             // more path to look for the config files

    err := viper.ReadInConfig()
    if err != nil {
        println("No config file found. Using built-in defaults.")
    }
}

可以看出,你需要使用BindPFlag来让viper和cobra结合一起工作。但这还不算太糟。

cobra的真正威力在于提供了subcommand能力。同时cobra还提供了与posix 全面兼容的命令行标志解析能力,包括长短标志、内嵌命令、为command定义你自己的help或usage等。

下面是定义子命令的例子代码:

// The main command describes the service and defaults to printing the
// help message.
var mainCmd = &cobra.Command{
    Use:   "dispatch",
    Short: "Event dispatch service.",
    Long:  `HTTP service that consumes events and dispatches them to subscribers.`,
    Run: func(cmd *cobra.Command, args []string) {
        serve()
    },
}

// The version command prints this service.
var versionCmd = &cobra.Command{
    Use:   "version",
    Short: "Print the version.",
    Long:  "The version of the dispatch service.",
    Run: func(cmd *cobra.Command, args []string) {
        fmt.Println(version)
    },
}

有了上面subcommand的定义,我们就可以得到如下的help信息了:

Usage:
  dispatch [flags]
  dispatch [command]

Available Commands:
  version     Print the version.
  help        Help about any command

Flags:
      –addr="localhost:5002": Address of the service
      –debug=false: Turn on debugging.
      –email-from="noreply@example.com": The from email address.
  -h, –help=false: help for dispatch
      –smtp-addr="localhost:25": Address of the SMTP server
      –smtp-password="": Password to authenticate with the SMTP server
      –smtp-user="": User to authenticate with the SMTP server

Use "dispatch help [command]" for more information about a command.

六、小结

以上例子的完整源码在作者的github repository里可以找到。

关于golang配置文件,我个人用到了toml这一层次,因为不需要太复杂的配置,不需要环境变量或命令行override默认值或配置文件数据。不过 从作者的例子中可以看到multiconfig、viper的确强大,后续在实现复杂的golang应用时会考虑真正应用。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats