标签 Interface 下的文章

Go经典阻塞式TCP协议流解析的实践

本文永久链接 – https://tonybai.com/2021/07/28/classic-blocking-network-tcp-stream-protocol-parsing-practice-in-go

1. Go经典阻塞I/O的TCP网络编程模型

Go语言诞生十多年来取得了飞速发展,并得到了全世界开发者的广泛接纳和应用,其应用领域广泛,包括:Web服务、数据库、网络编程、系统编程、DevOps、安全检测与管控、数据科学以及人工智能等。下面是2020年Go官方开发者调查的部分结果:


图:2020年Go官方开发者调查之Go语言的应用领域(对比2019)

我们看到“Web编程”“网络编程”分别位列第一名和第四名,这个应用领域数据分布与Go语言最初的面向大规模分布式网络服务的设计目标十分契合。网络通信这块是服务端程序必不可少也是至关重要的一部分。Go标准库的net包是在Go中进行网络编程的基础。即便您没有直接使用到net包中有关TCP Socket方面的函数/方法或接口,但net/http包想必大家总是用过的,http包实现的是HTTP这个应用层协议,其在传输层使用的依旧是TCP Socket。

Go是自带运行时的跨平台编程语言,由于Go运行时调度的需要,Go基于I/O多路复用机制(linux上使用epoll,macOS和freebsd上使用kqueue)设计和实现了一套适合自己的TCP Socket网络编程模型。并且,Go秉承了自己一贯的追求简单的设计哲学,Go向语言使用者暴露了简单的TCP Socket API接口,而将Go TCP socket网络编程的“复杂性”留给了自己并隐藏在Go运行时的实现中。这样,大多数情况下,Go开发者无需关心Socket是否是阻塞的,也无需亲自将Socket文件描述符的回调函数注册到类似epoll这样的系统调用中,而只需在每个连接对应的goroutine中以最简单最易用的“阻塞I/O模型”的方式进行Socket操作即可(像下图所示),这种设计大大降低了网络应用开发人员的心智负担。

这是经典的Go tcp网络编程模型。由于TCP是全双工模型,每一端(peer)都可以单独在已经建立的连接上进行读写,因此在Go中,我们常常针对一个已建立的TCP连接建立两个goroutine,一个负责从连接上读取数据(如需响应(ack),也可以由该read goroutine直接回复),一个负责将新生成的业务数据写入连接。

read goroutine为例,其典型的程序结构如下:

func handleConn(c net.Conn) {
    defer c.Close()
    for {
        // read from the connection c
        ... ...
        // write ack to the connection c
        ... ...
    }
}

func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        fmt.Println("listen error:", err)
        return
    }

    for {
        c, err := l.Accept()
        if err != nil {
            fmt.Println("accept error:", err)
            break
        }
        // start a new goroutine to handle
        // the new connection.
        go handleConn(c) // start a read goroutine
    }
}

从上面代码,我们看到,针对每一个向server建立成功的连接,程序都会启动一个reader goroutine负责从连接读取数据,并在处理后,返回(向连接写入)响应(ack)。这样的程序结构已经直白到无法再直白了,即便你是网络编程小白,看懂这样的程序想必也不会费多少脑细胞。

我们知道,TCP传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,因此TCP socket编程多为流数据(streaming)处理。这种数据的特点是按序逐个字节传输,在传输层没有明显的数据边界(只有应用层能识别出协议数据的边界,这个依赖应用层协议的定义)。TCP发送端发送了1000个字节,TCP接收端就会接收到1000个字节。发送端可能通过一次发送操作就发送了这1000个字节,但接收端可能通过10次读取操作才读完这1000个字节,也就是说发送端的发送动作与接收端的接收动作并没有严格的一一对应关系。这与UDP协议基于数据报(diagram)形式的数据传输形式有本质差别(更多关于tcp与udp差别的内容可以详见《TCP/IP详解卷1:协议》一书)。

本文我们就来了解一下基于经典Go阻塞式网络I/O模型对基于TCP流的自定义协议进行解析的基本模式。

2. 自定义协议简述

为了便于后续内容展开,我们现在这里说明一下我们即将解析的自定义流协议。基于TCP的自定义应用层流协议有两种常见的定义模式:

  • 二进制模式

采用长度字段分隔,常见的包括:mqtt(物联网最常用的应用层协议之一)、cmpp(中国移动互联网短信网关接口协议)等。

  • 文本模式

采用特定分隔符分割和识别,常见的包括http等。

这里我们使用二进制模式来定义我们即将解析的应用层协议,下面是协议的定义:

这是一个请求应答协议,请求包和应答包的第一个字段都是包总长度,这也是在应用层用于“分割包”的最重要字段。第二个字段则是用于标识包类型,这里我们定义四种类型:

onst (
    CommandConn   = iota + 0x01 // 0x01,连接请求包
    CommandSubmit               // 0x02,消息发送请求包
)

const (
    CommandConnAck   = iota + 0x80 // 0x81,连接请求的响应包
    CommandSubmitAck               //0x82,消息发送请求的响应包
)

ID是每个连接上请求的消息流水,多用于请求发送方后续匹配响应包之用。请求包与响应包唯一的不同之处在于最后一个字段,请求包定义了有效载荷(payload),而响应包则定义了请求包的响应状态字段(result)。

明确了应用层协议包的定义后,我们就来看看如何解析这样的一个流协议吧。

3. 建立Frame和Packet抽象

在真正开始编写代码前,我们先来针对上述应用层协议建立两个抽象概念:Frame和Packet。

首先,我们设定无论是从client到server,还是server到client,数据流都是由一个接一个Frame组成的,上述的协议就封装在这一个个的Frame中。我们可以通过特定的方法将Frame与Frame分割开来:

每个Frame由一个totalLength和frame payload构成,如下图左侧Frame结构所示:

这样,我们通过Frame header: totalLength即可将Frame之间隔离开来。我们将Frame payload定义为一个packet,每个Packet的结构如上图右侧所示。每个packet包含commandID、ID和payload(packet payload)字段。

这样我们就将上述的协议转换为由Frame和Packet两个抽象组成的TCP流了。

4. 阻塞式TCP流协议解析的基本程序结构

建立完抽象后,我们就要开始解析这个协议了!下图是该阻塞式TCP流协议解析的server流程图:

我们看到tcp流数据先后经由frame decode和packet decode后得到应用层所需的packet数据,应用层回复的响应则先后经过packet的encode与frame的encode后写入tcp响应流中。

下面我们就先来看看frame编解码的代码。我们首先定义frame编码器的接口类型:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/pkg/frame/frame.go

type FramePayload []byte

type StreamFrameCodec interface {
    Encode(io.Writer, FramePayload) error   // data -> frame,并写入io.Writer
    Decode(io.Reader) (FramePayload, error) // 从io.Reader中提取frame payload,并返回给上层
}

我们将流数据的输入定义为io.Reader,将流数据输出定义为io.Writer。和上图中的设计意义,Decode方法返回framePayload,而Encode会将输入的framePayload编码为frame并写入outbound的tcp流。

一旦确定好接口方法集,我们就来给出一个StreamFrameCodec接口的实现:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/pkg/frame/frame.go

type myFrameCodec struct{}

func NewMyFrameCodec() StreamFrameCodec {
    return &myFrameCodec{}
}

func (p *myFrameCodec) Encode(w io.Writer, framePayload FramePayload) error {
    var f = framePayload
    var totalLen int32 = int32(len(framePayload)) + 4

    err := binary.Write(w, binary.BigEndian, &totalLen)
    if err != nil {
        return err
    }

    // make sure all data will be written to outbound stream
    for {
        n, err := w.Write([]byte(f)) // write the frame payload to outbound stream
        if err != nil {
            return err
        }
        if n >= len(f) {
            break
        }
        if n < len(f) {
            f = f[n:]
        }
    }
    return nil
}

func (p *myFrameCodec) Decode(r io.Reader) (FramePayload, error) {
    var totalLen int32
    err := binary.Read(r, binary.BigEndian, &totalLen)
    if err != nil {
        return nil, err
    }

    buf := make([]byte, totalLen-4)
    _, err = io.ReadFull(r, buf)
    if err != nil {
        return nil, err
    }
    return FramePayload(buf), nil
}

在上面在这段实现中,有三点要注意:

  • 网络字节序使用大端字节序(BigEndian),因此无论是Encode还是Decode,我们都是用binary.BigEndian;
  • binary.Read或Write会根据参数的宽度读取或写入对应的字节个数的字节,这里totalLen使用int32,那么Read或Write只会操作流中的4个字节;
  • 这里没有设置deadline,因此io.ReadFull一般会读满你所需的字节数,除非遇到EOF或ErrUnexpectedEOF。

接下来,我们再看看Packet的编解码。和Frame不同,Packet有多种类型(这里仅定义了Conn, submit,connack, submit ack)。因此我们首先抽象一下这些类型需要遵循的共同接口:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/pkg/packet/packet.go

type Packet interface {
    Decode([]byte) error     // []byte -> struct
    Encode() ([]byte, error) //  struct -> []byte
}

其中Decode是将一段字节流数据解码为一个Packet类型,可能是conn,可能是submit等(根据解码出来的commandID判断)。而Encode则是将一个Packet类型编码为一段字节流数据。下面是submit和submitack类型的Packet接口实现:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/pkg/packet/packet.go

type Submit struct {
    ID      string
    Payload []byte
}

func (s *Submit) Decode(pktBody []byte) error {
    s.ID = string(pktBody[:8])
    s.Payload = pktBody[8:]
    return nil
}

func (s *Submit) Encode() ([]byte, error) {
    return bytes.Join([][]byte{[]byte(s.ID[:8]), s.Payload}, nil), nil
}

type SubmitAck struct {
    ID     string
    Result uint8
}

func (s *SubmitAck) Decode(pktBody []byte) error {
    s.ID = string(pktBody[0:8])
    s.Result = uint8(pktBody[8])
    return nil
}

func (s *SubmitAck) Encode() ([]byte, error) {
    return bytes.Join([][]byte{[]byte(s.ID[:8]), []byte{s.Result}}, nil), nil
}

不过上述各种类型的编解码被调用的前提是明确数据流是什么类型的,因此我们需要在包级提供一个对外的函数Decode,该函数负责从字节流中解析出对应的类型(根据commandID),并调用对应类型的Decode方法:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/pkg/packet/packet.go
func Decode(packet []byte) (Packet, error) {
    commandID := packet[0]
    pktBody := packet[1:]

    switch commandID {
    case CommandConn:
        return nil, nil
    case CommandConnAck:
        return nil, nil
    case CommandSubmit:
        s := Submit{}
        err := s.Decode(pktBody)
        if err != nil {
            return nil, err
        }
        return &s, nil
    case CommandSubmitAck:
        s := SubmitAck{}
        err := s.Decode(pktBody)
        if err != nil {
            return nil, err
        }
        return &s, nil
    default:
        return nil, fmt.Errorf("unknown commandID [%d]", commandID)
    }
}

同样,我们也需要包级的Encode函数,根据传入的packet类型调用对应的Encode方法实现对象的编码:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/pkg/packet/packet.go
func Encode(p Packet) ([]byte, error) {
    var commandID uint8
    var pktBody []byte
    var err error

    switch t := p.(type) {
    case *Submit:
        commandID = CommandSubmit
        pktBody, err = p.Encode()
        if err != nil {
            return nil, err
        }
    case *SubmitAck:
        commandID = CommandSubmitAck
        pktBody, err = p.Encode()
        if err != nil {
            return nil, err
        }
    default:
        return nil, fmt.Errorf("unknown type [%s]", t)
    }
    return bytes.Join([][]byte{[]byte{commandID}, pktBody}, nil), nil
}

好了,万事俱备只欠东风!下面我们就来编写程序结构,将tcp conn与Frame、Packet连接起来:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1/cmd/server/main.go

package main

import (
    "fmt"
    "net"

    "github.com/bigwhite/tcp-stream-proto/demo1/pkg/frame"
    "github.com/bigwhite/tcp-stream-proto/demo1/pkg/packet"
)

func handlePacket(framePayload []byte) (ackFramePayload []byte, err error) {
    var p packet.Packet
    p, err = packet.Decode(framePayload)
    if err != nil {
        fmt.Println("handleConn: packet decode error:", err)
        return
    }

    switch p.(type) {
    case *packet.Submit:
        submit := p.(*packet.Submit)
        fmt.Printf("recv submit: id = %s, payload=%s\n", submit.ID, string(submit.Payload))
        submitAck := &packet.SubmitAck{
            ID:     submit.ID,
            Result: 0,
        }
        ackFramePayload, err = packet.Encode(submitAck)
        if err != nil {
            fmt.Println("handleConn: packet encode error:", err)
            return nil, err
        }
        return ackFramePayload, nil
    default:
        return nil, fmt.Errorf("unknown packet type")
    }
}

func handleConn(c net.Conn) {
    defer c.Close()
    frameCodec := frame.NewMyFrameCodec()

    for {
        // read from the connection

        // decode the frame to get the payload
        // the payload is undecoded packet
        framePayload, err := frameCodec.Decode(c)
        if err != nil {
            fmt.Println("handleConn: frame decode error:", err)
            return
        }

        // do something with the packet
        ackFramePayload, err := handlePacket(framePayload)
        if err != nil {
            fmt.Println("handleConn: handle packet error:", err)
            return
        }

        // write ack frame to the connection
        err = frameCodec.Encode(c, ackFramePayload)
        if err != nil {
            fmt.Println("handleConn: frame encode error:", err)
            return
        }
    }
}

func main() {
    l, err := net.Listen("tcp", ":8888")
    if err != nil {
        fmt.Println("listen error:", err)
        return
    }

    for {
        c, err := l.Accept()
        if err != nil {
            fmt.Println("accept error:", err)
            break
        }
        // start a new goroutine to handle
        // the new connection.
        go handleConn(c)
    }
}

在上面这个程序中,main函数是标准的“one connection per goroutine”的结构,重点逻辑都在handleConn中。在handleConn中,我们看到十分清晰的代码结构:

read conn
    ->frame decode
        -> handle packet
            -> packet decode
            -> packet(ack) encode
    ->frame(ack) encode
write conn

到这里,一个经典阻塞式TCP流解析的demo就完成了(你可以将demo中提供的client和server run起来验证一下)。

5. 可能的优化点

在上面的demo1中,我们直接将net.Conn实例传给frame.Decode作为io.Reader参数的实参,这样我们每次调用Read方法都是直接从Conn中读取数据。不过Go runtime使用net poller将net.Conn.Read转换为io多路复用的等待,避免了每次从net.Conn直接读取都转换为一次系统调用。但即便如此,也可能会多一次goroutine的上下文切换(在数据尚未ready的情况下)。虽然goroutine的上下文切换代价相较于线程切换要小许多,但毕竟这种切换并不是免费的,我们要减少这种切换。我们可以通过缓存读的方式来减少net.Conn.Read真实调用的频率。我们可以像下面这样改造demo1的例子:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo2/cmd/server/main.go

func handleConn(c net.Conn) {
    defer c.Close()
    frameCodec := frame.NewMyFrameCodec()
    rbuf := bufio.NewReader(c) // 为io增加缓存

    for {
        // read from the connection

        // decode the frame to get the payload
        // the payload is undecoded packet
        framePayload, err := frameCodec.Decode(rbuf) // 使用bufio,减少直接read conn.Conn的次数
        if err != nil {
            fmt.Println("handleConn: frame decode error:", err)
            return
        }
        ... ...
    }
    ... ...
}

bufio内部每次从net.Conn尝试读取其内部缓存(buf)大小的数据,而不是用户传入的希望读取的数据大小。这些数据缓存在内存中,这样后续Read就可以直接从内存中得到数据,而不是每次都从net.Conn读取,从而降低goroutine上下文切换的频率。

除此之外,我们在frame包中的frame Decode实现如下:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo2/pkg/frame/frame.go

func (p *myFrameCodec) Decode(r io.Reader) (FramePayload, error) {
    var totalLen int32
    err := binary.Read(r, binary.BigEndian, &totalLen)
    if err != nil {
        return nil, err
    }

    buf := make([]byte, totalLen-4)
    _, err = io.ReadFull(r, buf)
    if err != nil {
        return nil, err
    }
    return FramePayload(buf), nil
}

我们看到每次调用这个方法都会分配一个buf,并且buf是不定长的,这些在程序关键路径上的堆内存对象分配会给GC带来压力,我们要尽量避免或减小其频度,一个可行的办法是尽量重用对象,在Go中一提到重用内存对象,我们就想到了sync.Pool,但这里还有一个问题,那就是“不定长”,这给sync.Pool的使用增加了难度。

mcache是字节技术团队开源的多级sync.Pool包,它可以根据你所要分配的对象大小选择不同的sync.Pool池,有些类似tcmalloc的多级(class)内存对象管理,与Go runtime的mcache也是类似的,mcache一共分为46个等级,每个等级一个sync.Pool:

// github.com/bytedance/gopkg/tree/master/lang/mcache/mcache.go
const maxSize = 46

// index contains []byte which cap is 1<<index
var caches [maxSize]sync.Pool

我们可以从mcache中分配内存来换掉每次都申请一个[]byte的动作以达到内存对象重用,降低GC压力的目的:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo3/pkg/frame/frame.go

func (p *myFrameCodec) Decode(r io.Reader) (FramePayload, error) {
    var totalLen int32
    err := binary.Read(r, binary.BigEndian, &totalLen)
    if err != nil {
        return nil, err
    }

    buf := mcache.Malloc(int(totalLen - 4))  // 这里我们重用mcache中的内存对象
    _, err = io.ReadFull(r, buf)
    if err != nil {
        return nil, err
    }
    return FramePayload(buf), nil
}

有了mcache.Malloc,我们就需要在特定位置调用mcache.Free归还内存对象,而packet中的Decode就是最好的位置:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo3/pkg/packet/packet.go

func Decode(packet []byte) (Packet, error) {
    defer mcache.Free(packet) // 在decode结束后,释放对象回mcache
    commandID := packet[0]
    pktBody := packet[1:]
    ... ...
}

上面是两个在不动用pprof这样的工具的前提下就能识别出的较为明显的可优化的点,可优化的点可能还有很多,这里不一一列举了。

6. 简单的压力测试

既然给出了优化的点,我们就来粗略压测一下优化前和优化后的程序。我们为两个版本程序添加上基于标准库expvar的计数器(以优化前的demo1为例):

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1-with-metrics/cmd/server/main.go

func handleConn(c net.Conn) {
    defer c.Close()
    frameCodec := frame.NewMyFrameCodec()

    for {
        // read from the connection
        ... ...
        // write ack frame to the connection
        err = frameCodec.Encode(c, ackFramePayload)
        if err != nil {
            fmt.Println("handleConn: frame encode error:", err)
            return
        }
        monitor.SubmitInTotal.Add(1) // 每处理完一条消息,计数器+1
    }
}

在monitor包中,我们每秒计算一下处理性能:

// github.com/bigwhite/experiments/tree/master/tcp-stream-proto/demo1-with-metrics/pkg/monitor/monitor.go
func init() {
    // register statistics index
    SubmitInTotal = expvar.NewInt("submitInTotal")
    submitInRate = expvar.NewInt("submitInRate")

    go func() {
        var lastSubmitInTotal int64

        ticker := time.NewTicker(time.Second)
        defer ticker.Stop()
        for {
            select {
            case <-ticker.C:
                newSubmitInTotal := SubmitInTotal.Value()
                submitInRate.Set(newSubmitInTotal - lastSubmitInTotal) // 两秒处理的消息量之差作为处理速度
                lastSubmitInTotal = newSubmitInTotal
            }
        }
    }()
}

有了基于expvar的计数器,我们就可以通过带有导出csv功能的expvarmon工具获取程序每秒的处理性能了(压测客户端可以使用demo1-with-metrics的client)。下面的性能对比图是在一个4核8g的云主机上获得的(条件有限,压测client与server放在一台机器上了,必然相互干扰):

我们看到,优化后的程序从趋势上看略微好于优化前的(虽然不是很稳定)。

如果你觉得采集瞬时值太够专业^_^,也可以在被测程序上添加基于go-metrics的metric,这个作业就留给大家了:)

7. 小结

在本文中,我们简单说明了Go经典阻塞I/O的TCP网络编程模型,这种模型最大的好处就是简单,降低开发人员在处理网络I/O时的心智负担,将更多关注集中在业务层面。文中基于这种模型,给出了一个自定义流协议的解析实现框架,并说明了一些可优化的点。在非超大连接数量的场景下,这类模型会有不错性能和开发效率。一旦连接数量猛增,相应的处理这些连接的goroutine数量就会线性增加,Goroutine调度的开销就会显著增加,这个时候我们就要考虑是否使用其他模型应对了,这个我们在后续篇章再说。

本文涉及的所有代码可以从这里下载:https://github.com/bigwhite/experiments/tree/master/tcp-stream-proto


“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

一文告诉你如何用好uber开源的zap日志库

本文永久链接 – https://tonybai.com/2021/07/14/uber-zap-advanced-usage

1. 引子

日志在后端系统中有着重要的地位,通过日志不仅可以直观看到程序的当前运行状态,更重要的是日志可以在程序发生问题时为开发人员提供线索。

在Go生态中,logrus可能是使用最多的Go日志库,它不仅提供结构化的日志,更重要的是与标准库log包在api层面兼容。在性能不敏感的领域,logrus确实是不二之选。

但在性能敏感的领域和场景下,logrus便不那么香了,出镜更多的是大厂uber开源的名为zap的日志库。之所以在这些场景下zap更香,虽与其以高性能著称不无关系,但其背后的大厂uber背书也是极其重要的。uber大厂有着太多性能和延迟敏感的场景,其生产环境现存数千个Go语言开发的微服务,这些微服务估计大多使用的都是zap,经历过大厂性能敏感场景考验的log库信誉有保障,后续有人持续维护,自然被大家青睐。

关于zap高性能的原理,在网络上已经有不少高质量的资料(参见本文末的参考资料)做过详尽的分析了。zap的主要优化点包括:

  • 避免使用interface{}带来的开销(拆装箱、对象逃逸到堆上
  • 坚决不用反射,每个要输出的字段(field)在传入时都携带类型信息(这虽然降低了开发者使用zap的体验,但相对于其获得的性能提升,这点体验下降似乎也算不得什么):
logger.Info("failed to fetch URL",
    // Structured context as strongly typed Field values.
    zap.String("url", `http://foo.com`),
    zap.Int("attempt", 3),
    zap.Duration("backoff", time.Second),
)
  • 使用sync.Pool减少堆内存分配(针对代表一条完整日志消息的zapcore.Entry),降低对GC压力。

下面是一个简单zap与logrus的性能基准benchmark对比:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/benchmark/log_lib_test.go
package main

import (
    "io"
    "testing"
    "time"

    "github.com/sirupsen/logrus"
    "go.uber.org/zap"
    "go.uber.org/zap/zapcore"
)

func BenchmarkLogrus(b *testing.B) {
    b.ReportAllocs()
    b.StopTimer()
    logger := logrus.New()
    logger.SetOutput(io.Discard)
    b.StartTimer()
    for i := 0; i < b.N; i++ {
        logger.WithFields(logrus.Fields{
            "url":     "http://foo.com",
            "attempt": 3,
            "backoff": time.Second,
        }).Info("failed to fetch URL")
    }
}

func BenchmarkZap(b *testing.B) {
    b.ReportAllocs()
    b.StopTimer()
    cfg := zap.NewProductionConfig()
    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(io.Discard),
        zapcore.InfoLevel,
    )
    logger := zap.New(core)
    b.StartTimer()
    for i := 0; i < b.N; i++ {
        logger.Info("failed to fetch URL",
            zap.String("url", `http://foo.com`),
            zap.Int("attempt", 3),
            zap.Duration("backoff", time.Second),
        )
    }
}

在上面的基准测试中,我们使用logrus和zap分别向io.Discard写入相同内容的日志,基准测试的运行结果如下:

$go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/bigwhite/zap-usage
cpu: Intel(R) Core(TM) i5-8257U CPU @ 1.40GHz
BenchmarkLogrus-8         281667          4001 ns/op        1365 B/op         25 allocs/op
BenchmarkZap-8           1319922           901.1 ns/op       192 B/op          1 allocs/op
PASS
ok      github.com/bigwhite/zap-usage   3.296s

我们看到zap的写日志性能是logrus的4倍,且每op仅一次内存分配,相比之下,logrus在性能和内存分配方面的确逊色不少。

有优点,就有不足。前面也说过,虽然zap在性能方面一骑绝尘,但是在使用体验方面却给开发者留下“阴影”。就比如在上面的性能基准测试中,考虑测试过程中的日志输出,我们没有采用默认的向stdout或stderr写入,而是将output设置为io.Discard。这样的改变在logrus中仅需一行:

logger.SetOutput(io.Discard)

而在zap项目的官方首页中,我居然没有找到进行这一变更的操作方法,在一阵查询和阅读后,才找到正确的方法(注:方法不唯一):

cfg := zap.NewProductionConfig()
core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(io.Discard),
        zapcore.InfoLevel,
)
logger := zap.New(core)

上面的logrus和zap在创建写向io.Discard的logger时的方法对比很直观地反映出两者在使用体验上的差异。

那么选择了zap后,我们如何能更好地使用zap以尽量弥合与logrus等log库在体验方面的差距呢?这就是本文想要和大家分享的内容。

2. 对zap进行封装,让其更好用

进入Go世界后,大家使用的第一个log库想必是Go标准库自带的log包,log包可谓是“开箱即用”:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/stdlog/demo1.go 

import "log"

func main() {
    log.Println("this is go standard log package")
}

上面的示例代码直接向标准错误(stderr)输出一行日志内容,而我们居然连一个logger变量都没有创建。即便是将日志写入文件,在log包看来也是十分easy的事情,看下面代码段:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/stdlog/demo2.go 

package main

import (
    "log"
    "os"
)

func main() {
    file, err := os.OpenFile("./demo2.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    log.SetOutput(file)
    log.Println("this is go standard log package")
}

我们仅需要将实现了io.Writer的os.File传给log包的SetOutput函数即可。这种无需创建logger变量而是直接使用包名+函数的方式写日志的方式减少了传递和管理logger变量的复杂性,这种使用者体验是我们对zap进行封装的目标。不过,我们也要做到心里有数:zap是一个通用的log库,我们封装后,只需提供我们所需的特性即可,没有必要再封装成一个像zap一样通用的库。另外用户只需依赖我们封装后的log包,而无需显式依赖zap/zapcore。

下面我们就来建立demo1:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1
$tree demo1
demo1
├── go.mod
├── go.sum
├── main.go
└── pkg
    ├── log
    │   └── log.go
    └── pkg1
        └── pkg1.go

我们对zap的封装在pkg/log/log.go中:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/pkg/log/log.go
package log

import (
    "io"
    "os"

    "go.uber.org/zap"
    "go.uber.org/zap/zapcore"
)

type Level = zapcore.Level

const (
    InfoLevel   Level = zap.InfoLevel   // 0, default level
    WarnLevel   Level = zap.WarnLevel   // 1
    ErrorLevel  Level = zap.ErrorLevel  // 2
    DPanicLevel Level = zap.DPanicLevel // 3, used in development log
    // PanicLevel logs a message, then panics
    PanicLevel Level = zap.PanicLevel // 4
    // FatalLevel logs a message, then calls os.Exit(1).
    FatalLevel Level = zap.FatalLevel // 5
    DebugLevel Level = zap.DebugLevel // -1
)

type Field = zap.Field

func (l *Logger) Debug(msg string, fields ...Field) {
    l.l.Debug(msg, fields...)
}

func (l *Logger) Info(msg string, fields ...Field) {
    l.l.Info(msg, fields...)
}

func (l *Logger) Warn(msg string, fields ...Field) {
    l.l.Warn(msg, fields...)
}

func (l *Logger) Error(msg string, fields ...Field) {
    l.l.Error(msg, fields...)
}
func (l *Logger) DPanic(msg string, fields ...Field) {
    l.l.DPanic(msg, fields...)
}
func (l *Logger) Panic(msg string, fields ...Field) {
    l.l.Panic(msg, fields...)
}
func (l *Logger) Fatal(msg string, fields ...Field) {
    l.l.Fatal(msg, fields...)
}

// function variables for all field types
// in github.com/uber-go/zap/field.go

var (
    Skip        = zap.Skip
    Binary      = zap.Binary
    Bool        = zap.Bool
    Boolp       = zap.Boolp
    ByteString  = zap.ByteString
    ... ...
    Float64     = zap.Float64
    Float64p    = zap.Float64p
    Float32     = zap.Float32
    Float32p    = zap.Float32p
    Durationp   = zap.Durationp
    ... ...
    Any         = zap.Any

    Info   = std.Info
    Warn   = std.Warn
    Error  = std.Error
    DPanic = std.DPanic
    Panic  = std.Panic
    Fatal  = std.Fatal
    Debug  = std.Debug
)

// not safe for concurrent use
func ResetDefault(l *Logger) {
    std = l
    Info = std.Info
    Warn = std.Warn
    Error = std.Error
    DPanic = std.DPanic
    Panic = std.Panic
    Fatal = std.Fatal
    Debug = std.Debug
}

type Logger struct {
    l     *zap.Logger // zap ensure that zap.Logger is safe for concurrent use
    level Level
}

var std = New(os.Stderr, int8(InfoLevel))

func Default() *Logger {
    return std
}

// New create a new logger (not support log rotating).
func New(writer io.Writer, level Level) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    cfg := zap.NewProductionConfig()
    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )
    logger := &Logger{
        l:     zap.New(core),
        level: level,
    }
    return logger
}

func (l *Logger) Sync() error {
    return l.l.Sync()
}

func Sync() error {
    if std != nil {
        return std.Sync()
    }
    return nil
}

在这个封装中,我们有如下几点说明:

  • 参考标准库log包,我们提供包级函数接口,底层是创建的默认Logger: std;
  • 你可以使用New函数创建了自己的Logger变量,但此时只能使用该实例的方法实现log输出,如果期望使用包级函数接口输出log,需要调用ResetDefault替换更新std实例的值,这样后续调用包级函数(Info、Debug)等就会输出到新实例的目标io.Writer中了。不过最好在输出任何日志前调用ResetDefault换掉std;
  • 由于zap在输出log时要告知具体类型,zap封装出了Field以及一些sugar函数(Int、String等),这里为了不暴露zap给用户,我们使用type alias语法定义了我们自己的等价于zap.Field的类型log.Field:
type Field = zap.Field

var (
    Skip        = zap.Skip
    Binary      = zap.Binary
    Bool        = zap.Bool
    Boolp       = zap.Boolp
    ByteString  = zap.ByteString
    ... ...
)
  • 我们使用method value语法将std实例的各个方法以包级函数的形式暴露给用户,简化用户对logger实例的获取:
var (
    Info   = std.Info
    Warn   = std.Warn
    Error  = std.Error
    DPanic = std.DPanic
    Panic  = std.Panic
    Fatal  = std.Fatal
    Debug  = std.Debug
)

下面是我们利用默认std使用包级函数直接输出日志到stderr的示例:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/main.go
package main

import (
    "github.com/bigwhite/zap-usage/pkg/log"
    "github.com/bigwhite/zap-usage/pkg/pkg1"
)

func main() {
    defer log.Sync()
    log.Info("demo1:", log.String("app", "start ok"),
        log.Int("major version", 2))
    pkg1.Foo()
}

在这个main.go中,我们像标准库log包那样直接使用包级函数实现日志输出,同时我们无需创建logger实例,也无需管理和传递logger实例,在log包的另外一个用户pkg1包中,我们同样可以直接使用包级函数输出log:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/pkg/pkg1/pkg1.go

package pkg1

import "github.com/bigwhite/zap-usage/pkg/log"

func Foo() {
    log.Info("call foo", log.String("url", "https://tonybai.com"),
        log.Int("attempt", 3))
}

如果你不想使用默认的std,而是要创建一个写入文件系统文件的logger,我们可以这样处理:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo1/main_new_logger.go
package main

import (
    "os"

    "github.com/bigwhite/zap-usage/pkg/log"
    "github.com/bigwhite/zap-usage/pkg/pkg1"
)

func main() {
    file, err := os.OpenFile("./demo1.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    logger := log.New(file, log.InfoLevel)
    log.ResetDefault(logger)
    defer log.Sync()
    log.Info("demo1:", log.String("app", "start ok"),
        log.Int("major version", 2))
    pkg1.Foo()
}

我们使用log.New创建一个新的Logger实例,然后通过log.ResetDefault用其替换掉std,这样后续的包级函数调用(log.Info)就会使用新创建的Logger实例了。

3. 自定义encoder

运行上面的demo1,我们会得到类似于下面格式的日志内容:

{"level":"info","ts":1625954037.630399,"msg":"demo1:","app":"start ok","major version":2}
{"level":"info","ts":1625954037.630462,"msg":"call foo","url":"https://tonybai.com","attempt":3}

我们可以定制zap的输出内容格式。

在定制之前,我们先来看看zap的内部结构:


图来自Go: How Zap Package is Optimized(见参考资料)

和其他log库相似,zap也是由创建logger与写log两个关键过程组成。其中zap的核心是名为zapcore.Core抽象,Core是zap定义的一个log接口,正如其名,围绕着这个Core,zap提供上层log对象以及相应的方法(zap.Logger就组合了zapcore.Core),开发者同样可以基于该接口定制自己的log包(比如:前面我们在New函数的实现)。

我们一般通过zapcore.NewCore函数创建一个实现了zapcore.Core的实例,NewCore接收三个参数,也是Core的主要组成部分,它们如下图:

                                 ┌───────────────┐
                                 │               │
                                 │               │
                      ┌─────────►│     Encoder   │
                      │          │               │
                      │          │               │
                      │          └───────────────┘
┌────────────────┐    │
│                ├────┘
│                │               ┌───────────────┐
│                │               │               │
│      Core      ├──────────────►│  WriteSyncer  │
│                │               │               │
│                ├─────┐         │               │
└────────────────┘     │         └───────────────┘
                       │
                       │
                       │         ┌───────────────┐
                       │         │               │
                       └────────►│  LevelEnabler │
                                 │               │
                                 │               │
                                 └───────────────┘
  • Encoder是日志消息的编码器;
  • WriteSyncer是支持Sync方法的io.Writer,含义是日志输出的地方,我们可以很方便的通过zap.AddSync将一个io.Writer转换为支持Sync方法的WriteSyncer;
  • LevelEnabler则是日志级别相关的参数。

由此我们看到要定制日志的输出格式,我们的重点是Encoder。

从大类别上分,zap内置了两类编码器,一个是ConsoleEncoder,另一个是JSONEncoder。ConsoleEncoder更适合人类阅读,而JSONEncoder更适合机器处理。zap提供的两个最常用创建Logger的函数:NewProduction和NewDevelopment则分别使用了JSONEncoder和ConsoleEncoder。两个编码器默认输出的内容对比如下:

// ConsoleEncoder(NewDevelopment创建)
2021-07-11T09:39:04.418+0800    INFO    zap/testzap2.go:12  failed to fetch URL {"url": "localhost:8080", "attempt": 3, "backoff": "1s"}

// JSONEncoder (NewProduction创建)
{"level":"info","ts":1625968332.269727,"caller":"zap/testzap1.go:12","msg":"failed to fetch URL","url":"localhost:8080","attempt":3,"backoff":1}

我们可以看到两者差异巨大!ConsoleEncoder输出的内容跟适合我们阅读,而JSONEncoder输出的结构化日志更适合机器/程序处理。前面我们说了,我们封装的log包不是要做通用log包,我们无需同时支持这两大类Encoder,于是我们在上面的示例选择采用的JSONEncoder:

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )

基于Encoder,我们可以定制的内容有很多,多数开发人员可能都会对日期格式、是否显示此条日志的caller信息等定制感兴趣。

zap库自身也提供了基于功能选项模式的Option接口:

// zap options.go
type Option interface {
    apply(*Logger)
}

func WithCaller(enabled bool) Option {
    return optionFunc(func(log *Logger) {
        log.addCaller = enabled
    })
}

我们的log库如果要提供一定的Encoder定制能力,我们也需要像Field那样通过type alias语法将zap.Option暴露给用户,同时以函数类型变量的形式将zap的部分option导出给用户。至于时间戳,我们选择一种适合我们的格式后可固定下来。下面是demo1的log的基础上增加了一些对encoder的定制功能而形成的demo2 log包:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo2/pkg/log/log.go

var std = New(os.Stderr, InfoLevel, WithCaller(true))

type Option = zap.Option

var (
    WithCaller    = zap.WithCaller
    AddStacktrace = zap.AddStacktrace
)

// New create a new logger (not support log rotating).
func New(writer io.Writer, level Level, opts ...Option) *Logger {
    if writer == nil {
        panic("the writer is nil")
    }
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }

    core := zapcore.NewCore(
        zapcore.NewJSONEncoder(cfg.EncoderConfig),
        zapcore.AddSync(writer),
        zapcore.Level(level),
    )
    logger := &Logger{
        l:     zap.New(core, opts...),
        level: level,
    }
    return logger
}

定制后,我们的log包输出的内容就变成了如下这样了:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo2/
$go run main.go
{"level":"info","ts":"2021-07-11T10:45:38.858+0800","caller":"log/log.go:33","msg":"demo1:","app":"start ok"}

4. 写入多log文件

定制完encoder,我们再来看看writeSyncer。nginx想必没人没用过,nginx有两个重要的日志文件:access.log和error.log,前者是正常的访问日志,后者则是报错日志。如果我们也要学习nginx,为业务系统建立两类日志文件,一类类似于access.log,记录正常业务吹的日志,另外一类则类似error.log,记录系统的出错日志,我们该如何设计和实现?有人可能会说,那就建立两个logger呗。没错,这的确是一个方案。但如果我就想使用包级函数来写多个log文件,并且无需传递logger实例呢?zap提供了NewTee这个导出函数就是用来写多个日志文件的。

下面我们就来用demo3来实现这个功能,我们也对外提供一个NewTee的函数,用于创建写多个log文件的logger:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo3/pkg/log/log.go
type LevelEnablerFunc func(lvl Level) bool

type TeeOption struct {
    W   io.Writer
    Lef LevelEnablerFunc
}

func NewTee(tops []TeeOption, opts ...Option) *Logger {
    var cores []zapcore.Core
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }
    for _, top := range tops {
        top := top
        if top.W == nil {
            panic("the writer is nil")
        }         

        lv := zap.LevelEnablerFunc(func(lvl zapcore.Level) bool {
            return top.Lef(Level(lvl))
        })        

        core := zapcore.NewCore(
            zapcore.NewJSONEncoder(cfg.EncoderConfig),
            zapcore.AddSync(top.W),
            lv,
        )
        cores = append(cores, core)
    }

    logger := &Logger{
        l: zap.New(zapcore.NewTee(cores...), opts...),
    }
    return logger
}

我们看到由于多个日志文件可能会根据写入的日志级别选择是否落入文件,于是我们提供了一个TeeOption类型,类型定义中包含一个io.Writer以及一个level enabler func,我们来看一下如何使用这个NewTee函数:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo3/main.go
package main

import (
    "os"

    "github.com/bigwhite/zap-usage/pkg/log"
)

func main() {
    file1, err := os.OpenFile("./access.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }
    file2, err := os.OpenFile("./error.log", os.O_CREATE|os.O_APPEND|os.O_WRONLY, 0644)
    if err != nil {
        panic(err)
    }

    var tops = []log.TeeOption{
        {
            W: file1,
            Lef: func(lvl log.Level) bool {
                return lvl <= log.InfoLevel
            },
        },
        {
            W: file2,
            Lef: func(lvl log.Level) bool {
                return lvl > log.InfoLevel
            },
        },
    }

    logger := log.NewTee(tops)
    log.ResetDefault(logger)

    log.Info("demo3:", log.String("app", "start ok"),
        log.Int("major version", 3))
    log.Error("demo3:", log.String("app", "crash"),
        log.Int("reason", -1))

}

我们建立两个TeeOption,分别对应access.log和error.log,前者接受level<=info级别的日志,后者接受level>error级别的日志。我们运行一下该程序:

$go run main.go
$cat access.log
{"level":"info","ts":"2021-07-11T12:09:47.736+0800","msg":"demo3:","app":"start ok","major version":3}
$cat error.log
{"level":"error","ts":"2021-07-11T12:09:47.737+0800","msg":"demo3:","app":"crash","reason":-1}

如我们预期,不同level的日志写入到不同文件中了,而我们只需调用包级函数即可,无需管理和传递不同logger。

5. 让日志文件支持自动rotate(轮转)

如果log写入文件,那么文件迟早会被写满!我们不能坐视不管!业内通用的方案是log rotate(轮转),即当log文件size到达一定大小时,会归档该文件,并重新创建一个新文件继续写入,这个过程对应用是透明无感知的。

而log rotate方案通常有两种,一种是基于logrotate工具的外部方案,一种是log库自身支持轮转。zap库与logrotate工具的兼容性似乎有些问题,zap官方FAQ也推荐第二种方案

不过zap并不是原生支持rotate,而是通过外部包来支持,zap提供了WriteSyncer接口可以方便我们为zap加入rotate功能。目前在支持logrotate方面,natefinch的lumberjack是应用最为官方的包,下面我们来看看如何为demo3的多日志文件增加logrotate:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/demo4/pkg/log/log.go

type RotateOptions struct {
    MaxSize    int
    MaxAge     int
    MaxBackups int
    Compress   bool
}

type TeeOption struct {
    Filename string
    Ropt     RotateOptions
    Lef      LevelEnablerFunc
}

func NewTeeWithRotate(tops []TeeOption, opts ...Option) *Logger {
    var cores []zapcore.Core
    cfg := zap.NewProductionConfig()
    cfg.EncoderConfig.EncodeTime = func(t time.Time, enc zapcore.PrimitiveArrayEncoder) {
        enc.AppendString(t.Format("2006-01-02T15:04:05.000Z0700"))
    }

    for _, top := range tops {
        top := top

        lv := zap.LevelEnablerFunc(func(lvl zapcore.Level) bool {
            return top.Lef(Level(lvl))
        })

        w := zapcore.AddSync(&lumberjack.Logger{
            Filename:   top.Filename,
            MaxSize:    top.Ropt.MaxSize,
            MaxBackups: top.Ropt.MaxBackups,
            MaxAge:     top.Ropt.MaxAge,
            Compress:   top.Ropt.Compress,
        })

        core := zapcore.NewCore(
            zapcore.NewJSONEncoder(cfg.EncoderConfig),
            zapcore.AddSync(w),
            lv,
        )
        cores = append(cores, core)
    }

    logger := &Logger{
        l: zap.New(zapcore.NewTee(cores...), opts...),
    }
    return logger
}

我们在TeeOption中加入了RotateOptions(当然这种绑定并非必须),并使用lumberjack.Logger作为io.Writer传给zapcore.AddSync,这样创建出来的logger既有写多日志文件的能力,又让每种日志文件具备了自动rotate的功能。

我们在main中使用该log:

// github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage/main.go
package main

import (
    "github.com/bigwhite/zap-usage/pkg/log"
)

func main() {
    var tops = []log.TeeOption{
        {
            Filename: "access.log",
            Ropt: log.RotateOptions{
                MaxSize:    1,
                MaxAge:     1,
                MaxBackups: 3,
                Compress:   true,
            },
            Lef: func(lvl log.Level) bool {
                return lvl <= log.InfoLevel
            },
        },
        {
            Filename: "error.log",
            Ropt: log.RotateOptions{
                MaxSize:    1,
                MaxAge:     1,
                MaxBackups: 3,
                Compress:   true,
            },
            Lef: func(lvl log.Level) bool {
                return lvl > log.InfoLevel
            },
        },
    }

    logger := log.NewTeeWithRotate(tops)
    log.ResetDefault(logger)

    // 为了演示自动rotate效果,这里多次调用log输出
    for i := 0; i < 20000; i++ {
        log.Info("demo3:", log.String("app", "start ok"),
            log.Int("major version", 3))
        log.Error("demo3:", log.String("app", "crash"),
            log.Int("reason", -1))
    }
}

运行上述main包,我们将看到如下输出:

// demo4

$go run main.go
$ls -l
total 3680
drwxr-xr-x  10 tonybai  staff      320  7 11 12:54 ./
drwxr-xr-x   8 tonybai  staff      256  7 11 12:23 ../
-rw-r--r--   1 tonybai  staff     3938  7 11 12:54 access-2021-07-11T04-54-04.697.log.gz
-rw-r--r--   1 tonybai  staff  1011563  7 11 12:54 access.log
-rw-r--r--   1 tonybai  staff     3963  7 11 12:54 error-2021-07-11T04-54-04.708.log.gz
-rw-r--r--   1 tonybai  staff   851580  7 11 12:54 error.log

我们看到access.log和error.log都在size超过1M后完成了一次自动轮转,归档的日志也按照之前的配置(compress)进行了压缩。

6. 小结

本文对zap日志库的使用方法做了深度说明,包括对zap进行封装的一种方法,使得我们可以像标准库log包那样通过包级函数直接输出log而无需管理和传递logger变量;我们可以自定义zap encoder(时间、是否输出caller等);通过NewTee可以创建一次性写入多个日志文件的logger,并且可以通过log level判断是否接受写入;最后,我们让zap日志支持了自动轮转。

如果说有不足,那就是zap不支持动态设置全局logger的日志级别,不过似乎有第三方方案,这里就不深入了,作为遗留问题留给大家了。

本文涉及到的代码可以在这里下载: https://github.com/bigwhite/experiments/tree/master/uber-zap-advanced-usage

7. 参考资料

  • Go: How Zap Package is Optimized – https://medium.com/@blanchon.vincent/go-how-zap-package-is-optimized-dbf72ef48f2d
  • 深度 | 从Go高性能日志库zap看如何实现高性能Go组件 – https://mp.weixin.qq.com/s/i0bMh_gLLrdnhAEWlF-xDw

“Gopher部落”知识星球正式转正(从试运营星球变成了正式星球)!“gopher部落”旨在打造一个精品Go学习和进阶社群!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!部落目前虽小,但持续力很强。在2021年上半年,部落将策划两个专题系列分享,并且是部落独享哦:

  • Go技术书籍的书摘和读书体会系列
  • Go与eBPF系列

欢迎大家加入!

Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订
阅!

img{512x368}

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!

img{512x368}

我爱发短信:企业级短信平台定制开发专家 https://tonybai.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 – https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx
  • 微信公众号:iamtonybai
  • 博客:tonybai.com
  • github: https://github.com/bigwhite
  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

微信赞赏:
img{512x368}

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats