标签 goroutine 下的文章

Go 1.5中值得关注的几个变化

GopherCon2015开幕之 际,Google Go Team终于放出了Go 1.5Beta1版本的安装包。在go 1.5Beta1的发布说明中,Go Team也诚恳地承认Go 1.5将打破之前6个月一个版本的发布周期,这是因为Go 1.5变动太大,需要更多时间来准备这次发布(fix bug, Write doc)。关于Go 1.5的变化,之前Go Team staff在各种golang技术会议的slide  中暴露不少,包括:

- 编译器和运行时由C改为Go(及少量汇编语言)重写,实现了Go的self Bootstrap(自举)
- Garbage Collector优化,大幅降低GC延迟(Stop The World),实现Gc在单独的goroutine中与其他user goroutine并行运行。
- 标准库变更以及一些go tools的引入。

每项变动都会让gopher激动不已。但之前也只是激动,这次beta1出来后,我们可以实际体会一下这些变动带来的“快感”了。Go 1.5beta1的发布文档目前还不全,有些地方还有“待补充”字样,可能与最终go 1.5发布时的版本有一定差异,不过大体内容应该是固定不变的了。这篇文章就想和大家一起浅显地体验一下go 1.5都给gophers们带来了哪些变化吧。

一、语言

【map literal】

go 1.5依旧兼容Go 1 language specification,但修正了之前的一个“小疏忽”。

Go 1.4及之前版本中,我们只能这么来写代码:

//testmapliteral.go
package main

import (
    "fmt"
)

type Point struct {
    x int
    y int
}

func main() {
    var sl = []Point{{3, 4}, {5, 6}}
    var m = map[Point]string{
        Point{3,4}:"foo1",
        Point{5,6}:"foo2",
    }
    fmt.Println(sl)
    fmt.Println(m)
}

可以看到,对于Point这个struct来说,在初始化一个slice时,slice value literal中无需显式的带上元素类型Point,即

var sl = []Point{{3, 4}, {5, 6}}

而不是

var sl = []Point{Point{3, 4}, Point{5, 6}}

但当Point作为map类型的key类型时,初始化map时则要显式带上元素类型Point。Go team承认这是当初的一个疏忽,在本次Go 1.5中将该问题fix掉了。也就是说,下面的代码在Go 1.5中可以顺利编译通过:

func main() {
    var sl = []Point{{3, 4}, {5, 6}}
    var m = map[Point]string{
        {3,4}:"foo1",
        {5,6}:"foo2",
    }
    fmt.Println(sl)
    fmt.Println(m)
}

【GOMAXPROCS】

就像这次GopherCon2015上现任Google Go project Tech Lead的Russ Cox的开幕Keynote中所说的那样:Go目标定位于高度并发的云环境。Go 1.5中将标识并发系统线程个数的GOMAXPROCS的初始值由1改为了运行环境的CPU核数。

// testgomaxprocs.go
package main

import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Println(runtime.GOMAXPROCS(-1))
    fmt.Println(runtime.NumGoroutine())
}

这个代码在Go 1.4下(Mac OS X 4核)运行结果是:

$go run testgomaxprocs.go
1
4

而在go 1.5beta1下,结果为:

$go run testgomaxprocs.go
4
4

二、编译

【简化跨平台编译】

1.5之前的版本要想实现跨平台编译,需要到$GOROOT/src下重新执行一遍make.bash,执行前设置好目标环境的环境变量(GOOS和 GOARCH),Go 1.5大大简化这个过程,使得跨平台编译几乎与普通编译一样简单。下面是一个简单的例子:

//testcrosscompile.go
package main

import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Println(runtime.GOOS)
}

在我的Mac上,本地编译执行:
$go build -o testcrosscompile_darwin testcrosscompile.go
$testcrosscompile_darwin
darwin

跨平台编译linux amd64上的目标程序:

$GOOS=linux GOARCH=amd64 go build -o testcrosscompile_linux testcrosscompile.go

上传testcrosscompile_linux到ubuntu 14.04上执行:
$testcrosscompile_linux
linux

虽然从用户角度跨平台编译命令很简单,但事实是go替你做了很多事情,我们可以通过build -x -v选项来输出编译的详细过程,你会发现go会先进入到$GOROOT/src重新编译runtime.a以及一些平台相关的包。编译输出的信息 太多,这里就不贴出来了。但在1.5中这个过程非常快(10秒以内),与1.4之前版本的跨平台编译相比,完全不是一个级别,这也许就是编译器用Go重写完的好处之一吧。

除了直接使用go build,我们还可以使用go tool compile和go tool link来编译程序,实际上go build也是调用这两个工具完成编译过程的。

$go tool compile testcrosscompile.go
testcrosscompile.o
$go tool link testcrosscompile.o
a.out
$a.out
darwin

go 1.5移除了以前的6a,6l之类的编译连接工具,将这些工具整合到go tool中。并且go tool compile的输出默认改为.o文件,链接器输出默认改为了a.out。

【动态共享库】

个人不是很赞同Go语言增加对动态共享库的支持,.so和.dll这类十多年前的技术在如今内存、磁盘空间都“非常大”的前提下,似乎已经失去了以往的魅 力。并且动态共享库所带来的弊端:"DLL hell"会让程序后续的运维痛苦不已。Docker等轻量级容器的兴起,面向不变性的架构(immutable architecture)受到更多的关注。人们更多地会在container这一层进行操作,一个纯static link的应用在部署和维护方面将会有天然优势,.so只会增加复杂性。如果单纯从与c等其他语言互操作的角度,似乎用途也不会很广泛(但游戏或ui领域 可能会用到)。不过go 1.5还是增加了对动态链接库的支持,不过从go tool compile和link的doc说明来看,目前似乎还处于实验阶段。

既然go 1.5已经支持了shared library,我们就来实验一下。我们先规划一下测试repository的目录结构:

$GOPATH
    /src
        /testsharedlib
            /shlib
                – lib.go
        /app
            /main.go

lib.go中的代码很简单:

//lib.go
package shlib

import "fmt"

// export Method1
func Method1() {
    fmt.Println("shlib -Method1")
}

对于希望导出的方法,采用export标记。

我们来将这个lib.go编译成shared lib,注意目前似乎只有linux平台支持编译go shared library:

$ go build -buildmode=shared testsharedlib/shlib
# /tmp/go-build709704006/libtestsharedlib-shlib.so
warning: unable to find runtime/cgo.a

编译ok,那个warning是何含义不是很理解。

要想.so被其他go程序使用,需要将.so安装到相关目录下。我们install一下试试:

$ go install -buildmode=shared testsharedlib/shlib
multiple roots /home1/tonybai/test/go/go15/pkg/linux_amd64_dynlink & /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink

go工具居然纠结了,不知道选择放在哪里,一个是$GOPATH/pkg/linux_amd64_dynlink,另外一个则是$GOROOT/pkg/linux_amd64_dynlink,我不清楚这是不是一个bug。

在Google了之后,我尝试了网上的一个解决方法,先编译出runtime的动态共享库:

$go install -buildmode=shared runtime sync/atomic

编译安装后,你就会在$GOROOT/pkg下面看到多出来一个目录:linux_amd64_dynlink。这个目录下的结构如下:

$ ls -R
.:
libruntime,sync-atomic.so  runtime  runtime.a  runtime.shlibname  sync

./runtime:
cgo.a  cgo.shlibname

./sync:
atomic.a  atomic.shlibname

这里看到了之前warning提到的runtime/cgo.a,我们再来重新执行一下build,看看能不能消除warning:

$ go build -buildmode=shared testsharedlib/shlib
# /tmp/go-build086398801/libtestsharedlib-shlib.so
/home1/tonybai/.bin/go15beta1/go/pkg/tool/linux_amd64/link: cannot implicitly include runtime/cgo in a shared library

这回连warnning都没有了,直接是一个error。这里提示:无法在一个共享库中隐式包含runtime/cgo。也就是说我们在构建 testshared/shlib这个动态共享库时,还需要显式的link到runtime/cgo,这里就需要另外一个命令行标志:- linkshared。我们再来试试:

$ go build  -linkshared -buildmode=shared testsharedlib/shlib

这回build成功!我们再来试试install:

$ go install  -linkshared -buildmode=shared testsharedlib/shlib

同样成功了。并且我们在$GOPATH/pkg/linux_amd64_dynlink下发现了共享库:

$ ls -R
.:
libtestsharedlib-shlib.so  testsharedlib

./testsharedlib:
shlib.a  shlib.shlibname

$ ldd libtestsharedlib-shlib.so
    linux-vdso.so.1 =>  (0x00007fff93983000)
    libruntime,sync-atomic.so => /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink/libruntime,sync-atomic.so (0x00007fa150f1b000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa150b3f000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa150921000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fa1517a7000)

好了,既然共享库编译出来了。我们就来用一下这个共享库。

//app/main.go

package main

import (
    "testsharedlib/shlib"
)

func main() {
    shlib.Method1()
}

$ go build -linkshared main.go
$ ldd main
    linux-vdso.so.1 =>  (0x00007fff579f7000)
    libruntime,sync-atomic.so => /home1/tonybai/.bin/go15beta1/go/pkg/linux_amd64_dynlink/libruntime,sync-atomic.so (0x00007fa8d6df2000)
    libtestsharedlib-shlib.so => /home1/tonybai/test/go/go15/pkg/linux_amd64_dynlink/libtestsharedlib-shlib.so (0x00007fa8d6962000)
    libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fa8d6586000)
    libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fa8d6369000)
    /lib64/ld-linux-x86-64.so.2 (0x00007fa8d71ef000)

$ main
shlib -Method1

编译执行ok。从输出结果来看,我们可以清晰看到main依赖的.so以及so的路径。我们再来试试,如果将testsharedlib源码目录移除后,是否还能编译ok:

$ go build -linkshared main.go
main.go:4:2: cannot find package "testsharedlib/shlib" in any of:
    /home1/tonybai/.bin/go15beta1/go/src/testsharedlib/shlib (from $GOROOT)
    /home1/tonybai/test/go/go15/src/testsharedlib/shlib (from $GOPATH)

go编译器无法找到shlib,也就说即便是动态链接,我们也要有动态共享库的源码,应用才能编译通过。

internal package

internal包不是go 1.5的原创,在go 1.4中就已经提出对internal package的支持了。但go 1.4发布时,internal package只能用于GOROOT下的go core核心包,用户层面GOPATH不支持internal package。按原计划,go 1.5中会将internal包机制工作范围全面扩大到所有repository的。我原以为1.5beta1以及将internal package机制生效了,但实际结果呢,我们来看看示例代码:

测试目录结构如下:

testinternal/src
    mypkg/
        /internal
            /foo
                foo.go
        /pkg1
            main.go

    otherpkg/
            main.go

按照internal包的原理,预期mypkg/pkg1下的代码是可以import "mypkg/internal/foo"的,otherpkg/下的代码是不能import "mypkg/internal/foo"的。

//foo.go
package foo

import "fmt"

func Foo() {
    fmt.Println("mypkg/internal/foo")
}

//main.go
package main

import "mypkg/internal/foo"

func main() {
    foo.Foo()
}

在pkg1和otherpkg下分别run main.go:

mypkg/pkg1$ go run main.go
mypkg/internal/foo

otherpkg$ go run main.go
mypkg/internal/foo

可以看到在otherpkg下执行时,并没有任何build error出现。看来internal机制并未生效。

我们再来试试import $GOROOT下某些internal包,看看是否可以成功:

package main

import (
    "fmt"
    "image/internal/imageutil"
)

func main() {
    fmt.Println(imageutil.DrawYCbCr)
}

我们run这个代码:

$go run main.go
0x6b7f0

同样没有出现任何error。

不是很清楚为何在1.5beta1中internal依旧无效。难道非要等最终1.5 release版么?

【Vendor】
Vendor机制是go team为了解决go第三方包依赖和管理而引入的实验性技术。你执行以下go env:

$go env
GOARCH="amd64"
GOBIN="/Users/tony/.bin/go15beta1/go/bin"
GOEXE=""
GOHOSTARCH="amd64"
GOHOSTOS="darwin"
GOOS="darwin"
GOPATH="/Users/tony/Test/GoToolsProjects"
GORACE=""
GOROOT="/Users/tony/.bin/go15beta1/go"
GOTOOLDIR="/Users/tony/.bin/go15beta1/go/pkg/tool/darwin_amd64"
GO15VENDOREXPERIMENT=""
CC="clang"
GOGCCFLAGS="-fPIC -m64 -pthread -fno-caret-diagnostics -Qunused-arguments -fmessage-length=0 -fno-common"
CXX="clang++"
CGO_ENABLED="1"

从结果中你会看到新增一个GO15VENDOREXPERIMENT变量,这个就是用来控制vendor机制是否开启的环境变量,默认不开启。若要开启,可以在环境变量文件中设置或export GO15VENDOREXPERIMENT=1临时设置。

vendor机制是在go 1.5beta1发布前不长时间临时决定加入到go 1.5中的,Russ Cox在Keith Rarick之前的一个Proposal的基础上重新做了设计而成,大致机制内容:

If there is a source directory d/vendor, then,
    when compiling a source file within the subtree rooted at d,
    import "p" is interpreted as import "d/vendor/p" if that exists.

    When there are multiple possible resolutions,
    the most specific (longest) path wins.

    The short form must always be used: no import path can
    contain “/vendor/” explicitly.

    Import comments are ignored in vendored packages.

下面我们来测试一下这个机制。首先我们临时开启vendor机制,export GO15VENDOREXPERIMENT=1,我们的测试目录规划如下:

testvendor
    vendor/
        tonybai.com/
            foolib/
                foo.go
    main/
        main.go

$GOPATH/src/tonybai.com/foolib/foo.go

//vendor/tonybai.com/foolib/foo.go
package foo

import "fmt"

func Hello() {
    fmt.Println("foo in vendor")
}

//$GOPATH/src/tonybai.com/foolib/foo.go
package foo

import "fmt"

func Hello() {
    fmt.Println("foo in gopath")
}

vendor和gopath下的foo.go稍有不同,主要在输出内容上,以方便后续区分。

现在我们编译执行main.go

//main/main.go
package main

import (
    "tonybai.com/foolib"
)

func main() {
    foo.Hello()
}

$go run main.go
foo in gopath

显然结果与预期不符,我们通过go list -json来看main.go的依赖包路径:

$go list -json
{
… …
    "Imports": [
        "tonybai.com/foolib"
    ],
    "Deps": [
        "errors",
        "fmt",
        "io",
        "math",
        "os",
        "reflect",
        "runtime",
        "strconv",
        "sync",
        "sync/atomic",
        "syscall",
        "time",
        "tonybai.com/foolib",
        "unicode/utf8",
        "unsafe"
    ]
}

可以看出并没有看到vendor路径,main.go import的是$GOPATH下的foo。难道是go 1.5beta1的Bug?于是翻看各种资料,最后在go 1.5beta1发布前最后提交的revison的commit log中得到了帮助:

cmd/go: disable vendoredImportPath for code outside $GOPATH
It was crashing.
This fixes the build for
GO15VENDOREXPERIMENT=1 go test -short runtime

Fixes #11416.

Change-Id: I74a9114cdd8ebafcc9d2a6f40bf500db19c6e825
Reviewed-on: https://go-review.googlesource.com/11964
Reviewed-by: Russ Cox <rsc@golang.org>

从commit log来看,大致意思是$GOPATH之外的代码的vendor机制被disable了(因为某个bug)。也就是说只有$GOPATH路径下的包在 import时才会考虑vendor路径,我们的代码的确没有在$GOPATH下,我们重新设置一下$GOPATH。

$export GOPATH=~/test/go/go15
[tony@TonydeMacBook-Air-2 ~/test/go/go15/src/testvendor/main]$go list -json
{
  
  … …
    "Imports": [
        "testvendor/vendor/tonybai.com/foolib"
    ],
    "Deps": [
        "errors",
        "fmt",
        "io",
        "math",
        "os",
        "reflect",
        "runtime",
        "strconv",
        "sync",
        "sync/atomic",
        "syscall",
        "testvendor/vendor/tonybai.com/foolib",
        "time",
        "unicode/utf8",
        "unsafe"
    ]
}

这回可以看到vendor机制生效了。执行main.go:

$go run main.go
foo in vendor

这回与预期结果就相符了。

前面提到,关闭GOPATH外的vendor机制是因为一个bug,相信go 1.5正式版发布时,这块会被enable的。

三、小结

Go 1.5还增加了很多工具,如trace,但因文档不全,尚不知如何使用。

Go 1.5标准库也有很多小的变化,这个只有到使用时才能具体深入了解。

Go 1.5更多是Go语言骨子里的变化,也就是runtime和编译器重写。语法由于兼容Go 1,所以基本frozen,因此从外在看来,基本没啥变动了。

至于Go 1.5的性能,官方的说法是,有的程序用1.5编译后会变得慢点,有的会快些。官方bench的结果是总体比1.4快上一些。但Go 1.5在性能方面主要是为了减少gc延迟,后续版本才会在性能上做进一步优化,优化空间还较大的,这次runtime、编译器由c变go,很多地方的go 代码并非是最优的,多是自动翻译,相信经过Go team的优化后,更idiomatic的Go code会让Go整体性能更为优异。

也谈并发与并行

在一般人的眼中,“并行”就是并行,即你干你的,我干我的,两个“并行”的执行过程可能是两条毫无瓜葛的平行线,也可能是有交叉,但瞬即分开的两条线。不 过在程序员的世界里,有关“并行”的概念却有两个单词:Concurrency和Parallelism,对应的比较主流的中文翻译为并发 (Concurrency)和并行(Parallelism)。

之前一直使用C、Python进行Coding,对Concrrency和Parallelism的异同并不十分关心,也未求甚解。但switch to golang后,尤其是学习2012年Rob Pike的一个talk slide:“Concurrency is not Parallelism(译作:并发不是并行)"后,感觉之前对于“并行”的理解还未到火候。

golang的Author们对文档还是非常看重的。按照目前golang的age来说,其文档的充分性相对于其他语言已经是相对较好的了。golang 的 author们还时不时放出一些blog、talk和slide,以帮助大家编写出more idiomatic的golang程序。Rob Pike的“并发不是并行”就是golang官方站点上的一个talk slide(中文版在这里 )。

Rob Pike是Golang大神,这里先列出他在talk中对于并发与并行的学术阐释和理解:

【Concurrency并发】
Programming as the composition of independently executing processes. (Processes in the general sense, not Linux processes. Famously hard to define.)
将相互独立的执行过程综合到一起的编程技术。(这里是指通常意义上的执行过程,而不是Linux进程。很难定义。)

Concurrency is about dealing with lots of things at once.
并发是指同时处理很多事情。

Concurrency is about structure.
并发关乎结构。

Concurrency provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable.
并发提供了一种方式让我们能够设计一种方案将问题(非必须的)并行的解决。

Concurrency is a way to structure a program by breaking it into pieces that can be executed independently.
并发是一种将一个程序分解成小片段独立执行的程序设计方法。

【Parallelism并行】
Programming as the simultaneous execution of (possibly related) computations.
同时执行(通常是相关的)计算任务的编程技术。

Parallelism is about doing lots of things at once.
并行是指同时能完成很多事情。

Parallelism is about execution.
并行关乎执行。

【小结】
They are Not the same, but related.
它们不相同,但相关。

怎么样?看上上面的论述是不是一头雾水啊。Rob Pike也觉得这些概念以及描述过于抽象,于是给了一个具体的“地鼠推车运书”的例子,不过当你看完这个例子后,可能会变得更加糊涂,至少我有这种感觉-地鼠凌乱综合症^_^。这是因为这个例子隐含的结合了Go语言goroutine调度的三个概念:P(虚拟processor上下文)、M(内核线程)和G(Goroutine对象)。如果仅仅从理解并行和并发的差异来说,我们可以抛开go语言,用生活中的例子感觉更适合些。

下面我们就来一个例子来说说明一下并发与并行,从一个程序的设计演进角度来阐述。

问题:说的是一个Gopher早起后的生活,Gopher早起后,有三个任务(或者称为三件事情)要完成:洗漱、早餐、着装。我们来设计一个程序,帮助Gopher高效正确的完成这三件事。

如果你是程序员,要完成这个场景,你可能会这么设计你的程序:

program1:

最简单的思路:这个gopher一件一件事情去完成:

main:
    call 洗漱
    call 早餐
    call 着装

这里我们把Gopher看做是一颗cpu,它按程序逻辑,顺序执行洗漱、早餐和着装三件事。即如下图那样:

现在我们玩个克隆游戏,我们clone出一个与这个Gopher一模一样的Gopher,且两个gopher之间存在着某种超宇宙联系,一个Gopher行为的结果都能反应到另外一个gopher上。我们让这两个Gopher一起来做这三件事情,看看是否能够提速。

遗憾的是,两个Gopher都要从洗漱做起。一个Gopher占用了卫生间开始洗漱,另外一个Gopher只能等着,而没法去做早餐或是着装。当那个 Gopher完成洗漱,后面的这个Gopher由于超联系也同步完成了洗漱,进入下一个环节:早餐。过程还是一样的,只能一个Gopher在餐厅准备早 餐。也就是说这两个Gopher没有一起做事,而是一个做,一个赋闲。因此我们看到两个Gopher并没有加快事情完成的步伐,从过程上来看,即便有更多 的Gopher,也依旧无法提速。我们需要对程序做些改造。

注:首尾相连的红线的总长度 = 完成时间。

program2:

main:
    pthread_create(洗漱)
    pthread_create(早餐)
    pthread_create(着装)

    waitAll

Gopher来执行一遍新程序。由于建立了三个逻辑执行体,因此Gopher在三个执行体间切换,从Gopher的角度去看,Gopher的执行路径如下图:


Program2-1

Gopher不再像上面Program1那样顺序执行了,而是在三个活动间切换,但总时长依旧没有下降。

为了验证该程序在多Gopher下是否有效率提升,我们再玩一次克隆游戏,这次clone出另外两个Gopher,三个Gopher一起来执行该程序,一个可能的执行路径见下图:


Program2-2

每个Gopher绑定一个逻辑执行体,整体完成的总时长下降为原来的三分之一。这次三个Gopher都没有赋闲,真正做到你干你的,我干我的,一起做。

program3:

虽然在program2中,多个Gopher一起工作提升了效率,但那是极限么,还能提高么?我们试想一下三个活动:洗漱、早餐和着装的难易不同,耗时不 同。一个可能的结果是Gopher1完成了洗漱,但Gopher2才准备了一半早餐,Gopher3刚选完上衣。这时Gopher1便开始空闲,无法帮助 Gopher2和Gopher3继续提高效率。我们再试试重新组合一下要完成的任务,让每个Gopher都能执行不同的活动环节。

main:
        c chan job
        for i = 0; i < 3; i++  {
            go gopherworker(c)
        }

        for j := range jobs {
            c <- j
        }
        … …

gopherworker(c chan job):
      for {
         select {
         case <-c:
         … …
      }

以下是一个可能的执行路径图:

到了这里,不知道你是否通过上面程序演进的过程悟道些什么,例子里我通篇没有提到并发或并行。

但从例子可以看出,并发和并行是两个阶段的事情。并发在程序的设计和实现阶段,并行在程序的执行阶段。

在Program1之前,我们只有问题,并无方案。

Program1方案让我们可以解决问题,但从Program1的执行结果来看,Program1并不能并行执行。原因是在设计和实现阶段程序就是按照顺序思路进行的,这就好比底子没打好,在平房的地基上永远不能盖50层的大楼。

Program2-1方案的执行结果与Program1相同,但Program2在设计和实现阶段采用的理念却与Program1完全不同,如果说 Program1打的是平房的地基,那么Program2打的就是大厦的地基,虽然Program2-1上依旧盖的是平房(单Gopher执行)。但 Program2-2显然就是在这样的地基上盖的摩天大楼了(多Gopher执行)。Program2的结构使得Program2在多Gopher下提升 了效率,实现了运行时并行。

Program3更进一步,在设计和实现阶段就本着充分高效的利用多个Gopher的理念,并最终实现了执行阶段的并行。

因此我们在编程语言层面更多谈并发,Golang对外宣传时永远用的是支持并发,而不是支持并行。设计实现阶段好比打地基,不同水准的地基决定了你在这个地基上面是只能盖平房,还是盖高层,还是能盖摩天大楼。

我们再回过头来重温Rob Pike大神关于两者的阐述:“并发关乎结构,并行关乎执行”,是不是感觉意味深长啊,大神就是大神,一句话就能抓住本质。

go 1.5之前默认情况下,Go程序都是不能并行的,因为Go将GOMAXPROCS默认设置为1,这样你仅仅能利用一个内核线程。Go 1.5及以后GOMAXPROCS被默认设置为所运行机器的CPU核数,如果你的机器是多核的,你的Go程序就有可能在运行期是并行的,前提是你在设计程 序时就充分运用了并发的设计理念,否则就会像Program1那样,即便有1w颗CPU,你也只能利用上一颗。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats