标签 GDB 下的文章

switch语句性能考量

每年都有应届毕业生来到公司,每年都要对新同事进行代码方面的培训,比如编码规范就是其中之一。编码规范初听起来比较新鲜,但是培训时间长了,显然有些乏味。今年我打算改变策略,让新同事结合已有规范文档和项目代码,自己先挖掘一遍,然后大家通过坐下来讨论的互动方式来加深对规范的理解,每次讨论时间限制在1 hour以内,不给大家打瞌睡的机会^_^。

上周和新同事一起讨论表达式和语句,说到了switch和if,谈到了他们的用途和区别。大家都清楚switch语句被称为多分支语句,当代码中即将出现3个及3个以上分支时,推荐用switch,这样代码可读性好,清晰,格式工整;但是同样switch也是有局限的,就是switch(xx)中的xx必须是整型变量;如果你的条件判断是字符串比较,就无法直接使用switch了。switch的这一局限实际上是有原因的,为什么呢?在于其性能优化。那switch语句在底层到底是如何实现的呢?和if语句相比,switch除了美观之外,优势又在哪里呢?我们唯有到汇编层去看个究竟了。

我们先来看看if多分支的情况://Windows XP + gcc v3.4.2 (mingw-special)
//testif.c
int test_if_performance(int i) {
    int rv = i;

    if (rv == 10) {
        rv += 100;
    } else if (rv == 11) {
        rv += 101;
    } else if (rv == 12) {
        rv += 102;
    } else if (rv == 13||rv == 14 || rv == 15) {
        rv += 105;
    } else {
        rv += 0;
    }
    return rv;
}

我们通过-S选项得到test_if_performance的汇编代码,我们加上了-O2的优化选项:
//gcc -S O2 testif.c
//testif.s
… …
_test_if_performance:
    pushl    %ebp
    movl    %esp, %ebp
    movl    8(%ebp), %edx
    cmpl    $10, %edx
    je    L11
    cmpl    $11, %edx
    je    L12
    cmpl    $12, %edx
    je    L13
    leal    -13(%edx), %eax
    cmpl    $2, %eax
    ja    L3
    addl    $105, %edx
L3:
    popl    %ebp
    movl    %edx, %eax
    ret
    .p2align 4,,7
L11:
    popl    %ebp
    movl    $110, %edx
    movl    %edx, %eax
    ret
    .p2align 4,,7
L12:
    popl    %ebp
    movl    $112, %edx
    movl    %edx, %eax
    ret
    .p2align 4,,7
L13:
    popl    %ebp
    movl    $114, %edx
    movl    %edx, %eax
    ret

从这段汇编码来看,if语句是逐个判断下来的,如果i = 19的话,程序需要从头判断到尾,"一个都不能少"^_^。那么拥有同样语义功能的switch代码又是如何实现的呢?我们继续看下去。
// testswitch.c 这个文件实现的是和上述testif.c同样的功能
int test_switch_performance(int i) {
        int rv = i;

        switch(rv) {
                case 10:
                        rv += 100;
                        break;
                case 11:
                        rv += 101;
                        break;
                case 12:
                        rv += 102;
                        break;
                case 13:
                case 14:
                case 15:
                        rv += 105;
                        break;
                default:
                        rv += 0;
        }
        return rv;
}

我们同样用-O2来得到switch的汇编代码:
//gcc -S O2 testswitch.c
//testswitch.s
… …
_test_switch_performance:
    pushl    %ebp
    movl    %esp, %ebp
    movl    8(%ebp), %ecx
    leal    -10(%ecx), %edx
    movl    %ecx, %eax
    cmpl    $5, %edx
    ja    L2
    jmp    *L10(,%edx,4)
    .section .rdata,"dr"
    .align 4
L10:
    .long    L3
    .long    L4
    .long    L5
    .long    L8
    .long    L8
    .long    L8
    .text
    .p2align 4,,7
L8:
    leal    105(%ecx), %eax
    .p2align 4,,15
L2:
    popl    %ebp
    ret
    .p2align 4,,7
L3:
    popl    %ebp
    leal    100(%ecx), %eax
    ret
    .p2align 4,,7
L4:
    popl    %ebp
    leal    101(%ecx), %eax
    ret
    .p2align 4,,7
L5:
    popl    %ebp
    leal    102(%ecx), %eax
    ret
看完汇编码,第一感觉:cmpl少了许多,一个只读数据段中的L10的标签映入眼帘,以L10标签为起始的内存中依次存储了L3、L4、L5和三个L8的地址,看起来就像是一个地址数组,或者是一个地址表,访问这个数组中的元素实际上就是调用每个元素对应地址中的一段代码。我们继续往前看,来证实一下这个想法。代码不多,比对着汇编指令手册读起来也不甚难。

pushl    %ebp
movl    %esp, %ebp        // 将栈帧地址存在%ebp中
movl    8(%ebp), %ecx        // 将rv值存储到%ecx中
leal    -10(%ecx), %edx        // 将rv值-10之后的值,作为地址偏移量存放到%edx
movl    %ecx, %eax        // 将%ecx中的rv值存储到%eax中
cmpl    $5, %edx            // 比较5 vs. (rv – 10),显然5是编译器经过代码扫描后,算出的一个最大偏移值
ja    L2            // jump if above ,如果5 > %edx中的值,则跳到L2继续执行
jmp    *L10(,%edx,4)        // 如果5 <= %edx中的值,则jmp    *L10(,%edx,4)

解析一下jmp    *L10(,%edx,4),按照书中所说,*L10(,%edx,4)应该对应一个叫indexed memory mode的模式,格式一般是base_address(offset_address, index, size),含义就是base_address + offset_address + index * size;这样似乎就一目了然了。我们拿i = 12为例,经过前面的计算,%edx中存储的是2,L10(,%edx,4)相当于L10 + 0 + 2 * 4,也就是起始地址=L10 + 8的那个内存区域,恰好是L5的起始地址,jmp    *L10(,%edx,4),直接将代码执行routine转到L5了:

L5:
    popl    %ebp
    leal    102(%ecx), %eax
    ret
显然这和前面的猜测是一致的,switch并没有使用性能低下的逐个cmpl的方式,而是形成了一个跳转表(以L10为首地址的地址数组),并将传入switch的那个整型值经过已经的运算后作为offset值,通过一个jmp直接转到目的代码区,这样无论switch有多少个分支,实际上都只是做了一次cmpl,性能照比多if有很大提升。

也谈’SIGBUS和SIGSEGV’

SIGBUS和SIGSEGV也许是我们在平时遇到的次数最多的两个内存错误信号。内存问题一直是最令我们头疼的事情,弄清楚两个信号的发生缘由对我们很好的理解程序的运行是大有裨益的。

我们来看两段程序:
//testsigsegv.c
int main() {
        char *pc = (char*)0×00001111;
        *pc = 17;
}

//testsigbus.c
int main() {
        int *pi = (int*)0×00001111;
        *pi = 17;
}

上面的代码那么的相似,我们也同样用gcc编译(加上-g选项,便于gdb调试;平台Solaris Sparc),执行结果也都是dump core。但通过GDB对core进行观察,你会发现细微的不同。第一个例子出的core原因是:Program terminated with signal 11, Segmentation fault. 而第二个例子的core则提示:Program terminated with signal 10, Bus error. 两者有什么不同呢?这两段代码的共同点都是将一个非法地址赋值给指针变量,然后试图写数据到这个地址。

如果要说清楚这个问题,我们就要结合汇编码和一些计算机的体系结构的知识来共同分析了。

先来看testsigsegv.c的汇编码:
… …
main:
        !#PROLOGUE# 0
        save    %sp, -120, %sp
        !#PROLOGUE# 1
        sethi   %hi(4096), %i0
        or      %i0, 273, %i0
        st      %i0, [%fp-20]
        ld      [%fp-20], %i1
        mov     17, %i0
        stb     %i0, [%i1]
        nop
        ret
        restore
… …

我们关注的是这句:stb     %i0, [%i1]
从计算机底层的执行角度来说,过程是如何的呢?%i0寄存器里存储的是立即数17,我们要将之存储到寄存器%i1的值指向的内存地址。这一过程对于CPU来说其指挥执行的正常过程是:将寄存器%i0中的值送上数据总线,将寄存器%i1的值送到地址总线,然后使能控制总线上的写信号完成这一向内存写1 byte数据的过程。

我们再看testsigbus.c的汇编码:
… …
main:
        !#PROLOGUE# 0
        save    %sp, -120, %sp
        !#PROLOGUE# 1
        sethi   %hi(4096), %i0
        or      %i0, 273, %i0
        st      %i0, [%fp-20]
        ld      [%fp-20], %i1
        mov     17, %i0
        st      %i0, [%i1]
        nop
        ret
        restore
… …

同样最后一句:st      %i0, [%i1],CPU执行的过程与testsigsegv.c中的一致(只是要存储数据长度是4字节),那为什么产生错误的原因不同呢?一个是SIGSEGV,而另一个是SIGBUS。这里涉及到的就是对内存地址的校验的问题了,包括对内存地址是否对齐的校验以及该内存地址是否合法的校验。

我们假设如果首先进行的内存地址是否合法的校验(是否归属于用户进程的地址空间),那么我们回顾一下,这两个程序中的地址0×00001111显然都不合法,按照这种流程,两个程序都应该是SIGSEGV导致的core才对,但是事实并非如此。那难道是先校验内存地址的对齐?我们再看这种思路是否合理?

testsigsegv.c中,0×00001111这个地址值被赋给了char *pc;也就是告诉CPU通过这个地址我们要存取一个字节的值,对于一个字节长度的数据,无所谓对齐,所以该地址通过对齐校验;并被放到地址总线上了。而在testsigbus.c里,0×00001111这个地址值被赋给了int *pi;也就是告诉CPU通过这个地址我们要存取一个起码4个字节的值,那么对于长度4个字节的对象,其存放地址起码要被4整除才可以,而0×00001111这个值显然不能满足要求,也就不能通过内存对齐的校验。也就是说SIGBUS这个信号在地址被放到地址总线之后被检查出来的不符合对齐的错误;而SIGSEGV则是在地址已经放到地址总线上后,由后续流程中的某个设施检查出来的内存违法访问错误。

一般我们平时遇到SIGBUS时总是因为地址未对齐导致的,而SIGSEGV则是由于内存地址不合法造成的。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats