标签 GCC 下的文章

也谈C语言的内联函数

有这样一段代码:

/* foo.c */
#include  "stdio.h"

inline void foo() {
    printf("inline foo in %s\n", __FILE__);
}

int main() {
    foo();
    return 0;
}

我采用C99标准,并在不加任何优化选项的情况下编译之:

$ gcc -std=c99 foo.c -o foo
foo.c: In function ‘foo’:
/tmp/ccLGkuIK.o: In function `main':
foo.c:(.text+0×7): undefined reference to `foo'
collect2: ld returned 1 exit status

这样的结果出乎我的意料。我原以为用inline修饰的函数定义,如上面的foo函数,在编译器未开启内联优化时依旧可以作为外部函数定义被编译器使用。但通过上面gcc输出的错误信息来看,inline函数的定义并没有被看待为外部函数定义,这样链接器才无法找到foo这个符号。C99标准新增的inline似乎与我对inline语义的理解有所不同。

C语言原本是不支持inline的,但C++中原生对inline的支持让很多C编译器也为C语言实现了一些支持inline语义的扩展。C99将inline正式放入到标准C语言中,并提供了inline关键字。和C++中的inline一样,C99的inline也是对编译器的一个提示,提示编译器尽量使用函数的内联定义,去除函数调用带来的开销。inline只有在开启编译器优化选项时才会生效。正如上面的例子,当我们打开优化选项并重新编译时,我们会看到:

$ gcc -std=c99 foo.c -O2 -o foo
$./foo
$ inline foo in foo.c

在-O2的优化选项下,编译器进行了内联优化,并采用了foo的inline定义。通过汇编代码我们也可以看出:foo.s中并没有显式地使用call进行函数调用,函数调用被优化掉了:

/* foo.s : gcc -std=c99 foo.c -O2 -S */
    .file   "foo.c"
    .section    .rodata.str1.1,"aMS",@progbits,1
.LC0:
    .string "foo.c"
.LC1:
    .string "inline foo in %s\n"
    .text
    .p2align 4,,15
.globl main
    .type   main, @function
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    subl    $16, %esp
    movl    $.LC0, 8(%esp)
    movl    $.LC1, 4(%esp)
    movl    $1, (%esp)
    call    __printf_chk
    xorl    %eax, %eax
    leave
    ret
    .size   main, .-main
    .ident  "GCC: (Ubuntu 4.4.3-4ubuntu5) 4.4.3"
    .section    .note.GNU-stack,"",@progbits

我们在另外一个文件bar.c中提供一个foo的外部函数定义:

/* bar.c */
#include

void foo() {
    printf("global foo in %s\n", __FILE__);
}

我们将foo.c和bar.c放在一起编译(未开启优化选项):
$ gcc -std=c99 foo.c bar.c -o foo
$ ./foo
$ global foo in bar.c

链接器为foo.c中的符号foo选择了bar.c中的foo函数定义。这样看来我们甚至可以有两个同名(名字都是foo)的函数定义,只不过一个是inline定义,一个是外部定义,它们并不冲突。

再开启优化选项,我们得到:
$ gcc -std=c99 foo.c bar.c -o foo
$ ./foo
$ inline foo in foo.c

这一次编译器选择了foo的inline定义。

究其原因:foo.c和bar.c分处于两个不同的编译单元,在未开启内联优化的情况下,foo.c对应的目标文件foo.o中foo只是一个未定义的符号,而bar.o中的foo却是一个global符号,并对应一块独立的实现代码。链接器自然采用了bar.c中的foo函数定义。而在开启了内联优化的情况下,编译器在进行foo.o这个编译单元的编译期间就直接对foo进行了优化,并采用了foo的inline定义,直接放到了main函数的汇编代码中,没有显式地call foo,并且foo.o中并未为foo单独生成Global函数代码,这样在最后的链接阶段,bar.o就变成"打酱油"的了^_^。

以上只是为了说明C99内inline语义而做的试验。在现实开发中,我们绝不应该这么去做。我们要确保函数的inline定义和非inline定义的语义一致性。那能否做到让一份函数定义既可以作为inline定义,也可以作为外部函数定义呢?这意味着我们在开启内联优化时,既要在inline函数定义的编译单元里执行内联优化,也要为inline函数生成一份独立的global的函数定义(汇编码)。

我们增加一个头文件foo.h:
/* foo.h */
extern void foo();

/* foo.c */
#include
#include "foo.h"

inline void foo() {
    printf("foo in %s\n", __FILE__);
}

int main() {
    foo();
    return 0;
}

我们在开启优化和未开启优化两种情况下分别编译执行:
$ gcc -std=c99 foo.c -o foo
$ ./foo
$ foo in foo.c

$ gcc -std=c99 foo.c -o foo -O2
$ ./foo
$ foo in foo.c

我们看到:无论哪种情况,我们都可以顺利通过编译,并且得到正确的执行结果。我们来看看汇编码有何变化:

在未开启优化的情况下,我们得到如下汇编码:

.globl foo
    .type   foo, @function
foo:
    pushl   %ebp
    … …
    call    printf
    leave
    ret
    .size   foo, .-foo

    … …
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    call    foo
    … …
    ret

内联优化并未生效,main代码中进行了foo的函数调用。但与本文开始时的那个例子不同的是,编译器为foo生成了一份独立的global的函数定义汇编码块,这块代码可以直接被外部引用,也就是说在未开启优化的情况下,foo定义被看成了外部函数定义。

但开启优化选项的情况下,我们得到如下汇编码:
.globl foo
    .type   foo, @function
foo:
    pushl   %ebp
    … …
    call    __printf_chk
    leave
    ret
    … …
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    subl    $16, %esp
    movl    $.LC0, 8(%esp)
    movl    $.LC1, 4(%esp)
    movl    $1, (%esp)
    call    __printf_chk
    xorl    %eax, %eax
    leave
    ret

内联优化生效了,main代码中并未显式地进行foo的函数调用。并且编译器依旧为foo生成了一份独立的global的函数定义汇编码块,这块代码可以直接被外部引用,也就是说在开启优化的情况下,foo定义在本编译单元被看作内联定义,同时对其他编译单元而言,也是外部函数定义。

我们通过在头文件中增加一个外部函数声明实现了我们的目标!不过上面方法虽然实现了一份定义既可以当作inline定义,也可以作为外部定义,但inline定义仅局限于定义它的那个编译单元,其他编译单元即使在开启内联优化时,依旧无法实施内联优化。如果我们希望多个编译单元共享一份inline定义并且这份定义也可以同时作为外部函数定义,我们该如何做呢? – 那我们只能把inline定义放到头文件中了!见下面代码:

/* foo.h */
inline void foo() {
    printf ("foo in %s\n", __FILE__);
}

/* foo.c */
#include
#include "foo.h"

int main() {
    foo();
    return 0;
}

/* bar.c */
#include
#include "foo.h"

void bar() {
    foo();
}

$ gcc -std=c99 foo.c -S -O2
我们看看开启优化情况下的bar.c和foo.c对应的汇编代码,以foo.s为例:

/* foo.s */
… …
main:
    pushl   %ebp
    movl    %esp, %ebp
    andl    $-16, %esp
    subl    $16, %esp
    movl    $.LC0, 8(%esp)
    movl    $.LC1, 4(%esp)
    movl    $1, (%esp)
    call    __printf_chk
    xorl    %eax, %eax
    leave
    ret
… …

内联优化生效,bar.s也是一样,不过编译器没有为我们生成foo的独立外部定义代码,这样的foo定义只能作为inline定义,而不能被作为外部函数定义。如果此时不开启优化选项编译,我们还会得到如下错误:
/tmp/ccpp1E7i.o: In function `main':
foo.c:(.text+0×7): undefined reference to `foo'
/tmp/ccQk872R.o: In function `bar':
bar.c:(.text+0×7): undefined reference to `foo'
collect2: ld returned 1 exit status

我们稍作改动,在foo.c和bar.c的文件开始处,我们加上这样一行代码:"extern inline void foo();",加上后,我们重新编译,这回foo在被内联优化的同时,也被生成了一份独立的外部函数定义。我们的目标又达到了!

总之,C99中inline相对比较怪异,使用时务必小心慎重。

又遇字节序问题

今天上午处理了一个线上产品的故障。分析来分析去,最后定位问题还是出在字节序转换的环节上。

其实测试组早在产品上线前就曾报告了这个问题,但是对应的开发人员并未对该问题进行深入地分析,而是有些草率地将该问题归结为客户端模拟器的实现不符合标准。因为这位同事比较资深,所以当时我也没有给予足够关注。

产品今天凌晨上线,9点左右业务量开始增大,这个问题立即就被我们在现场的运维人员发现,还好我们的系统是集群式的,运维同事及时的将线上有问题的版本停掉,用其他服务器支撑起了全部业务,躲过一劫。

我们还是回到这个问题上来。经验告诉我们:严重的问题往往都是由极其简单的错误导致的。这次也不例外!问题的直接原因就是:多调用了一次htonl。的确就是这么简单,但如果继续深入下去,我们还能得到一些收获。

当产品运行在x86服务器上,这个问题就会暴露出来,但是在Sun Sparc服务器上,该产品运行良好。我们分析后的结论是:这是由于在两种体系结构上htonl的实现不同而导致的。

我们先来做个试验,看下面的代码和执行结果:

/* testhtonl.c */
#include "stdio.h"
#include "arpa/inet.h"

int main() {
    unsigned int a = 0×12345678;
    unsigned int b = htonl(a);

    printf("0x%x\n", b);
    printf("0x%x\n", htonl(b));
   
    return 0;
}

将上面代码分别在x86和Sparc上编译运行。在x86上(ubuntu 10.04 Gcc 4.4.3 x86)运行的结果如下:
0×78563412
0×12345678

而在Sparc上(Solaris 10 for Sparc, Gcc 3.4.6)运行的结果如下:
0×12345678
0×12345678

由此我们可以看出,htonl这个接口并不总等价于字节序转换。在Sparc这种Big-endian体系结构的平台上,htonl相当于直接将参数值返回;而在x86这样的little-endian体系结构平台上,htonl则是等价于一个reverse_byte_order接口,每次调用都会把输入参数的byte order倒转后的结果返回。

还回到我们的那个问题中:多调了一次htonl在Sparc平台上没有什么影响;但是在x86平台上,我们得到了相反字节序的结果,导致故障的出现。

这不是我们第一次遇到字节序问题了,不过却是第一次在线上产品中遇到,上一次是在开发过程中遇到的。这次发生的问题并不仅仅是技术上的问题,更多的是在工作的严谨性和工作态度上出现问题了。对我来说,这是一个很值得吸取的教训。

如发现本站页面被黑,比如:挂载广告、挖矿等恶意代码,请朋友们及时联系我。十分感谢! Go语言第一课 Go语言精进之路1 Go语言精进之路2 Go语言编程指南
商务合作请联系bigwhite.cn AT aliyun.com

欢迎使用邮件订阅我的博客

输入邮箱订阅本站,只要有新文章发布,就会第一时间发送邮件通知你哦!

这里是 Tony Bai的个人Blog,欢迎访问、订阅和留言! 订阅Feed请点击上面图片

如果您觉得这里的文章对您有帮助,请扫描上方二维码进行捐赠 ,加油后的Tony Bai将会为您呈现更多精彩的文章,谢谢!

如果您希望通过微信捐赠,请用微信客户端扫描下方赞赏码:

如果您希望通过比特币或以太币捐赠,可以扫描下方二维码:

比特币:

以太币:

如果您喜欢通过微信浏览本站内容,可以扫描下方二维码,订阅本站官方微信订阅号“iamtonybai”;点击二维码,可直达本人官方微博主页^_^:
本站Powered by Digital Ocean VPS。
选择Digital Ocean VPS主机,即可获得10美元现金充值,可 免费使用两个月哟! 著名主机提供商Linode 10$优惠码:linode10,在 这里注册即可免费获 得。阿里云推荐码: 1WFZ0V立享9折!


View Tony Bai's profile on LinkedIn
DigitalOcean Referral Badge

文章

评论

  • 正在加载...

分类

标签

归档



View My Stats